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Conditions for Termination of the Method of
Steepest Descent after a Finite Number of Iterations

Certain problems in mathematical physics can be recast
as extremum problems of quadratic functionals. In partic-
ular, considerable attention has been given to the minimiza-
tion of a quadratic polynomial associated with a bounded
and positive semidefinite linear operator T defined on a
Hilbert space H, viz., the quadratic polynomial Q(x) =
[Tx, X} — [x, g] — [g, x], where g is a fixed element of H
and [,] denotes dot product.

In principle, the complete solution to this problem is
embodied in the well-known result:

If the projection g, of g on the null-space H, of T is the
zero-vector, then

O(Ti'g +v) = min 0(x) = —||T"lf",

where T; is the restriction of T to H and v is any vector
in Hy; if g, is not zero, then Q(x) is not bounded from
below."! However, this solution is not constructive, for it
involves the operator T;', which cannot always be cal-
culated explicitly.

Kantorovich® has recast the classical Method of Steepest
Descent in a Hilbert space setting, thus providing an
algorithm which determines a minimizing sequence for
Q(x). If g ¢ H%, so that Q(x) has a finite minimum, the
method proceeds as follows:

A first approximation x, is chosen. If Tx, = g, we have
made a lucky guess, for O(x,) = Q(T1'g), which is the
minimum. Otherwise, take

20 = T)CO — g,
[ZO’ ZO]/[TZ(M ZD]’

X1 = Xo — €glo-

]

€

If Tx, % g, the process continues. Thus, at the »t* step,
one takes

e = Txn — &,
. {[zn,zn]/[TZn,Zn]
0 =0

Knvl = Xp = €y

IBM JOURNAL * JANUARY 1966

Thus, the corrections at successive steps are related by the
nonlinear transformation z,,; = z, — €.7z,.

Kantorovich® not only established that {x,} is a mini-
mizing sequence, in the sense that
lim O(x,) = min O(x),

n—w zeH

but showed further that, if T is positive-definite or if zero
is an isolated point of the spectrum, the sequence {x,}
itself converges in the strong topology with the speed of
a geometrical progression. Balakrishnan® has recently pro-
vided a short proof of the convergence of Q(x,) to the
minimum value.*

In the present study, we investigate whether it is possible
for Steepest Descent to terminate after a finite number of
of iterations. We find that this happens if and only if z,
is an eigenvector, in which case the method terminates
with the first iteration.

A preliminary result is elementary enough to be proved
quite generally. We need not even assume 7 is linear,
provided we take ‘‘eigenvector” to mean any nonzero
vector v for which there exists a complex number \ such
that Tv = Av. We have:

Lemma: Let T be a transformation defined on a Hilbert
space H. For those nonzero z in H such that [Tz, z] # 0,
define

_ Lz 7]
[Tz,7)

i

w 7 — eTz.

Then w = 0 if and only if z is an eigenvector of T.

Proof: The necessity is trivial. To establish the suffi-
ciency, assume that z is an eigenvector, so that 7z = Az
for some A % 0. Then [Tz, z] = Nz, z], so that e\ = 1.
Hence,

w=7—¢eJz=2z—ex =0, Q.E.D.

It follows immediately that the Method of Steepest
Descent terminates at step (z + 1) if and only if z, is an




eigenvector of 7. Thus, it is natural to enquire when z,
is an eigenvector. The answer is provided by the following:

Theorem: Let T be a bounded and self-adjoint linear
operator defined on a Hilbert space H. For z not in the null-
space of T define

[z, 2]

€ = )
[Tz, 2]
w =2z — elz.

Then w is not an eigenvector of T, no matter what choice
is made for z.

Proof: If T has no eigenvectors, the conclusion follows
trivially, If z is an eigenvector, the lemma shows that
w = 0, which is not an eigenvector if only by definition.
Thus we need only rule out the possibility that 7 has eigen-
vectors which include w but not z.

Assume there exists an eigenvalue A such that w =
z — €Tz is in the eigenmanifold M, and take

z=x+vy, xe M,, ye My,
Then

w=(1— eNx + v,

where

v & y — €Ty.

Since 7 is self-adjoint and y ¢ M~, we have Ty ¢ M7 and
hence v & M73.

On the other hand, w ¢ M, and x £ M,, therefore
v=w— (1 — eN)x ¢ M,, and consequently v = 0, i.e.,
Ty = € 'y. Thus y is an eigenvector with eigenvalue e’
so that [Ty, y] = ¢ ||y|[°. From the definition of € we
then have

e
Ml A+ e ol

so that
(1 —e)|x])” =0

If e # 1 then x = 0, so that w = v = 0. On the other
hand, if e\ = 1 then y ¢ My M M3 = {0}. In this case
z is an eigenvector of T'; by the lemma of Ref. 2 we again
have w = 0. Q.E.D.

The Method of Steepest Descent applies when the

bounded linear operator T is positive semidefinite, hence
self-adjoint, so that the hypotheses of the theorem are

satisfied. Hence, if x, is not itself an exact solution to the
minimum problem, we have the alternative:

Either: z, is an eigenvector and z, = O, n = 1,2, 3, +--
Or: No z, is an eigenvector and the method converges
only in the limit as n — .
It seems appropriate to point out that a lucid discussion
of Steepest Descent has recently become available in
English translation (Chapter XV of Ref. 5).
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