Short Communication

158

W. F. Rogers

A Practical Class of Polynomial Codes

Abstract: Error detecting polynomial codes are usually formed by defining a correspondence between data bits and coefficients
of the representative polynomial. These codes are easily implemented in hardware using shift registers; however, implemen-
tation in character-oriented processors may be too time consuming. A new class of polynomial codes is described for which
a correspondence between n-bit data characters and polynomial coefficients is defined. Two particular types of these “char-
acter polynomial codes” are discussed; these may be easily implemented with hardware or with processor character manipula-
tions. The burst error detecting ability of these two types of codes is shown to be the same as for the common “bit poly-

nomial codes.”

Introduction

Polynomial codes are attractive for error detection
because of their high efficiency and their ease of imple-
mentation., These codes are called polynomial codes
because they are best described by their representation as
polynomials, wherein successive channel symbols are
normally represented by successive polynomial coefficients.
Polynomial codes are often referred to as cyclic codes;
however, by strict definition the codes generally described
in this paper are not necessarily cyclic. Formation of the
code word from the information word is described else-
where.!?

Codes for which the polynomial coefficients are taken
from the field of two elements will be called “bit poly-
nomial codes,” to distinguish them from other codes to
be discussed. The ease of implementation for bit poly-
nomial codes occurs when shift registers with simple
feedback are used for encoding and decoding.? If en-
coding or decoding with the processor of a general purpose
digital computer is desired, implementation becomes more
difficult. Implementation of bit polynomial codes is a
bit-by-bit operation, whereas most computer processors
operate on a character or word basis. Programming
procedures such as shift register simulation or table look-up
may be used; however, these methods might require too
much time or storage.

A practical solution to the problem of the complexity
of processor implementation of general bit polynomial
codes is found by defining a new class of error detecting
polynomial codes, which will be called “character poly-
nomial codes.” Hardware implementation of these codes
is discussed, because the capability to implement them

IBM JOURNAL * MARCH 1966

with inexpensive hardware is desirable in cases for which
character addition and manipulation capability does not
exist—such as at remote terminals. Character polynomial
codes are described as a general class, followed by a
discussion of two practical types of character polynomial
codes, with a note about their implementations. The
performance of the two codes is compared for burst
error detection; finally, the detection of independent errors
is considered by investigating the special case of poly-
nomial generators of the form X" + 1.

Character polynomial codes

In order to derive codes which can be easily encoded and
decoded on a character basis, one may consider repre-
senting data and code words by polynomials whose
coefficients represent n-bit characters rather than bits.
Polynomial codes which have this correspondence between
coefficients and characters are thus called *‘character
polynomial codes.” Code words are formed from data
words, as with bit polynomial codes, by computing the
remainder polynomial, except that in this case the poly-
nomial coefficients are taken from an R-group of order
2" rather than 2. An R-group is defined as an abelian
additive group which has a multiplicative identity, 1.
Multiplication in the R-group is defined only between 0
or 1 and some element of the R-group. This definition is
motivated by the fact that multiplication by other than
the elements 0 and 1 would greatly increase the com-
plexities of hardware and processor implementation. To
avoid this complexity, generator polynomials are restricted

to have only 0 or 1 for coefficients. With this restriction,
multiplication by other than 0 and 1 is not required when
computing the remainder R(X).

Using these character polynomial generators, calculation
of the remainder polynomial can be reduced to imple-
mentation of a polynomial division algorithm. The
procedure consists of subtraction of the coefficient (from
an R-group) of the highest degree term of the dividend
from certain succeeding coefficients or characters deter-
mined by the generator (divisor). Next, the highest order
coefficient of this difference is subtracted from certain
succeeding coefficients; this process is continued until
the remainder polynomial results. Implementation of
this algorithm can be accomplished in a processor by
executing a character manipulation routine as each
character is received. The number of character subtractions
required per code character should be less than the number
of nonzero coefficients of the generator.

For bit polynomial codes the polynomial operations
are unique, since there is only one R-group for two
elements. However, for character polynomial codes the
coefficients may be in any of several R-groups, each of
order 2". Two R-groups, for which the polynomial division
algorithm is easily implemented in the processor, involve
the computer operations of componentwise addition
modulo two and binary addition. The character poly-
nomial codes using these R-groups will be referred to as
Type 1 and Type 2 codes, respectively.

The other logical operations of inclusive or and AND
do not form R-groups, because some of the elements of
the set do not have unique additive inverses. Error detec-
tion can still be accomplished with these addition op-
erations if modifications are made to the procedure.
Howeyver, these operations will not be considered, because
the redundant bits obtained in separable codes do not
provide as great a code word separation as with Type 1
or Type 2 codes.

Cyclic codes for which the polynomial coefficients are
taken from a finite extension field over the Galois field of
two elements GF(2) have been discussed® By com-
parison, coefficients for character polynomial codes are
only restricted to be elements of an R-group rather than
a field. For the Type 1 character polynomial codes the
coefficients do belong to an extension field over GF(2),
and are discussed elsewhere® in connection with multi-
phase data transmission.

Type 1 codes can be shown to be equivalent to a class
of bit polynomial codes whose generator polynomials
have the form G(X) = P(X"). The characteristics and
detecting ability of these codes are well known. Imple-
mentation of Type 1 codes in a processor requires only
the successive use of the exclusive or operation of charac-
ters; no shift registers are necessary. Hardware imple-
mentation is accomplished with a shift register."*

SERIAL BINARY
ADDITION CIRCUIT

n-BIT
SHIFT REGISTER

CODE

P e
S WORD

O

S

SERIAL BINARY
SUBTRACTION CIRCUIT

INFORMATION
WORD

Figure 1 Circuit for Type 2 character polynomial encod-
ing: G(X) = X* + X +1.

Codes using binary addition

For the second code under consideration, the addition
operation for the elements of the R-group from which
the polynomial coefficients are taken is defined as binary
addition of characters. The high order carry in the addition
is neglected so that the set will be closed under this
operation. That is, the 2" elements are isomorphic to the
integers modulo 2"

Implementation of Type 2 codes requires the distinction
between addition and subtraction of elements, whereas,
with the exclusive or addition operation of Type 1 codes,
addition and its inverse are the same. Subtraction is
accomplished in this R-group by adding a character
(minuend) to a complemented character (subtrahend)
and adding a 1 in the low order bit position; any high
order carry is neglected. When a processor is used for
encoding and/or decoding, the polynomial division
simply requires successive use of the binary subtraction
instruction.

Implementation with hardware, although not as
straightforward as with bit polynomial codes, is practical
using shift registers and a small amount of additional
circuitry. The bits are assumed to enter the encoder-
decoder serially; it is therefore necessary to perform the
Type 2 (binary) addition and subtraction operations
serially.

One method of implementation is illustrated with the
encoding circuit of Fig. 1. By propagating the carry,
the serial binary adder performs addition (or subtraction)
of characters whose bits enter the unit serially. A character
synchronization signal is used to inhibit the high order
bit carry of each character operation and add a 1 to the
low order bit position for subtraction. The Type 2 addition
or subtraction circuit need only consist of a flip-flop and
a few gates. S; and S, are used to form the code word
as in bit polynomial coding.

159

PRACTICAL POLYNOMIAL CODES

160

b BITS

¢ CHARACTERS

Figure 2 Representation of an error burst.

Error detecting capability

Due to the complex nature of error probabilities on most
channels, the best way to determine the ability of a given
code to detect errors is to run actual tests over the channel.
However, for comparison purposes, the burst error
detecting ability is derived for Type 2 codes; also, the
fraction of double errors undetected by codes with the
generator G(X) = X" 4 1 is determined.

An error burst of length b is here defined as b consec-
utive bits ‘with the first and last bit in error, and any
pattern of errors in between. A word in error will be
assumed to contain one error burst, and all bursts of
length b are assumed equally likely. Peterson shows that
all bit polynomial codes, whose generators are of the
same degree, detect the same fraction of bursts of each
length, If k is the degree of G(X), the fraction of bursts
of length b that are undetected is 2°*™" if b = k 4 1,
27*if b > k -+ 1, and none if 5 < k. Peterson’s proof
holds for Type 1 character polynomial codes, since they
are a class of bit polynomial codes. That Type 2 codes
have the same burst detecting ability as all bit polynomial
codes of the same redundancy will now be proved:

Figure 2 shows the representation of an error burst,
where the 1’s represent bit positions in error and 0’s
represent bit positions not in error. The variables in this
representation are related by Eq. (1):

c=b—p—m+2n.
n

(1)

To analyze the detecting ability of this code, let X*E(X)
denote the polynomial which, when added (Type 2 addi-
tion) to the code polynomial, gives the representative
polynomial of the code word with undetectable errors.
An error is undetectable if and only if E(X) is a multiple
of G(X); Q(X) is defined by E(X) = G(X)Q(X), where
X does not divide G(X) or E(X). E(X) is of degree ¢ — 1,
G(X) is of degree r, and, therefore, Q(X) is of degree
¢ — r — 1. Note that the polynomial coefficients are
from an R-group and represent characters.

The fraction of errors of length 5 which are undetected
will be determined by examining the number of choices

W. F. ROGERS

of Q(X) which when multiplied by G(X) give E(X) that
represent b-bit error patterns. For a given error pattern,
E(X) is a function of the transmitted code word for
Type 2 codes. However, the ratio of undetected to total
errors is the same for each code word. The proof is
divided into three cases for ease of comparison with
bit polynomial codes; the cases are defined by 5 being less
than, equal to, or greater than nr + 1.

For b < nr+ 1l and ¢ < r + 1, E(X) is of lower degree
than G(X) and, therefore, is not divisible by G(X); con-
sequently, all error bursts for which ¢ < r 4 1 are detected.
Forb< nmr+ 1land ¢ = r + 1, Q(X) is of zero degree
and, therefore, there are 2" possible error polynomials
which are divisible by G(X) corresponding to the 2"
possible values of Q(X). Also, by the assumption that
G(X) has only 1 or 0 for coefficients, E(X) has the same
element, O(X) = ¢q,, for all of its nonzero coefficients.
Using Type 2 addition, the lowest order bit in error in
each character corresponds to the lowest order nonzero
bit of the element go. If > < nr 4+ 1 and ¢ = r 4 1, then
m -+ p < n, and there is no g, which when added to the
first and last characters involved in the burst can produce
a pattern of errors with m + p < n. Therefore, all errors
are detected for which b < nr 4+ 1, ¢ = r + 1, and since
there are no undetected errors for ¢ < r 4 1, all errors
with 5 < nr + 1 are detected.

For the case of 5 = nr + 1, the number of characters
involved in the error burst must be r -+ 1. As stated
above, there are 2" possible values of Q(X), or 2" possible
undetected error patterns for each code word. From
Fig. 2, m + p = n+ 1, and the lowest order 1 of ¢, for
an undetected error is in the (n — m - 1)’st or p'th
position. Thus, for an undetected error, g, can be repre-
sented only as the number +2°"' or —2°", depending
on whether a 0 or 1 was transmitted in the position
corresponding to “a” in Fig. 2. So, for each transmitted
word there is one undetectable error pattern which
represents an error burst of length b = m + p + n(r —
1) = ar 4 1. Since the total number of possible error
patterns of length 5 is 2°~%, the fraction of bursts of length
nr 4+ 1 which are undetected is 1/2°7% = 279,

Finally, for the case of b > nr + 1, it is convenient to
discuss the subcases of ¢ = r+ 1and ¢ > r -+ 1 separately.
fe=r+1andb>nmw+ 1, thenm+p>n+1,
and g, is restricted to have the (n — m - 1)’th bit position
as the lowest order nonzero bit position. Of these values
of g, there are 2™**™" values which, when added to a
given transmitted character, result in a change to the
p’th (but no higher) bit position of the character. This
means that for each code word there are 2™7"7% =
2°7"% undetected error patterns of length b, for ¢ =
r + 1. Combining this information with the fact that
there are 2°~% different error patterns of length b, we
observe that the average fraction of errors of length b

which are undetected is 2°7""%/2°7® = 27", For b >
nr + 1 and ¢ > r + 1, there are 27 '2"7'(2")*""% =
272" choices for Q(X); this gives the number of un-
detected error bursts of length b. Since the total possible
error patterns is equal to 2%, the fraction of errors that
are undetected for ¢ > r 4+ 1 is 2°77%7 /2% = 27",
Therefore, 2~ is the fraction of errors undetected for
allb> nr-+ 1and ¢ > r+ 1, regardless of the bit position
in which the error burst started.

To summarize, it has been proved that the fraction of
errors that are undetected by a Type 2 character poly-
nomial codeis 27 ifb> mr+ 1, 27" if b= nr 4 1,
and zero if » < nr. For the same number of redundant
bits this burst error detecting ability is the same as that
possessed by all bit polynomial codes.

To determine analytically the independent error de-
tecting ability of a code, it is necessary to know the
fractions of single, double, triple, etc. errors which are
undetected by the code. All single errors are detected by
Type 1 and Type 2 codes with generators having more
than one term (one-term generators are trivial). Double
errors will predominate over higher numbers of errors,
and thus an indication of the independent error detecting
ability is the fraction of double errors which are un-
detected.

Consider as an example the class of character poly-
nomial codes whose generators are of the form X" + 1.
For Type 1 codes, the fraction of double errors that are
undetected is (1/nr)[(L — r)/(L — 1/n)], which approaches
1/nr as the word length increases; n is the character
length and L is the number of characters per code word.
This is because the Type 1 codes with G(X) = X" 4+ 1
are equivalent to the bit polynomial codes with G(X) =
X" 4- 1. For Type 2 codes, let G(X) = X" 4 1 and
E(X) = e, X' 4+ e, where e, and ¢, each cause single
errors when added to the respective transmitted characters.
If G(X) divides E(X), then r must divide s; furthermore,
if s is an even multiple of r, ¢, = —e,, and if s is an
odd multiple of r, e, = e,. Therefore, each error occurs
in the same bit position of each character.

To cause a single bit error, e, and ¢, can be represented
by +2° or —2°, depending upon whether the bit in error
was transmitted as a 0 or a 1. Thus, if the errors occur
in any except the high order bit position of a character,
and s is a multiple of r, then an average of one-half of
the errors are detected. If the errors are in the highest
order bit position and s is a multiple of r, no errors are
detected, since +2"* = —2"', The average fraction of
errors that are undetected is, therefore,

n—1 1 1 L—r
[(1/2)< n) * (1)(2):|<n_r>(L — l/n)
- ()G
B n 2nr/\L — 1/n/’
which is slightly more than one-half of the average

number of errors undetected by Type 1 codes with the
same generator.

Summary

Codes have been described which may be easily encoded
and decoded with simple shift registers as well as with
common character manipulations in a processor. Type 1
character polynomial codes are a special class of bit
polynomial codes with resulting simple hardware for
implementation; Type 2 codes are implemented with
very little (if any) increase in hardware over bit poly-
nomial codes of the same redundancy. Type 1 and Type 2
character polynomial codes and all bit polynomial codes
have the same burst error detecting ability. Thus Type 1
and Type 2 codes have the advantages of good burst
detecting ability and the ease of hardware implementation
desirable for remote terminals, while providing the
additional feature of simple computer implementation.
These character polynomial codes are thought to be
particularly advantageous for data communications,
storage, and other systems subject to burst type errors
which have processors as part of that system.

Acknowledgments

The author wishes to express his appreciation to Mr.
Carl O. Pingry of the Office Products Division, IBM,
who suggested the problem which led to this investigation
and who offered suggestions for possible solutions. Thanks
are due also to Dr. Raymond J. Distler of the Electrical
Engineering Department of the University of Kentucky
for his instruction in coding theory and advice on specific
questions related to cyclic codes.

References

1. W. W. Peterson, Error Correcting Codes, The MIT Press,
Cambridge, Mass., 1961.

2. W. W. Peterson and D. T. Brown, “Cyclic Codes for Error
Detection,” Proc. IRE 49, 228, 235 (1961).

3. M. Hanan and F. P. Palermo, “On Cyclic Codes for Multi-
Phase Data Transmission Systems,” Journ. Soc. Industrial
and Applied Math. 12, 794 (1964).

Received July 26, 1965.
Revised manuscript received December 15, 1965.

161

PRACTICAL POLYNOMIAL CODES

