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Abstract: This paper  contains  general analytical results which  can  be  applied to high-speed  Geneva  design.  The  results are de- 
rived from classical  mechanics  theory  and  provide  explicit relationships between the performance parameters (those param- 
eters such  as contact stress,  maximum load, etc.,  which  can have a significant  effect on the  mechanism performance) and  the 
design  variables  which  specify a Geneva  mechanism (number of slots, wheel diameter, pin diameter, etc.). In the past, the com- 
plexity  of the mathematical formulation of  this problem  has  precluded  synthesis of the  Geneva  wheel proportions. Using 
these  results,  however, it is now possible to synthesize the wheel  configuration  directly,  instead of by a repeated trial and 
error analysis.  Two  examples are given demonstrating the analysis and synthesis  techniques. 

Introduction 

Geneva mechanisms have  long been popular  as a means 
of producing positive incremental  motion.  This  popularity 
stems in part  from  the simplicity of the mechanism, both 
in design and construction, which makes it a relatively 
low-cost indexing device. In addition, the mechanism 
inherently produces a precise positioning motion that is 
necessary for many  applications. 

In  the applications where this mechanism is presently 
utilized, it has proven to be extremely trouble-free and 
dependable. In  the  future  it is expected that this device 
may find many  applications  requiring higher speeds. As 
the higher speeds become necessary, the mechanism be- 
comes less attractive  as an incremental device because of 
its kinematic limitations.’ For instance, a severe limitation 
under  these  conditions may result from  the high maximum 
wheel acceleration relative to its average acceleration.’ 
This  characteristic  may  cause excessive dynamic  loads 
which in turn can cause severe drive pin and  slot wear 
and/or wheel breakage. 

Therefore the analytical design problem  in the case of 
high-speed Geneva mechanisms, where inertial  loads are 
dominant, is one where the best combination of the design 
variables is sought to reduce the inherent  kinematic limita- 
tions of the mechanism. 

The primary objective of this  paper is to present explicit 
graphical  relationships between the limiting stresses (both 
wear and breakage) and  the available design variables so 
that their  quantitative influence may be readily evaluated 

186 by the designer to produce an  optimum Geneva design. 

These relationships will not only allow one to analyze 
an existing design but also, more importantly, will allow 
the designer to synthesize the wheel configuration from 
maximum stress and/or  load criteria. 

Design  approach 

Many  factors  contribute to a successful Geneva mech- 
anism design, such as materials used, surface finish, tol- 
erances, loads, stress levels, lubricant, etc. Unsuccessful 
experimental applications of this mechanism usually result 
in  two  modes of failure: pin wear and wheel breakage. Of 
these two modes,  wear is the  hardest to control. The 
present design approach will be to reduce wear by altering 
the geometry of the Geneva wheel to reduce the contact 
stress while maintaining acceptable stress levels in other 
regions of the wheel. R. C. Johnson3 showed that  an 
optimum wheel diameter exists for  minimum wear stress. 
In this  paper,  consideration is given to  two  additional 
dimensions (pin  diameter and  tip thickness) on  the wear 
stress and certain internal  beam stresses. 

This  paper will begin by  defining the wheel geometry and 
then developing the relationships between this geometry 
and  the wheel inertia, the maximum pin load, the contact 
stress, and  the  internal wheel stresses. These performance 
parameters will be normalized to the corresponding param- 
eters of a set of predefined “standard”  Genevas for con- 
venience in  interpreting results. For  the “standard”  set 
chosen, curves will show the stress and  load parameters 
as a function of inertia and speed. The normalized curves 
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Figure l ( a )  Geometry of the Geneva  mechanism; (b) beam  section  geometry. 

will show the effect of geometrical differences between any 
Geneva wheel and  the “standard” Geneva. 

Graphical curves for 4-, 5-, 6-, and 8-slot Genevas are 
shown  although the concept can be extended to Genevas 
with any number of slots. The complexity and voluminous 
nature of the calculations prohibit any complete closed- 
form solution of the problem, and therefore it was neces- 
sary to use a digital  computer (IBM 7094) for most of the 
results. For this  reason, no detailed derivations will be 
given, and  the emphasis will be on  the results obtained 
and how they can be  used  in the analysis and synthesis of 
Geneva mechanisms. 

Analysis 

Wheel geometry 

A typical  Geneva wheel and drive pin are shown in Fig. 
l(a). It is assumed that there is no axial  variation  in the 
wheel profile. The three dimensions which specify an M-slot 
wheel are D, d, and a, i.e., the wheel diameter, drive pin 
diameter, and lock radius, respectively. It is convenient for 
our purposes to use an  alternate set of dimensions, D,  d*, 
and t*,  to specify the wheel geometry, where 

d* = d / D  

t* = t / D  = - a / D .  tan (?r /M)  - d* 
L 

For a set of proportional wheels, therefore, the normal- 

ized pin diameter d* and  tip thickness t* will be constant 
or, conversely, any given d* and t* define a proportional 
set of Geneva wheels. The thickness of the Geneva wheel 
will not be considered as an independent  parameter, but 
will be taken to be equal to the pin diameter. This  particular 
assumption is made to insure that  the drive pin load across 
the thickness of the wheel is approximately uniform. If 
the pin diameter is made small with respect to  the Geneva 
wheel thickness, then  the loading will be  concentrated 
near the fixed end of the beam and will not be uniformly 
distributed  across the face of the wheel. The final results 
can  be easily modified to include any wheel thickness not 
equal to the drive pin diameter. This will be demonstrated 
later  in a sample problem. 

The six basic design parameters? necessary to specify the 
dynamics of a Geneva mechanism are: 

Driver speed N 
Number of slots M 
Load inertia L 

Wheel diameter D 
Pin diameter d* 
Tip thickness t* 

The remainder of this  paper will be directed toward 
illustrating the effect each of these parameters has  on  the 
maximum  contact stress, maximum pin load, and maxi- 
mum internal wheel stresses. 

t Excluding wheel and pin materials, which are assumed to be steel. 187 
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Wheel inertia 

It has been  shown3 that the Geneva wheel inertia must  be 
three-halves of the load inertia in order to maintain a 
minimum  pin  contact  stress.  This  stress is minimum  with 
respect to the wheel diameter, but, of course, will  vary 
with d* and t*. Therefore, if 

I C  = - ;IL - wD4 - d h D 5 ,  

then 

D = (3ZL/2KM)0’2, (1) 

where KM is a proportionality constant which depends  on 
d*, t*, and M .  Thus, the outside  Geneva wheel diameter  is 
specified for any Z L ,  d*, t*, and M .  This  means that the 
over-all wheel diameter is not to be  considered as an 
independent  parameter. 

The determination of the diameter  consequently  will 
be the last step in the wheel  synthesis  procedure,  after 
d* and t* have been found. Equation (1) can  then  be  used 
to solve for D. Numerical  values of KM are found in 
Fig. 2. For notational convenience, the subscript M ,  which 
denotes the dependence on the number of slots in the 
wheel,  will  be  deleted, and it will  be  assumed that all 
equations which  follow  will  have  this  dependence. 

e Maximum pin load and contact stress 

The maximum normal pin load (P,,,) occurs when the 
Geneva wheel  is  decelerating-a  consequence  of frictional 
load. This  is given  by 

Let 

Since (d2/3/da2),., and RZa, depend  only on the number 
of slots in the wheel, Pm,,/N2 can  be  determined as a 
function of the given load inertia ZZ for any given propor- 
tional set of  wheels. This  relationship  is  shown in Fig. 3 
for a set of  wheels  which have a d* and t* equivalent to 
those given  by John~on.~ This  set of proportional wheels 
will  be  referred to as the “standard wheels” denoted by 
the subscript letter “s.” Defining the “standard wheel” 
was done so that the results  can  be  normalized to some 
set of stress levels for any load inertia, number of slots, 
and speed. The values of d* and t* for the standard set 
of  wheels are shown  in  Fig. 3. In Figs.  4(a) through 4(d), 
the variation of P,,, divided by (Pmsx), is shown as a 
function of d* and t* where the load inertia, number of 
slots, and speed  remain constant. 

The pin-slot contact stress  may  be  computed in a similar 
way,  using Hertz relationships for a cylinder contacting 
a plane  surface: 

The component material is  assumed to be  steel,  with 
v = 0.3 and E = 30 X lo6 lb/in2. Using a coefficient  of 
friction of  0.33, it has been shown4 that  the corresponding 
maximum contact shear  stress, r ,  equals 0.43 qo. 

Thus r / N  can  also be determined as a function of the 
given load inertia, Z L ,  [using  Eqs.  (3) and (4)] for a set of 
proportional wheels. The r , / N  values for standard wheels 
are shown  in  Fig.  3, and values of r / r ,  are plotted in  Fig. 5. 

The magnitude of the contact shear stress  between two 
bodies  is  often  used as an indicator of the wear perform- 
ance to be  expected  from their combination. Indeed, Bayer 
et al.5  have found empirically that wear  life is inversely 
proportional to the ninth power  of the contact shear 
stress  between the two surfaces of interest.  This relation- 

found in  Ref. 1. Substituting  these  expressions into Eq. (2) Geneva wheel internal stresses 
and using the D value  shown  in  Eq. (1) yields: 

When efforts are made to minimize the pin contact stress 

2 ( Z L ) 0 ( $ )  by increasing the pin  diameter or decreasing the  tip thick- 
” 
P,,, 
Nz = 

max . (3)  ness,  one  must  consider  what  effect  this  will  have on the in- 

360(&~.2(R&+x - ”) ternal stresses of the Geneva wheel. Referring to Fig. l(b), 
188 2 it can  be  seen that  the load-carrying  ability of the wheel 
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II VORMALIZED TIP THICKNESS, t 

4ORMALIZED TIP THICKNESS. tr I NORMALIZED TIP THICKNESS, t* 

Figure 2 Geneva wheel  inertia  proportionality  constants K;lr in (lo-’ lb seca/in4). 
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I /  PM,,/10-6NZ 

0.1 I I , 1 1 1 1  I I l l ,  I 1 1 1 1  I I , I I  I 
10-6 lo* 103 10-2 10- 

LOAD INERTIA I, IN IN.-LE-SEC' ILOAD INERTIA I, IN IN.-LB-SECZ 

Figure 3 Loads  and  stresses for the standard Geneva wheel configurations. 
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ORMALIZED TIP THICKNESS, t" I NORMALIZED TIP THICKNESS, t' 

ORMALIZED TIP THICKNESS, t* 

Figure 4 Lines of constant stress and load ratios. 

Code: 

I 1 0 5 \  

INORMALIZED TIP THICKNESS, t' 
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I N  ORMALIZED TIP THICKNESS, t* 

lORMALlZED  TIP THICKNESS, t *  

Figure 5 Lines  of constant stress and life ratios. 

Code : 

,7 m 

4ORMALIZED TIP THICKNESS, t' 

K 1 

192 R" ' T s  
- " "_ "" . 7 / 7 ,  - . L / L ,  -. 

C. E. HASTY AND J. F. POTTS 

4ORMALIZED TIP THICKNESS, t* 



I "" 1 

2 

I I 1  I I I 
4 0.5 0 6  0.7 0.8 0.9 1. 

R / D  

Figure 6 Experimental vs theoretical internal wheel  stresses. On each chart, 1 is the  experimental tip stress, 2 the  theoretical 
tip stress, 3 the  theoretical root stress,  and 4 the  experimental root stress. 

is lost as h,  or h,  approaches zero. For this  reason, the 
stress level in the wheel will be examined as d* and t* 
change. The geometry of the wheel suggests that  the maxi- 
mum stress will occur either at  the  tip during the initial 
wheel acceleration (or final deceleration) or at  the section 
near the  bottom of the slot. 

An approximate  determination of these stresses can be 
afforded by applying beam theory, where these approxi- 
mate beam sections are denoted by lines 1-1 and 2-2 in 
Fig. l(b). The stress produced  in the  tip during  initial pin 
entry and final pin exit (assuming 8 is small) will be 

uT = 6 P x / w h :  ( 5 )  

where h,  = ( D / 2 )  tan ( K I M )  - ( 4 2 )  - (az - Y')".~ 

and y = ( D / 2 )  - R + x 

After evaluating Eq. ( 5 )  to find the maximum value of 
u T  with respect to x and P, one can reduce it to 

where X*,, h$, and K M  depend on d* and t* .  Using an 
equation of the  form of Eq. (3) for Po, and fixing d* and t* 
to  the  standard values, gives 

a T / N 2  = C(IL)0'4, (7) 

where C is a constant  for each value of M .  This  equation 
has been plotted in Figs. 3(a) through 3(d). (The short-  and 
long-dashed lines at  the left of Figs. 2(b), 3(b), 4(b) and 
5(b) indicate the values used in  the sample problems.) 1 93 
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This stress can again be normalized to (aq.),, and this 
has been plotted in Figs. 4 and 5 .  It appears in both 
figures so that its variation can be  seen as  one changes the 
maximum load or contact stress. 

Beam theory again was used to compute  the stresses 
across section 2-2 (see Fig. l(b)).  This stress was modified 
by using stress concentration  factors6 to account partially 
for the  notch effect resulting from the slots. The resulting 
root stress is then 

UR = 6K,P(11 i- P & )  I K,P(sin Y + P cos Y) 
w h i  ( 8) whn 

where 

hR = 26 sin y - d 

I, = R - b (COS y)’ 

d 
I ,  = b cos y sin y - - 

2 

y = T / M  

b = 0/2[(1 - siny)/(cos y)] - C L ,  

and CL is the radial clearance between the drive pin and 
wheel at  the point of maximum slot penetration. This 
clearance is assumed to be 0.010 inch per inch of Geneva 
wheel diameter. The stress concentration factors Kl and K2 
have been taken  from circularly notched beams in bending 
and tension. 

Equation (8) can be reduced to the form  of Eq. (7), 
and  it has been plotted in Fig. 3. Division by the standard 
root stress enables one again to express the normalized 
root stress as a function of d* and t * .  This has been done 
in Figs. 5(a) through 5(d). 

In  order to determine the adequacy of the theory 
used to compute  the  internal Geneva wheel stresses, models 
were made using a birefringent plastic. The stresses were 
determined photoelastically using a reflecting polariscope 
with an experimental accuracy of about five percent. Since 
the beam analysis approximations depend on  the wheel 
proportions, wheels were chosen which had relatively thick 
root  and  tip sections. The photoelastic model wheels 
(4-, 5-, 6-, and 8-slot wheels) each had the  proportions of 
the  “standard” wheels. 

The models were statically loaded at several load radii 
and  the maximum stress per unit load recorded. Com- 
bining this with the pin load  as a function of load  radius 
enables one to determine the Geneva wheel stress as a 
function of the  load radius. These data have been plotted 
in Fig. 6, where they have been normalized to the maximum 
stress which occurs during the load cycle. Photographs 
showing three representative load positions are shown in 
Fig. 7. 

From this study, it appears that  the simple beam theory 
194 is completely adequate for design purposes. 
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Figure 7 Photographs of photoelastic models of 5-slot 
Geneva wheel having load position sequences 1 ,  2, and 3, 
respectively, in (a ) ,  (b) ,  and (c). 



Illustrative examples 

The following problems are provided to illustrate Geneva 
synthesis and analysis using results presented in this paper. 

Problem “A” 

As an example of wheel synthesis, assume that a 5-slot 
Geneva is to index a in-lb-sec‘ inertial  load at a rate 
of 5000 steps per minute. The drive wheel has two pins, 
and, therefore, is driven at 2500 rpm. In addition, assume 
that from  material  strength considerations, it is necessary 
to keep the pin slot contact stress below  20,000  lb/in’. 
The following steps indicate one  method by  which the 
specified objectives can be reached. Short- and long-dashed 
lines have been added at the left of Figs. 2(b),  3(b),  4(b), 
and 5(b) to show how numerical values have been selected 
for  the sample problems. The following information has 
been  given : 

M = 5 slots 

N = 2500 rpm 

I L  = in-lb-sec2 

T 5 20,000  Ib/in2. 

Using Fig. 3(b), the “standard” Geneva mechanism 
can be seen to have: 

un = X 2500’ X 0.37 = 2300  Ib/in2 

uT = X 2500’ X 160 = 1000 lb/in* 

T ,  = 2500 X 10.3 = 25,800 Ib/in’ 

P,,, = X 2500’ X 1.8 = 11.2 Ib. 

In  addition, by definition, this design has  a relative wear 
life  of one. The  contact stress r, of this design  exceeds the 
specified  level, and it will  be necessary to ensure that 

- 5 A = 0.775. 7 20 000 
T ,  25,800 

Choosing T / T ,  equal to 0.75 and examining Fig. 5(b), one 
finds many pin diameter-tip thickness combinations that 
are satisfactory. The choice of any particular point on the 
T / T ~  curve requires some decision as to the magnitude of 
root  and tip stress acceptable in the design. Indeed, either 
of  the  two stresses may be minimized (at the expense of 
the  other) by moving one direction or the other along the 
curve. In  this example, both stress levels are relatively 
low, and the decision is not critical. Thus,  arbitrarily 
choosing d* = 0.2 and t* = 0.04, we have [from Figs. 2(b), 
4(b), and 5(b)]: 

T = 19,300 lb/in’ 

uR = 1.6 X 2300 = 3700 Ib/in’ 

uT = 1.3 X 1000 = 1300 Ib/in’ 

P,,, = 1.07 X 11.2-12.0 lb 

K = 0.48 X lo-’ lb-sec2/in4, 

which  satisfies the specified conditions. It should also be 
noted that the relative wear life  is approximately 12 times 
that of the  standard.  The mechanism dimensions are 

D = [”]”’ = [ 
2 K  2 x .48 x lo-” 

= 1.26 in 

d = d * D  = 0.252 in 

t = t* D = 0.05 in 

w = d = 0.252  in. 

Problem “B’ 
To illustrate Geneva analysis, assume that the following 
information is known and  that  it is necessary to determine 
the stress-load levels : 

D = 1.5 in 

d = 0.25 in 

t = 0.1 in 

w = 0.15 in 

I L  = 5 X 10-’ in-lb-sec2 

N = 2000 rpm 

M = 5 slots. 

The dimensionless parameters are: 

t* = - = 0.0667 0.1 
1.5 

Once again, using Fig. 3(b), the  “standard” Geneva has: 

un = X 2000’ X 0.71 = 2840 Ib/in’ 

uT = 1 O-fi X 2000’ X 310 = 1240  lb/in’ 

T, = 2000 X 14 = 28,000 Ib/in2 

P,,, = 10-‘ X 2000’ X 6.6 = 26.4 lb. 

However, these performance parameters are  for: 

d* = 0.14 

t* = 0.053 

w / d  = 1.0 

and a wheel of optimum diameter. Using Figs. 4(b) and 
5(b), with the d* and t* of this problem, one finds: 

195 

GENEVA MECHANISMS 



- = 0.92 7 

7.  

Pm,, 
(Prnm).e 
" - 1.08. 

Therefore 

UR = 1.3 X 2840-1 3700 lb/in' 

uT = 0.7 X 1240 =-870  lb/in2 

r = 0.92 X 28,000 = 25,800  lb/in2 

P,,, = 1.08 X 26.4 = 28.5 lb 

LIL,  = 2.1. 

These are performance parameters for a wheel of: 

d* = 0.167 

t* = 0.0667 

w/d = 1.0 

and of optimum diameter. 
The diameter for  the wheel above [using Fig. 2(b)] is: 

D = [".]0'2 = [ 3 x 5 x 1 0 - L j o . 2  
2 K  2 x 0.53 x 1 0 - ~  

= 1 .7  in. 

However, the  actual dimensions of the wheel are: 

D = 1.5 in 

w/d = 0.6. 

Several relationships are necessary to translate the per- 
formance parameters of above into those corresponding 
to  the analysis wheel. These are given here without deriva- 
tion,  although they can be obtained  through manipulation 
of results presented in the  paper: 

ad = yuz 

where 

The prime superscript represents the corrected values. 
196 Using these relationships we obtain : 

€ =  5 
= 0.591 

y = 0.6 (15) = 1.44 
0.591  1.7 

uk = 1.44 X 3700 = 5330 lb/in' 

a& = 1.44 X 870 = 1250  lb/in2 

r' = 1.2 X 25,800 = 31,000  lb/in2 

Z'LaX = 0.67 X 28.5 = 19.1  lb 

These are the performance parameters for  the analyzed 
wheel. 

Conclusions 

The results presented here certainly do  not represent the 
ultimate procedure in the design  of Geneva mechanisms 
since the analysis avoids any mention of the effects  of 
lubrication, surface finish, material properties, tolerances, 
etc. However, it is felt that  the analytical portion of the 
design has been significantly aided by the results pre- 
sented, especially in the  area of wheel configuration syn- 
thesis. The eventual success  of this procedure will depend 
to a large degree on  the validity of the failure criteria used. 
No extensive tests have been performed over the wide 
range of parameters covered in this paper. However, the 
results were  successfully applied during the development 
of an 8000 cycle per minute, 5-slot,  2-pin Geneva driving 
an inertial load of 5 X in-lb-sec'. Measurements 
taken indicated that the rigid body load  and constant 
driver speed assumptions were applicable. The Geneva 
continued to function properly after approximately one 
billion index cycles. At this time it appears that  the most 
significant criteria are maximum load (bearing life),  maxi- 
mum contact stress (wear life), and maximum tip and 
root stress (fatigue life). Thus the results of this paper 
have been built around consideration of these mechanism 
parameters. 

The most significant limitation of the work is the rigid 
body assumption used in computing the system dynamics. 
In cases where this assumption is questionable, then the 
results must be considered to be approximate. Most of 
the other assumptions (materials used, friction, etc.)  were 
necessitated only to ensure that  the volume of the presented 
material was kept to a reasonable length. 
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Symbols 
D Geneva wheel diameter in 
d Drive pin diameter in 
t Tip thickness in 
a Locking radius  in 
a Angular position of drive pin rad 
p Angular position of Geneva wheel rad 
KM Constant of proportionality of Geneva wheel 

M Number of slots in wheel - 
I L  Load inertia in-lb-sec2 
I* Geneva wheel inertia in-lb-sec2 
N Angular speed of driver rPm 
X Distance between  wheel center and drive pin 

center in 
P Drive pin load (normal component) Ib 
qo Hertzian  normal stress Ib/in2 
IV Thickness of  wheel in 
p Coefficient of friction - 
r Hertzian shear stress lb/in2 
U ?  Tip stress lb/ina 
uR Root stress lb/in2 
Y Poisson’s ratio - 
E Modulus of elasticity Ib/in2 

inertia (a function of d*, t* ,  and M) lb-secZ/ina 

valuable  assistance in photographing the photoelastic 
models  used  in  the  stress analysis. We  also  wish to express 
our appreciation to Carl Handen,  who  provided  many 
useful  suggestions  concerning  the  organization of the 
paper. 
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