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A Practical Class of Polynomial  Codes 

nomial codes.” 

Introduction 

Polynomial  codes are attractive for error detection 
because of their high  efficiency and their ease  of  imple- 
mentation.  These  codes are called  polynomial  codes 
because  they are best  described by their representation as 
polynomials,  wherein  successive  channel  symbols are 
normally  represented by  successive polynomial coefficients. 
Polynomial  codes are often  referred to as cyclic codes; 
however,  by strict definition the codes  generally  described 
in this paper are not necessarily  cyclic. Formation of the 
code  word  from the information word is described  else- 
where.’’a 

Codes for which the polynomial coefficients are taken 
from the field  of two  elements  will  be  called “bit poly- 
nomial  codes,” to distinguish  them from other codes to 
be  discussed. The ease of implementation for bit poly- 
nomial  codes  occurs when shift  registers  with  simple 
feedback are used for encoding and decoding.”2 If en- 
coding or decoding  with the processor of a  general  purpose 
digital  computer is desired,  implementation  becomes  more 
difficult.  Implementation of bit polynomial  codes is a 
bit-by-bit operation, whereas  most  computer  processors 
operate on a character or word  basis.  Programming 
procedures  such as shift register  simulation or table look-up 
may  be  used;  however,  these  methods  might  require too 
much time or storage. 

A practical solution to the problem of the complexity 
of processor  implementation of general  bit  polynomial 
codes  is found by defining a new class of error detecting 
polynomial  codes, which  will  be  called “character poly- 
nomial  codes.” Hardware implementation of these  codes 
is  discussed,  because the capability to implement  them 
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with  inexpensive  hardware is desirable  in  cases for which 
character addition and manipulation  capability  does not 
exist-such as at remote  terminals. Character polynomial 
codes are described as a  general  class,  followed by a 
discussion of two practical types of character polynomial 
codes,  with a note about their implementations. The 
performance of the two  codes is compared for burst 
error detection; finally, the detection of independent errors 
is  considered by investigating the special  case of poly- 
nomial  generators of the form X’ + 1. 

Character polynomial codes 

In order to derive  codes  which  can  be  easily  encoded and 
decoded on a character basis, one may consider  repre- 
senting data and code  words by polynomials  whose 
coefficients represent  n-bit characters rather than bits. 
Polynomial  codes which  have this correspondence between 
coefficients and characters are thus called  “character 
polynomial  codes.” Code words are formed from data 
words, as with bit polynomial  codes, by computing the 
remainder  polynomial,  except that in this  case the poly- 
nomial coefficients are taken from an R-group of order 
2” rather than 2. An R-group is defined as an abelian 
additive group which has a  multiplicative  identity, 1. 
Multiplication  in the R-group  is  defined  only between 0 
or 1 and some  element of the R-group. This definition  is 
motivated by the fact that multiplication by other than 
the elements 0 and 1 would  greatly  increase the com- 
plexities of hardware and processor  implementation. To 
avoid this complexity,  generator  polynomials are restricted 
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to have  only 0 or 1 for coefficients.  With this restriction, 
multiplication by other than 0 and 1 is not required when 
computing the remainder R(X). 

Using  these  character  polynomial  generators,  calculation 
of the remainder  polynomial  can  be  reduced to imple- 
mentation of a  polynomial  division  algorithm. The 
procedure  consists of subtraction of the coefficient  (from 
an R-group) of the highest  degree term of the dividend 
from  certain  succeeding coefficients or characters deter- 
mined by the generator  (divisor).  Next, the highest order 
coefficient  of this  difference  is subtracted from certain 
succeeding  coefficients; this process is continued until 
the remainder  polynomial  results.  Implementation of 
this algorithm  can  be  accomplished in a  processor by 
executing  a  character  manipulation routine as each 
character  is received. The number of character subtractions 
required  per  code character should be  less than the number 
of nonzero coefficients  of the generator. 

For bit  polynomial  codes the polynomial operations 
are unique,  since there is  only one R-group for two 
elements.  However, for character  polynomial  codes the 
coefficients  may  be in any of several  R-groups,  each of 
order 2". Two R-groups, for which the  polynomial  division 
algorithm is easily  implemented  in the processor,  involve 
the computer operations of componentwise addition 
modulo  two and binary addition. The character  poly- 
nomial  codes  using  these  R-groups will  be referred to as 
Type 1 and Type 2 codes,  respectively. 

The other logical operations of inclusive OR and AND 

do not form  R-groups,  because  some of the elements of 
the set do  not have  unique  additive  inverses. Error detec- 
tion can still be  accomplished  with these addition  op- 
erations if modifications are made to the procedure. 
However,  these operations will not be  considered,  because 
the redundant bits obtained in separable codes do not 
provide as great a  code  word separation as with  Type 1 
or Type 2 codes. 

Cyclic  codes for which the polynomial coefficients are 
taken from a  finite  extension  field  over the Galois field  of 
two  elements GF(2) have been di~cussed.~ By com- 
parison, coefficients for character polynomial  codes are 
only  restricted to be  elements  of an R-group rather than 
a field. For the Type 1 character  polynomial  codes the 
coefficients do belong to an  extension  field  over GF(2), 
and are discussed  elsewhere3  in  connection  with  multi- 
phase data transmission. 

Type 1 codes  can be shown to be  equivalent to a  class 
of  bit  polynomial  codes  whose  generator  polynomials 
have the form G(X) = P(x"). The characteristics and 
detecting  ability of these  codes are well known.  Imple- 
mentation of  Type 1 codes in a processor  requires  only 
the successive  use  of the exclusive OR operation of charac- 
ters; no shift  registers are necessary.  Hardware  imple- 
mentation is  accomplished  with  a shift 
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Figure 1 Circuit for Type 2 character polynomial encod- 
ing: G ( X )  = X* + X +l. 

Codes using binary addition 

For the second  code under consideration, the addition 
operation for the elements of the R-group from which 
the polynomial coefficients are taken is defined as binary 
addition of characters. The high order carry in the addition 
is neglected so that  the set  will  be  closed under this 
operation. That is, the 2" elements are isomorphic to  the 
integers  modulo 2". 

Implementation of Type 2 codes  requires the distinction 
between addition and subtraction of elements,  whereas, 
with the exclusive OR addition operation of Type 1 codes, 
addition and its inverse are the same. Subtraction is 
accomplished  in this R-group by adding a character 
(minuend) to a  complemented character (subtrahend) 
and adding a 1 in the low order bit position; any  high 
order carry  is  neglected.  When  a  processor  is  used for 
encoding and/or decoding, the polynomial  division 
simply  requires successive  use  of the binary subtraction 
instruction. 

Implementation  with  hardware, although not as 
straightforward as with bit polynomial  codes,  is  practical 
using  shift  registers and a  small amount of additional 
circuitry. The bits are assumed to enter the encoder- 
decoder  serially; it is  therefore  necessary to perform the 
Type 2 (binary) addition and subtraction operations 
serially. 

One  method of implementation  is illustrated with the 
encoding  circuit of Fig. 1. By propagating the carry, 
the serial  binary adder performs addition (or subtraction) 
of characters whose  bits enter the unit serially. A character 
synchronization  signal is used to inhibit the high order 
bit carry of each character operation and add a 1 to the 
low order  bit  position for subtraction. The  Type 2 addition 
or subtraction circuit  need  only  consist of a flip-flop and 
a few gates. SI and S2 are used to form the code  word 
as  in  bit  polynomial  coding. 159 
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Figure 2 Representation of an error burst. 

Error detecting capability 

Due to the complex nature of error probabilities on most 
channels, the best way to determine the ability of a given 
code to detect errors is to run actual tests over the channel. 
However, for comparison  purposes, the burst error 
detecting  ability  is  derived  for  Type 2 codes; also, the 
fraction of double errors undetected by codes  with the 
generator G(X) = X' + 1 is determined. 

An error burst of length b is here  defined as b consec- 
utive bits with the first and last bit in error, and any 
pattern of errors in  between. A word in error will  be 
assumed to contain  one error burst, and all bursts of 
length b are assumed  equally likely.  Peterson'  shows that 
all bit  polynomial  codes,  whose  generators are of the 
same  degree,  detect the same fraction of bursts of  each 
length. If k is the degree  of G(X), the fraction of bursts 
of length b that are undetected  is  2-("") if b = k + 1, 
2-k if b 7 k + 1, and none if b 5 k. Peterson's  proof 
holds for Type  1  character  polynomial  codes,  since  they 
are a  class of bit  polynomial  codes. That Type 2 codes 
have the same burst detecting  ability  as all bit polynomial 
codes of the same  redundancy will  now be  proved: 

Figure 2 shows the representation of an error burst, 
where the 1's represent  bit  positions  in error and 0's 
represent  bit  positions not in error. The variables in this 
representation are related by Eq.  (1): 

c =  b - p - m + 2 2 n  
n 

To analyze the detecting  ability of this code,  let A?E(X) 
denote the polynomial  which, when added  (Type 2 addi- 
tion) to the code  polynomial, gives the representative 
polynomial of the code word with  undetectable errors. 
An error is  undetectable if and only if E(X) is a  multiple 
of G(X); Q(x> is defined by E(X> = G(X)Q(X), where 
X does not divide G(X) or E(X). E(X) is of  degree c - 1, 
G(X) is of degree r, and, therefore, Q(X) is of  degree 
c - r - 1. Note that the polynomial coefficients are 
from an R-group and represent  characters. 

The  fraction of errors of length b which are undetected 
160 will  be  determined by examining the number of choices 
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of Q(X) which  when multiplied by G(X) give E(X) that 
represent  6-bit error patterns. For a given error pattern, 
E(X) is a  function of the transmitted code  word for 
Type 2 codes.  However, the ratio of undetected to total 
errors is the same for each  code  word. The proof  is 
divided into three cases for ease  of  comparison  with 
bit  polynomial  codes; the cases are defined by 6  being  less 
than, equal io, or greater than nr + 1. 

For b < nr + 1 and c < r + 1, E(X) is of lower  degree 
than G(X) and, therefore,  is not divisible by G(X); con- 
sequently, all error bursts for which c < r + 1 are detected. 
For b < nr + 1 and c = r + 1, Q(X) is of zero  degree 
and, therefore, there are 2" possible error polynomials 
which are divisible by G(X) corresponding to the 2" 
possible  values  of Q(X). Also, by the assumption that 
G(X) has  only  1 or 0 for coefficients, E(X) has the same 
element, Q(X) = qo, for all of its  nonzero coefficients. 
Using  Type  2 addition, the lowest order bit  in error in 
each character corresponds to the lowest order nonzero 
bit  of the element qo. If b < nr + 1 and c = r + 1, then 
m + p 5 n, and there  is no qo which  when added to the 
first and last characters involved in the burst can  produce 
a pattern of errors with m + p 5 n. Therefore, all errors 
are detected for which b < nr + 1, c = r + 1, and since 
there are no undetected errors for c < r + 1, all errors 
with b < nr + 1 are detected. 

For the case  of b = nr + 1, the number of characters 
involved in the error burst must  be r + 1. As stated 
above, there are 2" possible  values of Q(X), or 2" possible 
undetected error patterns for each  code  word.  From 
Fig. 2, m + p = n + 1, and the lowest order 1 of qo for 
an undetected error is in the (n - m + 1)'st or p'th 
position.  Thus, for an undetected error, qo can be repre- 
sented  only as the number +2D-' or -2"", depending 
on whether a 0 or 1 was transmitted in the position 
corresponding to "a" in Fig. 2. So, for each transmitted 
word there is one undetectable error pattern which 
represents an error burst of length b = m + p + n(r - 
1) = nr + 1.  Since the total number of  possible error 
patterns of length b is 2b-2, the fraction of bursts of  length 
nr + 1 which are undetected is 1/2b-2 = 2-(mr"). 

Finally, for the case of b > nr + 1, it is convenient to 
discuss the subcases of c = r + 1 and c 7 r + 1 separately. 
I f c = r + l a n d b > n r + l , t h e n m + p > n + l ,  
and qo is restricted to have the (n - m + 1)'th  bit  position 
as the lowest order nonzero  bit  position. Of these  values 
of qo there are 2"+'-"-' values  which,  when added to a 
given transmitted character, result in a  change to the 
p'th (but no higher) bit position of the character. This 
means that for each  code  word there are 2"+D"'-2 - - 

undetected error patterns of length 6, for c = 
r + 1. Combining this information  with the fact that 
there are 2b-2 different error patterns of length 6, we 
observe that the average fraction of errors of length b 
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which are undetected  is 2b-n"2/2b-2 = 2"''. For b > 
nr + 1 and c > r + 1, there are 2p-12m-1(2n)e-r-2 - - 
2b-2-nr choices for Q(X); this gives the number of un- 
detected error bursts of length b. Since the  total possible 
error patterns is equal to 2b-2, the fraction of errors that 
are undetected for c > r + 1 is 2b-2-n'/2b-2 = 2"". 
Therefore, 2"" is the fraction of errors undetected for 
all b > nr + 1 and c 2 r + 1, regardless of the bit position 
in  which the error burst started. 

To summarize, it has been proved that the fraction of 
errors that  are undetected by a Type 2 character  poly- 
nomial  code is 2-"' if b > nr + 1, 2-nr+1 if b = nr + 1, 
and zero if b 5 nr. For  the same  number of redundant 
bits this burst error detecting  ability  is the same  as that 
possessed  by all bit polynomial  codes. 

To determine  analytically the independent error de- 
tecting  ability of a code, it is  necessary to know the 
fractions of single,  double, triple, etc. errors which are 
undetected by the code.  All  single errors are detected by 
Type 1 and Type 2 codes  with  generators  having  more 
than one term (one-term  generators are trivial). Double 
errors will  predominate  over  higher  numbers of errors, 
and thus an indication of the independent error detecting 
ability  is the fraction of double errors which are un- 
detected. 

Consider as an example the class of character poly- 
nomial  codes  whose  generators are of the form X' + 1. 
For Type 1 codes, the fraction of double errors that are 
undetected  is (l /nr)[(L - r ) / (L  - 1/n)] ,  which approaches 
l /nr as the word  length  increases; n is the character 
length and L is the number of characters per  code  word. 
This is because the Type 1 codes  with G(X) = X' + 1 
are equivalent to the bit polynomial  codes  with G(X) = 
x"' + 1. For Type 2 codes,  let G(X) = X' + 1 and 
E(X) = e.X" + eo, where e, and eo each  cause  single 
errors when added to the respective transmitted characters. 
If G(X) divides E(X), then r must  divide s; furthermore, 
if s is an even multiple of r,  e. = -eo, and if s is an 
odd multiple of r,  e, = eo. Therefore,  each error occurs 
in the same bit position of  each  character. 

To cause a single  bit error, e,  and eo can  be  represented 
by 4-2' or -2i, depending  upon  whether the bit  in error 
was transmitted as a 0 or a 1. Thus, if the errors occur 
in any  except the high order bit  position of a character, 
and s is a multiple of r, then an average of one-half of 
the errors are detected. If the errors are in the highest 
order bit  position and s is a multiple of r, no errors are 
detected,  since +2'"' = -2n-1. The average fraction of 
errors that are undetected  is, therefore, 

= (+)(L)( 2nr L - I / n  ) ' 
- 

which is slightly  more than one-half  of the average 
number of errors undetected by Type 1 codes  with the 
same  generator. 

Summary 

Codes  have  been  described which  may  be  easily  encoded 
and decoded  with  simple shift registers as well as with 
common character manipulations  in a processor.  Type 1 
character polynomial  codes are a special  class of bit 
polynomial  codes  with  resulting  simple  hardware for 
implementation; Type 2 codes are implemented  with 
very little (if any)  increase  in  hardware  over bit poly- 
nomial  codes of the same  redundancy.  Type 1 and Type 2 
character polynomial  codes and all bit  polynomial  codes 
have the same burst error detecting  ability. Thus Type 1 
and Type 2 codes  have the advantages of good burst 
detecting  ability and the ease of hardware implementation 
desirable for remote  terminals,  while  providing the 
additional feature of simple  computer  implementation. 
These character polynomial  codes are thought to be 
particularly  advantageous for data communications, 
storage, and other systems  subject to burst type errors 
which  have  processors as part of that system. 
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