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Conditions  for  Termination of the  Method of 
Steepest  Descent after a  Finite Number of Iterations 

Certain problems  in mathematical physics can be recast 
as extremum problems of quadratic functionals. In partic- 
ular, considerable attention has been  given to  the minimiza- 
tion of a quadratic polynomial associated with a bounded 
and positive  semidefinite linear operator T defined on a 
Hilbert space H, viz., the quadratic polynomial Q(x) = 
[Tx, x] - [x, g] - [g,  x], where g is a fixed  element  of H 
and [,I denotes dot product. 

In principle, the complete solution to this problem is 
embodied in  the well-known result: 

If the projection go of g on the  null-space Ho of T is the 
zero-uector, then 

Q(T;’g + v )  = min Q(x) = - IIT;”2g/ l’, 

where TI is the restriction of T to H’, and v is any vector 
in Ho; if go is not zero, then &(x) is not bounded from 
below.’ However, this solution is not constructive, for it 
involves the operator T;’, which cannot always  be  cal- 
culated explicitly. 

Kantorovich’ has recast the classical Method of Steepest 
Descent  in a Hilbert space setting, thus providing an 
algorithm which determines a minimizing  sequence for 
Q(x). If g e H’,, so that Q(x) has a finite  minimum, the 
method proceeds as follows: 

A first approximation x. is  chosen. If Txo = g, we have 
made a lucky  guess, for Q(xo) = Q(T;’g), which  is the 
minimum.  Otherwise, take 

5 r H  

Z O  = Txo - g ,  

Eo = [zo, z o l l [ ~ z o ,  zo l ,  
X’ = x0 - E O Z O .  

If Tx, # g ,  the process  continues. Thus, at the n t h  step, 
one takes 

Z,  = Tx, - g, 

98 X,+’ = x, - EnZn. 

Thus, the corrections at successive steps are related by the 
nonlinear transformation = z, - E,Tz,. 

Kantorovich’ not only established that (x,) is a mini- 
mizing  sequence,  in the sense that 

lim Q(xn) = min Q(x) ,  

but showed further that, if T i s  positive-definite or if zero 
is an isolated point of the spectrum, the sequence (x,) 
itself  converges in the strong topology with the speed  of 
a geometrical  progression. Balakrishnan3 has recently pro- 
vided a short proof of the convergence of Q(x,) to the 
minimum value.4 

In the present study, we investigate  whether it is  possible 
for Steepest  Descent to terminate after a finite number of 
of iterations. We find that this happens if and mly  if zo 
is an eigenvector,  in  which  case the method terminates 
with the first iteration. 

A preliminary result is elementary enough to be proved 
quite generally. We need not even  assume T is linear, 
provided we take “eigenvector” to mean any nonzero 
vector u for which there exists a complex number X such 
that Tv = Xu. We have: 

n+m zrH 

Lemma: Let T be a transformation defined on a Hilbert 
space H. For those nonzero z in H such that [Tz, z ]  # 0, 
define 

rz9 zl 
[Tz ,  zl ’ 

e = - -  

w = z - ETZ.  

Then w = 0 if and only if z is an eigenvector  of T. 

Proof: The necessity  is trivial. To establish the suffi- 
ciency, assume that z is an eigenvector, so that Tz = Xz 
for some X # 0. Then [Tz, z] = X[z, z],  so that E X  = 1. 
Hence, 

w = z - ETZ = z - E X Z  = 0.  Q . E .  D. 

It follows  immediately that the Method of  Steepest 
Descent terminates at step (n + 1) if and only if z,, is an 
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eigenvector of T .  Thus,  it is natural  to enquire when z- 
is an eigenvector. The answer is provided by the following: 

Theorem: Let T be  a bounded and self-adjoint linear 
operator defined on a Hi/bert space H.  For z not in the null- 
space of T dejine 

E = ” -  [ z ,  zl 
[Tz ,  zl ’ 

w = z - ETZ.  

Then w is not an eigencector of T ,  no matter what choice 
is made for z .  

Proof: If T has no eigenvectors, the conclusion follows 
trivially. If z is an eigenvector, the lemma shows that 
w = 0, which is not  an eigenvector if only by definition. 
Thus we need only  rule out the possibility that T has eigen- 
vectors which include w but  not z .  

Assume there exists an eigenvalue X such that w = 
z - eTz is in the eigenmanifold MA and  take 

z = X + y ,  X E  M i ,  Y E  M i .  

Then 

w = (1 - E X ) X  + u ,  

where 
d e f .  u = y - E T Y .  

Since T i s  self-adjoint and y E M i ,  we have T y  E M i  and 
hence u E M i .  

On  the other hand, w E MA and x E MA, therefore 
u w - (1 - E X ) X  E MA, and consequently u = 0, i.e., 
Ty = e-’y. Thus y is an eigenvector with eigenvalue 
SO that [Ty, y ]  = e” Ilylj2. From  the definition of E we 
then have 

so that 

(1 - E A )  j J x ] j 2  = 0.  

If E X  # 1 then x = 0,  so that w = u = 0. On the other 
hand, if EX = 1 then y E MA r\ M i  = (0) .  In this case 
z is an eigenvector of T ;  by the lemma of Ref. 2 we again 
have w = 0. Q.E.D. 

The  Method of Steepest Descent applies when the 
bounded linear operator T is positive semidefinite, hence 
self-adjoint, so that  the hypotheses of the theorem are 

satisfied. Hence, if x. is not itself an exact solution to  the 
minimum problem, we have the alternative: 

Either: zo is an eigenvector and z, = 0, n = 1, 2, 3,  * . 
Or:  No zn is an eigenvector and  the  method converges 

It seems appropriate  to point out  that a lucid discussion 
of Steepest Descent has recently become available in 
English translation  (Chapter XV of Ref. 5). 
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