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Analysis and Synthesis Procedures for

Geneva Mechanism Design

Abstract: This paper contains general analytical results which can be applied to high-speed Geneva design. The results are de-
rived from classical mechanics theory and provide explicit relationships between the performance parameters (those param-
eters such as contact stress, maximum load, etc., which can have a significant effect on the mechanism performance) and the
design variables which specify a Geneva mechanism (number of slots, wheel diameter, pin diameter, etc.). In the past, the com-
plexity of the mathematical formulation of this problem has precluded synthesis of the Geneva wheel proportions. Using
these results, however, it is now possible to synthesize the wheel configuration directly, instead of by a repeated trial and
error analysis. Two examples are given demonstrating the analysis and synthesis techniques.

Introduction

Geneva mechanisms have long been popular as a means
of producing positive incremental motion. This popularity
stems in part from the simplicity of the mechanism, both
in design and construction, which makes it a relatively
low-cost indexing device. In addition, the mechanism
inherently produces a precise positioning motion that is
necessary for many applications.

In the applications where this mechanism is presently
utilized, it has proven to be extremely trouble-free and
dependable. In the future it is expected that this device
may find many applications requiring higher speeds. As
the higher speeds become necessary, the mechanism be-
comes less attractive as an incremental device because of
its kinematic limitations." For instance, a severe limitation
under these conditions may result from the high maximum
wheel acceleration relative to its average acceleration.”
This characteristic may cause excessive dynamic loads
which in turn can cause severe drive pin and slot wear
and/or wheel breakage.

Therefore the analytical design problem in the case of
high-speed Geneva mechanisms, where inertial loads are
dominant, is one where the best combination of the design
variables is sought to reduce the inherent kinematic limita-
tions of the mechanism,

The primary objective of this paper is to present explicit
graphical relationships between the limiting stresses (both
wear and breakage) and the available design variables so
that their quantitative influence may be readily evaluated
by the designer to produce an optimum Geneva design.
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These relationships will not only allow one to analyze
an existing design but also, more importantly, will allow
the designer to synthesize the wheel configuration from
maximum stress and/or load criteria.

Design approach

Many factors contribute to a successful Geneva mech-
anism design, such as materials used, surface finish, tol-
erances, loads, stress levels, lubricant, etc. Unsuccessful
experimental applications of this mechanism usually result
in two modes of failure: pin wear and wheel breakage. Of
these two modes, wear is the hardest to control. The
present design approach will be to reduce wear by altering
the geometry of the Geneva wheel to reduce the contact
stress while maintaining acceptable stress levels in other
regions of the wheel. R. C. Johnson® showed that an
optimum wheel diameter exists for minimum wear stress.
In this paper, consideration is given to two additional
dimensions (pin diameter and tip thickness) on the wear
stress and certain internal beam stresses.

This paper will begin by defining the wheel geometry and
then developing the relationships between this geometry
and the wheel inertia, the maximum pin load, the contact
stress, and the internal wheel stresses. These performance
parameters will be normalized to the corresponding param-
eters of a set of predefined “standard” Genevas for con-
venience in interpreting results. For the “standard” set
chosen, curves will show the stress and load parameters
as a function of inertia and speed. The normalized curves




GENEVA WHEEL

Figure 1(a) Geometry of the Geneva mechanism; (b) beam section geometry.

will show the effect of geometrical differences between any
Geneva wheel and the “standard” Geneva.

Graphical curves for 4-, 5-, 6-, and 8-slot Genevas are
shown although the concept can be extended to Genevas
with any number of slots. The complexity and voluminous
nature of the calculations prohibit any complete closed-
form solution of the problem, and therefore it was neces-
sary to use a digital computer (IBM 7094) for most of the
results. For this reason, no detailed derivations will be
given, and the emphasis will be on the results obtained
and how they can be used in the analysis and synthesis of
Geneva mechanisms.

Analysis

o Wheel geometry

A typical Geneva wheel and drive pin are shown in Fig.
1(a). It is assumed that there is no axial variation in the
wheel profile. The three dimensions which specify an M-slot
wheel are D, d, and q, i.e., the wheel diameter, drive pin
diameter, and lock radius, respectively. It is convenient for
our purposes to use an alternate set of dimensions, D, d¥,
and r*, to specify the wheel geometry, where

d* = d/D

_ tan (/M) — d*
- 2

t* =1t/D a/D.

For a set of proportional wheels, therefore, the normal-

ized pin diameter d* and tip thickness #* will be constant
or, conversely, any given d* and ¢* define a proportional
set of Geneva wheels. The thickness of the Geneva wheel
will not be considered as an independent parameter, but
will be taken to be equal to the pin diameter. This particular
assumption is made to insure that the drive pin load across
the thickness of the wheel is approximately uniform. If
the pin diameter is made small with respect to the Geneva
wheel thickness, then the loading will be concentrated
near the fixed end of the beam and will not be uniformly
distributed across the face of the wheel. The final results
can be easily modified to include any wheel thickness not
equal to the drive pin diameter. This will be demonstrated
later in a sample problem.

The six basic design parameters’ necessary to specify the
dynamics of a Geneva mechanism are:

Driver speed
Number of slots M
Load inertia

Wheel diameter

Pin diameter

Tip thickness

The remainder of this paper will be directed toward
illustrating the effect each of these parameters has on the
maximum contact stress, maximum pin load, and maxi-
mum internal wheel stresses.

+ Excluding wheel and pin materials, which are assumed to be steel.
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s Wheel inertia

It has been shown® that the Geneva wheel inertia must be
three-halves of the load inertia in order to maintain a
minimum pin contact stress. This stress is minimum with
respect to the wheel diameter, but, of course, will vary
with d* and ¢*. Therefore, if

I = 31, ~ wD* ~ d*D°,
then
D = (31.,/2K;)"?, (1

where K, is a proportionality constant which depends on
d¥, r*, and M. Thus, the outside Geneva wheel diameter is
specified for any I, d*, r*, and M. This means that the
over-all wheel diameter is not to be considered as an
independent parameter.

The determination of the diameter consequently will
be the last step in the wheel synthesis procedure, after
d* and r* have been found. Equation (1) can then be used
to solve for D. Numerical values of K are found in
Fig. 2. For notational convenience, the subscript M, which
denotes the dependence on the number of slots in the
wheel, will be deleted, and it will be assumed that all
equations which follow will have this dependence.

o Maximum pin load and contact stress

The maximum normal pin load (P,.,) occurs when the
Geneva wheel is decelerating—a consequence of frictional
load. This is given by

5 (%)
2 I\ar mx

Pmax = R _ I[,_d (2)
max 2

Let

thax = Rma.x/D3 Where -Rma.x = R a't Pmaxs a‘nd

). - >
(art2 mae  \60/ \dd® mN :

It has been assumed in the above that the driver speed
is constant. This is usual practice in Geneva design. How-
ever, at higher speeds, precautions should be taken to
insure that this requirement is satisfied. The maximum
value of the second derivative of 8 with respect to « is a
function of the number of slots in the Geneva wheel.
The derivation and tabulation of this variable can be
found in Ref. 1. Substituting these expressions into Eq. (2)
and using the D value shown in Eq. (1) yields:

2 7 yo-s(4B
w0, (2E)
Pmax — da max . (3)

" sl (e —4)
—_ * - T
360 2K Riax >
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Since (d°8/do’)max and R*,_ depend only on the number
of slots in the wheel, P,../N° can be determined as a
function of the given load inertia I for any given propor-
tional set of wheels. This relationship is shown in Fig. 3
for a set of wheels which have a d* and ¢* equivalent to
those given by Johnson.? This set of proportional wheels
will be referred to as the “standard wheels”” denoted by
the subscript letter “‘s.” Defining the ‘“‘standard wheel”
was done so that the results can be normalized to some
set of stress levels for any load inertia, number of slots,
and speed. The values of d* and ¢* for the standard set
of wheels are shown in Fig. 3. In Figs. 4(a) through 4(d),
the variation of P,.. divided by (Pa..) is shown as a
function of d* and * where the load inertia, number of
slots, and speed remain constant.

The pin-slot contact stress may be computed in a similar
way, using Hertz relationships for a cylinder contacting
a plane surface:

3240

3240(Pouay)”?
“=p BNOACE

d* ( & >0.2
2K,

The component material is assumed to be steel, with
v = 0.3 and E = 30 X 10° Ib/in’. Using a coefficient of
friction of 0.33, it has been shown® that the corresponding
maximum contact shear stress, 7, equals 0.43 g,.

Thus 7/N can also be determined as a function of the
given load inertia, I, [using Eqgs. (3) and (4)] for a set of
proportional wheels. The 7,/N values for standard wheels
are shown in Fig. 3, and values of 7 /7, are plotted in Fig. 5.

The magnitude of the contact shear stress between two
bodies is often used as an indicator of the wear perform-
ance to be expected from their combination. Indeed, Bayer
et al.® have found empirically that wear life is inversely
proportional to the ninth power of the contact shear
stress between the two surfaces of interest. This relation-
ship was used to compute the relative wear life of various
Geneva designs contained in this report as follows:
L/L, = (/7,)"". Values of this ratio are shown in Fig. 5
on a line which is orthogonal to the lines of constant
contact stress. This line can be used as an indicator
of the relative wear life for any Geneva defined in the
Figure. Values of relative wear life which do not lie
on the orthogonal line can be found by moving from the
point in question, along a constant 7/r, path, to the
intersection with the orthogonal line (see illustrative
problems).

(I)n'.\::.x)()'5 = (4)

o Geneva wheel internal stresses

When efforts are made to minimize the pin contact stress
by increasing the pin diameter or decreasing the tip thick-
ness, one must consider what effect this will have on the in-
ternal stresses of the Geneva wheel. Referring to Fig. 1(b),
it can be seen that the load-carrying ability of the wheel
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Figure 6 Experimental vs theoretical internal wheel stresses. On each chart, 1 is the experimental tip stress, 2 the theoretical
tip stress, 3 the theoretical root stress, and 4 the experimental root stress.

is lost as k&, or A, approaches zero. For this reason, the
stress level in the whee! will be examined as d* and r*
change. The geometry of the wheel suggests that the maxi-
mum stress will occur either at the tip during the initial
wheel acceleration (or final deceleration) or at the section
near the bottom of the slot.

An approximate determination of these stresses can be
afforded by applying beam theory, where these approxi-
mate beam sections are denoted by lines /-7 and 2-2 in
Fig. 1(b). The stress produced in the tip during initial pin
entry and final pin exit (assuming © is small) will be

or = 6Px/wh’ (5)
where #, = (D/2) tan (/M) — (d/2) — (d° — y*)*'®
and y=(D/2)— R+ x.

After evaluating Eq. (5) to find the maximum value of
o ¢ with respect to x and P, one can reduce it to

%
oy — 6 X%P, ©)

37 0.4 °
d* (kb 2(2 KLM>

where X*, A% and K, depend on 4* and *. Using an
equation of the form of Eq. (3) for P, and fixing d* and r*
to the standard values, gives

or/N* = C(I,)"*, (7

where C is a constant for each value of M. This equation
has been plotted in Figs. 3(a) through 3(d). (The short- and
long-dashed lines at the left of Figs. 2(b), 3(b), 4(b) and
5(b) indicate the values used in the sample problems.)
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This stress can again be normalized to (¢y),, and this
has been plotted in Figs. 4 and 5. It appears in both
figures so that its variation can be seen as one changes the
maximum load or contact stress.

Beam theory again was used to compute the stresses
across section 2-2 (see Fig. 1(b)). This stress was modified
by using stress concentration factors® to account partially
for the notch effect resulting from the slots. The resulting
root stress is then

_ 6K, P(l, + nly) I K.P(siny + u cosv)
whi Whp

(8)

OR

where
hy = 2bsiny — d
I, = R — b(cosvy)

. d
I, = bcos'ysm'y—i

y=n/M
b= D/2[(1 — siny)/(cosv)] — Cy,

and C;, is the radial clearance between the drive pin and
wheel at the point of maximum slot penetration. This
clearance is assumed to be 0.010 inch per inch of Geneva
wheel diameter. The stress concentration factors K, and K,
have been taken from circularly notched beams in bending
and tension.

Equation (8) can be reduced to the form of Eq. (7),
and it has been plotted in Fig. 3. Division by the standard
root stress enables one again to express the normalized
root stress as a function of d* and r*. This has been done
in Figs. 5(a) through 5(d).

In order to determine the adequacy of the theory
used to compute the internal Geneva wheel stresses, models
were made using a birefringent plastic. The stresses were
determined photoelastically using a reflecting polariscope
with an experimental accuracy of about five percent. Since
the beam analysis approximations depend on the wheel
proportions, wheels were chosen which had relatively thick
root and tip sections. The photoelastic model wheels
(4-, 5-, 6-, and 8-slot wheels) each had the proportions of
the “standard” wheels.

The models were statically loaded at several load radii
and the maximum stress per unit load recorded. Com-
bining this with the pin load as a function of load radius
enables one to determine the Geneva wheel stress as a
function of the load radius. These data have been plotted
in Fig. 6, where they have been normalized to the maximum
stress which occurs during the load cycle. Photographs
showing three representative load positions are shown in
Fig. 7.

From this study, it appears that the simple beam theory
is completely adequate for design purposes.

C. E. HASTY AND J. F, POTTS

(b)

(c)

Figure 7 Photographs of photoelastic models of 5-slot
Geneva wheel having load position sequences 1, 2, and 3,
respectively, in (a), (b), and (c).




Hlustrative examples

The following problems are provided to illustrate Geneva
synthesis and analysis using results presented in this paper.

e Problem “A”

As an example of wheel synthesis, assume that a 5-slot
Geneva is to index a 107° in-Ib-sec’ inertial load at a rate
of 5000 steps per minute. The drive wheel has two pins,
and, therefore, is driven at 2500 rpm. In addition, assume
that from material strength considerations, it is necessary
to keep the pin slot contact stress below 20,000 Ib/in’.
The following steps indicate one method by which the
specified objectives can be reached. Short- and long-dashed
lines have been added at the left of Figs. 2(b), 3(b), 4(b),
and 5(b) to show how numerical values have been selected
for the sample problems. The following information has
been given:

M = 5slots

N 2500 rpm

l

I, = 107° in-lb-sec’
r < 20,000 Ib/in’.

Using Fig. 3(b), the “‘standard” Geneva mechanism
can be seen to have:

107° X 2500° X 0.37 = 2300 Ib/in’

op =
or = 107% X 2500° X 160 = 1000 Ib/in’
7, = 2500 X 10.3 = 25,800 1b/in’

P... = 107° %X 2500 X 1.8 = 11.2 b.

In addition, by definition, this design has a relative wear
life of one. The contact stress 7, of this design exceeds the
specified level, and it will be necessary to ensure that

Choosing 7/7, equal to 0.75 and examining Fig. 5(b), one
finds many pin diameter-tip thickness combinations that
are satisfactory. The choice of any particular point on the
7/7, curve requires some decision as to the magnitude of
root and tip stress acceptable in the design. Indeed, either
of the two stresses may be minimized (at the expense of
the other) by moving one direction or the other along the
curve. In this example, both stress levels are relatively
low, and the decision is not critical. Thus, arbitrarily
choosing d* = 0.2 and r* = 0.04, we have [from Figs. 2(b),
4(b), and 5(b)]:

19,300 1b/in’
1.6 X 2300
1.3 X 1000

3
L

I

3700 Ib/in’
1300 Ib/in®

q
=
I

S
I

Prax = 1.07 X 11.2-12.0 1b

I

K = 0.48 X 107° Ib-sec’/in’,

which satisfies the specified conditions. It should also be
noted that the relative wear life is approximately 12 times
that of the standard. The mechanism dimensions are

31L':|0.2 [ 3 X 10—5 :!0,2 .
=2 == =12
D [21( 2X 48 X 1077 6 in

d = d*D = 0.252 in
t = t*D = 0.05 in
w = d = 0.252 in.
e Problem “B”

To illustrate Geneva analysis, assume that the following
information is known and that it is necessary to determine
the stress-load levels:

D = 1.5in
d = 0.25 in
t = 0.1 in
w = 0.15in

I, = 5 X 107° in-lb-sec’
N

I

2000 rpm
M = 5 slots,

The dimensionless parameters are:

0.25

Koo e

d 15 0.167
0.1

® 21

t 5 0.0667

Once again, using Fig. 3(b), the ‘“‘standard” Geneva has:
or = 107° X 2000° X 0.71 = 2840 Ib/in’®
or = 107° X 2000° X 310 = 1240 1b/in’
. = 2000 X 14 = 28,000 Ib/in’

Prax = 107° X 2000° X 6.6 = 26.4 1b.

However, these performance parameters are for:

d* = 0.14
= 0.053
w/d = 1.0

and a wheel of optimum diameter. Using Figs. 4(b) and
5(b), with the d* and ¢* of this problem, one finds:

Or

(UR)s -
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(:—TT)S = 0.7
L =09
Ts
(—fi")—s = 1.08.
Therefore
or = 1.3 X 2840 = 3700 Ib/in>
or = 0.7 X 1240 =_870 1b/in*
= 0.92 X 28,000 = 25,800 1b/in®
Puoa = 1.08 X 26.4 = 285 1b
L/L, = 2.1,

These are performance parameters for a wheel of:

d* = 0.167
* = 0.0667
w/d = 1.0

and of optimum diameter.
The diameter for the wheel above [using Fig. 2(b)] is:

po [ L[ px e
T 2K T L2 X 0.53X 10°° o

However, the actual dimensions of the wheel are:
D =15in
w/d = 0.6.

Several relationships are necessary to translate the per-
formance parameters of above into those corresponding
to the analysis wheel. These are given here without deriva-
tion, although they can be obtained through manipulation
of results presented in the paper:

0F = Yo

or = yor

= \/';'r
Phux = EPnux(D/ D)
where

5
+1, °\b

Ie + I, 5
d{ DY
7—$w<D'>'

The prime superscript represents the corrected values.
Using these relationships we obtain :

als

-+ 2

E:
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3(5) 0.6 + 2

1.7
= — = 0.591
¢ 5
0.591 (1.7’
= 06 <1.5> = 144

oh = 1.44 X 3700 = 5330 Ib/in”
1.44 X 870 = 1250 1b/in®
1.2 X 25,800 = 31,000 Ib/in’

Il

qQ
=
fi

s‘
I

Pl..= 067X 28.5=19.11

28,000\°
L/L, = (31,000) =04

These are the performance parameters for the analyzed
wheel.

Conclusions

The results presented here certainly do not represent the
ultimate procedure in the design of Geneva mechanisms
since the analysis avoids any mention of the effects of
lubrication, surface finish, material properties, tolerances,
etc. However, it is felt that the analytical portion of the
design has been significantly aided by the results pre-
sented, especially in the area of wheel configuration syn-
thesis. The eventual success of this procedure will depend
to a large degree on the validity of the failure criteria used.
No extensive tests have been performed over the wide
range of parameters covered in this paper. However, the
results were successfully applied during the development
of an 8000 cycle per minute, 5-slot, 2-pin Geneva driving
an inertial load of 5 X 107° in-lb-sec’. Measurements
taken indicated that the rigid body load and constant
driver speed assumptions were applicable. The Geneva
continued to function properly after approximately one
billion index cycles. At this time it appears that the most
significant criteria are maximum load (bearing life), maxi-
mum contact stress (wear life), and maximum tip and
root stress (fatigue life). Thus the results of this paper
have been built around consideration of these mechanism
parameters.

The most significant limitation of the work is the rigid
body assumption used in computing the system dynamics.
In cases where this assumption is questionable, then the
results must be considered to be approximate. Most of
the other assumptions (materials used, friction, etc.) were
necessitated only to ensure that the volume of the presented
material was kept to a reasonable length.



Symbols

D Geneva wheel diameter

d  Drive pin diameter

t  Tip thickness

a Locking radius
Angular position of drive pin

8 Angular position of Geneva wheel

K;r Constant of proportionality of Geneva wheel
inertia (a function of d*, t*, and M)

M Number of slots in wheel

I;, Load inertia

Is Geneva wheel inertia

N Angular speed of driver

R Distance between wheel center and drive pin
center

P Drive pin load (normal component)

qo Hertzian normal stress

w  Thickness of wheel

u  Coefficient of friction

r  Hertzian shear stress

ap Tip stress

or Root stress

v Poisson’s ratio

E  Modulus of elasticity

in
in
in
in
rad
rad

Ib-sec? /in%
in-1b-sec?
in-1b-sec?

pm

in
b
b /in?
in
Ib/in?
Ib/in?
1b /in?

Ib/in?
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