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! Some Experiments in Spoken Word  Recognition 

I Abstract: This paper describes  some  experimental  work  in  the  recognition of limited-size,  but  arbitrary,  vocabularies of spoken 
1 words.  The  equipment  consists of a filter-bank  voice-spectrum  analyzer  providing  real-time input of measurement  data 

to an IBM 1620-11 digital  computer  system.  The  computer  implements  various  transformations on the  input  data  and also 
implements  various  linear  decision  functions  which  are  designed by means of adaptive  algorithms.  Recognition  experiments 

~ have investigated  the  recognition  capability of this  system on arbitrary vocabularies of up to 30 words.  Several  normalizing 
transformations on the  primary  measurements  were  investigated. 

Introduction 

This  work  is  concerned  with  machine  recognition  of 
spoken  words. An experimental  system  capable of recog- 
nizing an arbitrary vocabulary of spoken  words  is  de- 
scribed. The equipment  consists of a voice spectrum 
analyzer acting as on-line input to an IBM 1620-11 digital 
computer  system. The basis of the spectrum  analyzer  is a 
contiguously tuned bank of bandpass  filters  whose  in- 
stantaneous outputs are continuously  compared in such a 
way as to locate the instantaneous peaks in the envelope 
of the speech  spectrum. The output of the spectrum 
analyzer is a binary  coded  representation of the peaks of 
the envelope of the frequency  spectrum  as a function of 
time; it serves as input to the IBM  1620. 

A programming  system that allows  application of vari- 
ous transformations to this input measurement  space has 
been written for the digital  machine. This transformed 
measurement  space then is  used  as the input to the cate- 
gorizer  section of the recognition  system. The categorizer 
section  consists of h e a r  decision  functions in which the 
weights are obtained  using an adaptive  algorithm. 

Filter bank analyzers  have been  much  used  (e.g.,  by 
Abramson, et al.: Denes and Mathews; Olson and Belar? 
Davis, et al.: and Talbert, et al.5) and so the primary  meas- 
urement  space used here  is  similar to that employed  in 
those other works. Talbert, et aL5 and Dammann'  have 
reported on the use  of  adaptive  linear  decision  functions 
in  speech  recognition  studies, but the decision  algorithm 
used here  is  different.  Dersch'  has  used a distinctly  differ- 
ent measurement  space to accomplish the recognition of 
a vocabulary that is  essentially the same as one  used  here. 
Rosenblatt,'  who  is  responsible for much  of the early 

work in adaptive  networks,  has  also  proposed a speech 
recognition  machine  using a multi-layer  adaptive system. 
A good  over-all  survey of past and current work  in the 
field  of  speech recognition has recently  been  published by 
Lindgren.' 

This  work  extends the results  existing in the literature 
in that  it deals  with  significantly  larger  sample  sizes than 
have  commonly  been  used,  with a limited  number of differ- 
ent vocabularies, and with the effect  of transformations 
of the primary  measurement  space on recognition  per- 
formance. 

In the first part of this paper the major  functions neces- 
sary in  any pattern recognition  system are noted, aspects 
of decision  theory  as  pertinent to the present  work are 
summarized, and a theoretical  model for speech  synthesis 
is  described.  These  considerations  have  provided the basis 
for the  experimental approach taken in this work. It is 
shown that, specifically, a means is required for deriving 
the time variation of the speech  waveform  frequency  spec- 
trum envelope. 

The second part of the paper  describes  two parts of the 
experimental system-the spectrum  analyzer and the linear 
decision  function-in  some  detail.  Most of the circuitry 
of the spectrum  analyzer  is  conventional, although some 
special  circuits were  designed for critical  applications. 

In the third part a rationale for a set of recognition 
experiments is developed and the experimental  results 
using this apparatus are presented.  Finally, the results are 
assessed  with the view toward determining the direction of 
future work. 65 
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Theoretical basis for  experimental  system fect  measurement X i  for each  class of utterance. It also 

Pattern recognition systems 
assumes that the variety of measurements  is the result of 
the perfect  measurements  being corrupted by additive 

The automatic recognition of spoken  words  is  here  con- 
sidered  as  one  member of the broad class of pattern recog- 
nition  problems, which  have  been  much  discussed in the 
technical  literature.”  There are three main  sections  in  any 
pattern recognition  system: 

noise.  Abramson  et al.’  view this noise as resulting  in a 
statistical spreading of measurements, X ,  about the set X i .  
For the  special  case  where the noise  may  be  viewed as a 
multivariate, normal, random variable  with  zero  mean and 
equal variance on each  component, the optimum  decision 
strategy. i.e.. the comDutation of the conditional prob- 

(1) The Measurement  Section  performs  measurements on abilities P(Xl8 E Q i ) ,  reduces to a comparison of a set 
the primary input signal.  These  measurements  may  be of linear  functionals,  one functional associated  with  each 
preserved in analog or digital form. class of utterance. There are many factors which conspire 
(2) The Transformation Section  manipulates the original to preclude the possibility of there being a perfect  measure- 
measurements and converts  them into different  represen- ment, X i ,  if the transformation X = u(t) is used, where 
tations (or measurement  spaces) that are more  suitable for u(t) is the microphone  voltage  waveform, the most  obvious 
the particular decision  function to be  used. being the variation in the speed of talking. A more 
(3) The Decision  Section  implements the decision  func- promising  ‘‘measurement  space” for speech  recognition 
tions used to classify the transformed measurements into is  suggested by a consideration of a theoretical model 
the classes  of input signals. for the generation of synthetic  speech  sounds. 

” . . 

There is, of course,  significant interaction between the 
design  of these three sections; e.g., the choice of a par- 
ticular  measurement  space  may  require the use of an ex- 
tremely  complex  Decision  Section. In addition, there are 
many  purely  hardware  considerations that dictate the 
particular choice of measurement, transformation, or de- 
cision  function to be used; certain  measurement  spaces 
may require much more  digital  storage than others.  Con- 
siderations that lead to the choice of a particular initial 
measurement  space for the recognition of speech sounds 
will  be  briefly  discussed  here. In later parts of the paper, 
the interaction between the three sections of a pattern 
recognition  system  will  be further discussed. 

Decision theory 

The decision  problem  involved  here  can  be formulated as 
follows:  Given a set of measurements, X ,  it is  required to 
decide  which  word, out of a finite  set of possible  words, 
was uttered. The theoretical solution to this problem is 
contained  in the statistical decision  theory as formulated 
by  Wald.” A decision in favor of a particular class of 
pattern (or word) Gi, is  based  on a set of weighted  com- 
parisons of the a  posteriori conditional probabilities, 

P(6 E @ j  I x), (1) 

where d is the unknown pattern (or speech  utterance)  re- 
ceived  by the recognition  machine and j is an integer 
ranging  over the interval 1,2, * - * , p (wherep is the number 
of  classes of pattern to be  recognized, or, in  this  case, the 
number of words in the vocabulary). It is  well  known that 
Bayes’ theorem  allows the computation of P(8 E Gila 
to be  replaced by the computation of the conditional 
probability  densities of P(XI 8 E Qi).  

66 One approach of interest  assumes the existence of a per- 
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9 A theoretical model for speech synthesis 

A simple  model for human  speech  was  originally  formu- 
lated by H. W. Dudley.” It relies on the observation that 
during a human speech utterance (especially  during the 
“voiced”  portions), the acoustic  energy  is  mainly  concen- 
trated in only a few  relatively  narrow  regions of the fre- 
quency  spectrum. It has  also been  observed that the loca- 
tions of these  energy  concentrations  occur in particular 
ways that are characteristic of the limited  repertoire of 
vowel and consonant sounds that the human  is  capable 
of producing.  Usually there are three distinct  energy  con- 
centrations in the frequency  range from 300 to 3,000  cps. 
In the “parlance of the trade,” these  energy  concentrations 
are known  as formants. During the utterance of a word 
the position and relation of the formants change,  creating 
a characteristic “pattern” distinctive of the word and, to 
some  extent, the speaker. The noteworthy success  of a 
number of speech  synthesizers (as determined by human 
recognizability of the produced  sounds) attest to its 
validity.13*14 A version of Dudley’s  speech  synthesis  model 
is  described  below and in Fig.  1. 

A source of controls generates the signals U, Y, 2 (func- 
tions of time).* For the synthesis of a word, a particular 
set of control signals Ui, Yi, Zi is  generated. The U signal 
controls the glottal excitation  source, G(s, U), which  is a 
time variable  source of broadband energy  (here s = 
a + io). The control signal, Y,  similarly controls the 
“hiss”  excitation  source, N(s, Y). The outputs of these 

* Some  liberties  with  mathematical  rigor are  taken  here  to  simplify  the 
description of a  waveform  that  varies slowly with time. I t  will he 

ered  as  essentially  constant  during  several  periods of the lowest fre- 
observed  that  the  error  is  not  very  great if U ,  Y,  and Z are consid- 

quency  components of G and N .  
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Figure 1 Model for synthetic speech production. 

two sources are fed to the input of a time  variable  filter 
H(s, Z) which  is an analog of the vocal tract. The filter 
H(s, 2) is operated on by the Z control signals. 

It is the relatively  slow variation of the pole  locations 
of H(s, Z) which, for the most part, determines the loca- 
tion in the frequency  domain for the formant structure of 
the synthetically  spoken  word. The U and Y control 
signals  determine the duration, intensity, and to some 
extent the formant structure of the voiced and unvoiced 
portions of the word,  respectively. 

The success  of  speech  synthesizers  based on Dudley’s 
model  has  adequately  demonstrated that  it is the fre- 
quency  spectrum  (specifically, the energy concentrations 
in the frequency  domain, or “formants”) of the speech 
waveform u(t), that is the information  carrier. 

A suitable measurement method 

If a continuous  spectrum  analysis of u(t) with a frequency 
resolution sufficiently  fine (-200 cps) to resolve the for- 
mants is  performed,  but not so fine as to resolve the dis- 
crete  harmonics of G(s, U), the result  will be a repre- 
sentation of a sound that is  dependent  mainly on U, Y,  Z. 
This  representation should be  very  consistent for the 
same  word  because the U, Y ,  and Z functions are unique 
for each  word.  Such an analysis  is done by the “sono- 
graph,” which is a type of spectrum  analyzer  manufactured 
by the Kay  Electronics Co., Pine Brook, N. J. (The out- 
put of the sonograph is a continuous  record of frequency 
and amplitude vs time; this record is called a sonogram.) 

As a result of the spectrum  analysis, a measurement X(t) 
will  be  obtained.  Here, X(t)  = x,(t),  x2(t), * , x,(& each 
x(t)  being the output of a bandpass  filter. X(t)  may  be  con- 
sidered an approximate representation of the output of a 
sonograph. More realistically,  noise  will  be  considered to 
be  mixed  with the transmitted signal u(t). The result  is 
that there will  be  some  variation  in the measurement X 
even for the same  word.  However, X should be a statisti- 

cally invariant measure,  unique for each  word  class  in the 
vocabulary of the synthesizer. 

If the various  components of X are sampled and binary 
quantized at successive intervals  during a speech utter- 
ance,  each  variation of X may then  be viewed as a point 
in a multi-dimensional  measurement  space, M. It will  be 
found, that due to the effects  of  noise, there  is a distribu- 
tion of the X’s on M associated  with  each  word  class. 
Thus, the design  of an optimum  recognizer for this situ- 
ation is  again  best  considered  from the point of  view  of 
statistical decision  theory. 

Although it is  reasonable to assume there is a “perfect” 
signal (or measurement) for each  word  uttered by an 
ensemble of artificial  synthesizers, the set of  perfect 
measurements may not necessarily  be  known. For  the 
case of additive  noise of the character postulated  above, 
there exist a number of  effective algorithms for finding 
suitable decision  boundaries, without the knowledge of 
the perfect Xi (this is discussed  later).  Some are variants 
of iterative  routines which operate on a sequence  of  meas- 
urements, X,, X,,  , X,, where the class  associations 
are known a priori and the number of measurements from 
each  class is large  enough to be  representative.  After a 
suitable number of iterations, the process either converges, 
or else the performance of the system  ceases to improve 
(on the basis of the representative  sample);  e.g., the reject 
and substitution rates remain  essentially constant for any 
further  iteration^.'^"^ Nonconvergence  indicates either 
overlap of the distributions associated  with certain or all 
pairs of classes or else  linear  inseparability. 

If recognition of artificial  speech  utterances were the 
goal, the techniques  outlined  above  would probably be 
quite suitable.  However, there is  one important difference 
between artificial and human-produced  speech: there is a 
considerable  variation  in the speed of talking and the 
nature of sounds (expression,  accent)  produced by indi- 
vidual  speakers. If an operation on the measurements, 
X’ = g(X),  could  be  discovered that would  eliminate 
the effects  of variation  in  speed of talking,  volume, 
and expression  between  speakers, the problem of recog- 
nition of human  speech  might  still  be approached from 
the perfect  signal point of view.’ 

A similar  problem (the lack of a “perfect”  signal  source) 
is  encountered in the recognition of handwritten or printed 
characters. The problem  is not present in the recognition 
of single-font  typewritten material where the typebar 
itself  is the “perfect”  signal  source. 

The intent of this work has been to perform  experi- 
ments  investigating the utility of the measurements X(t) 
for the recognition of human speech utterances. The fore- 
going  analysis  has  already  shown its relevance to the recog- 
nition of artificial  speech. 

A further aim  is to investigate  methods of designing 
the Transformation and Decision  Sections of the recog- 67 
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Figure 2 Schematic diagram of measurement apparatus for the  experimental  system. 
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nition  system to tolerate or eliminate the variations  in 
the measurements, X ,  when  they are made on human 
speech  waveforms. The following  Section  describes the 
method and circuitry  used for extraction of the measure- 
ments  from the speech  waveforms, and the selection of 
transformation and decision  sections of theoretical merit. 

Design of experimental system 

The measurement apparatus 

The method  chosen for the analysis of the speech  wave- 
form is based  on  techniques  similar to those  used by others 
for this same purpo~e .~ -~  Functionally, the first part of the 
system  (Fig. 2)  consists of a microphone  (transducer for 
producing an electrical  analog of the acoustic  pressure 
waveform) and a preamplifier-equalizer.  The  preamplifier- 
equalizer  has an amplitude vs frequency  response that is 
the inverse of the average  variation in amplitude vs fre- 
quency of normal speech. The second part consists of a 
bank of contiguously tuned bandpass  filters (the outputs 
of  which are envelope  detected) which perform the func- 
tion of gross  spectrum  analysis on the speech  waveform, 
~ ( t ) .  The frequency  increment  between  filters and the band- 
width of each are adjusted so that the nominally  closest 
spacing of two formants can be just resolved and so that 

the sensitivity to discrete  harmonics is minimized.  Since 
the main  interest  is in the location in the frequency  spec- 
trum of each formant, and not in its absolute intensity, 
a considerable  simplification is allowed in the hardware. 
Again the footsteps of others are followed  here. As shown 
in the schematic of  Fig. 2 the instantaneous magnitudes 
of the envelope  from  each  bandpass  filter are compared 
by means of a set of difference  detectors. By the suitable 
aming together of the bi-polar outputs of the difference 
detectors, a representation of the instantaneous local 
spectrum  maxima is obtained? These  maxima  presumably 
correspond to the formants. If the output of the set of 
AND gates is periodically  sampled and stored during a 
speech utterance, the nominal result is a quantized  record 
of the formant structure of a spoken  word. 

Specifically, a binary array, or matrix, is formed, in 
which the rows  correspond to discrete  contiguous  fre- 
quencies, and the columns,  scanning from left to right, 
correspond to successive intervals of  time. If the conven- 
tion is adopted that a ONE bit  corresponds to a local in- 
stantaneous maximum  in the spectrum, then the analyzer 
should produce  one-bit  arrangements  (resulting  from a 
speech  utterance) that correspond  directly to the spectral 
maxima as displayed on a sonogram. 
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The envelope detectors are actually full wave rectifiers. 
Low pass filters, which follow, serve the function of re- 
moving the beat note (about 100 cps) between the discrete 
harmonics of the speech spectrum; they also improve the 
signal-to-noise ratio at this point in the system by remov- 
ing some of the effects of unsteadiness in the voice. 

in that there is 
no AGC (automatic gain control) in the microphone pre- 
amplifier-equalizer. Most simple AGC systems for speech 
suffer from the deleterious effects of loop delay (overshoot 
and distortion). Of the two, distortion would probably 
be the most harmful in that it could alter the gross enve- 
lope of the spectrum. A somewhat unorthodox method of 
compressing the output waveform of each bandpass filter 
circumvents this difficulty. This is accomplished by means 
of an active network which has a transfer function approxi- 
mately defined by: 

This analyzer differs from some 

Admittedly 

(2) 
log (1 + ei,)l for ei, > O 

log (1 - ei,)l for ei, 5 0. 

this operation also produces distortion, but 
this occurs after the frequency-selective filtering. The 
result is that, for a pure sine wave signal into the system, 
the difference voltages supplied to the difference detectors 
are closely proportional to the ratio of the outputs of the 
respective filters over about a 30 dB range, thus making 
the sensitivity of the system less dependent on the absolute 
input level. For a speech waveform input the result is 
similar, but now the distortion of the waveforms due to 
the discrete harmonics degrades the performance of the 
envelope detectors somewhat. 

It is well known that during the noise-excited portions 
of speech most of the energy is concentrated above the 
frequency range of the three principle formants, although 
the formant resonances are nevertheless still excited. 
During voiced portions most of the energy is concentrated 
within the range of the three principle formants, i.e., 
below 4 kc/sec. This immediately suggests that a simple 
highpass filtering technique might be adequate to dis- 
tinguish (detect) noise excitation. This has been the stand- 
ard approach and is the one that is employed here. Thus, 
by comparing levels of energy in the highpass range with 
the average level in the formant range, the system is able 
to distinguish, with some degree of reliability, between 
noise-excited and glottal-excited (or both) portions of 
spoken words. 

Choice of decision function 

The binary quantized representation of the spoken word 
produced by the measurement apparatus is used as the 
input data to the categorizer portion of the recognition 
system studied here. This measurement space has some 

Figure 3 Typical sonogram and display matrix. 
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correspondence  with the sonogram of a spoken word; 
Fig. 3 shows an example of the degree of correspondence 
that is achieved. Note that a “light on” condition  in the 
display  matrix  corresponds to a relatively darker region 
of the sonogram. 

Changes  in the speed of talking have the effect of chang- 
ing the relative  time  scale of the display  matrix. A given 
word  spoken  rapidly will produce a foreshortened pattern, 
whereas the same  word uttered slowly and deliberately 
will produce a horizontally  elongated pattern (more 
samples) but one which  would  have  essentially the same 
topological  features. 

From this observation it might  be  concluded that if all 
words were  simply  normalized to the same  length  (number 
of samples) by a uniform  stretching operation, this “tim- 
ing”  problem  might be  eliminated., In theory this should 
work quite well,  since the problem  would be reduced to 
one closely analogous to that of the recognition of a set 
of “perfect”  signals  combined  with  additive  noise. The 
one  disadvantage  here  is the considerable amount of data 
processing  involved in each  normalization. It should be 
noted that this normalization (transformation) would not 
be  effective in reducing other disturbances  due to speaker 
differences,  particularly  those  due to anatomical differ- 
ences  in the vocal tract cavities.  Nevertheless, normal- 
ization of this sort can  be thought of as a method for pro- 
ducing a reference standard measurement  space if one 
were dealing  with  only  single-speaker  word  recognition. 

There are other methods  currently in vogue  in the field 
of character  recognition for eliminating the effects  of 
such distortions as  stretching,  skewing,  magnification, 
etc.  Many of these may be referred to as “feature detec- 
tion” methods, although they  variously  go by the names: 
n-tuple  detection,  zoned  n-tuples, stroke detection,  lakes 
and bays,  etc. Feature detection  performs a transforma- 
tion on the primary  measurement  space,  with the intention 
of producing a secondary  measurement  space in which 
the effects due to the aforementioned distortions are 
largely  normalized out. These  techniques  have found the 
greatest  application so far in  multifont-character, hand- 
printing, and handwriting r e c o g n i t i ~ n . ~ ~ ’ ~ ~  

Another point worth  mentioning  here  is that transfor- 
mations may  be  either of the discrete or continuous type. 
Linear transformations are not necessary  since  they are 
automatically incorporated into any  linear  decision  func- 
tion. Continuous nonlinear transformations have the 
greatest  theoretical  merit  (as discussed later)  because  they 
do not influence the size  of the recognition unit (word, 
syllable, etc.).  However,  practical  considerations  place 
constraints on the complexity of nonlinear transforma- 
tions that may  be  employed.  Therefore, it becomes almost 
a necessity to investigate the usefulness of various “feature 
detection”  transformations which are discrete  in nature 
but easy to implement. 
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It is  one of the purposes of the present  work to postu- 
late and compare the effectiveness  of various transforma- 
tions in a speech  recognition  system.  This is done by 
comparing the performance of recognition  systems which 
differ only by the use of the different transformations, in 
a standard recognition  experiment. 

It will  be  recalled that  the application of a transforma- 
tion of  either of the kinds  mentioned  above  can  be viewed 
as a method of producing a measurement  space in which 
the “perfect  signal” situation (corrupted by noise)  exists. 
It has been stated that in this situation a linear  decision 
function, in  which  one  linear functional is  associated  with 
each  class, is the optimum  one.  This  is the decision  func- 
tion  used  in the present  work. 

The linear  decision  function : adaptive  algorithm 

The decision  function to be  used  here has already been 
alluded to. If 

Wi- X + ti 2 W i .  X + t j  + E for all j # i ,  (3) 

then the measurement X is assigned to class i. Otherwise, 
the pattern is rejected; E is a fixed  positive constant chosen 
in advance and results in  reject  zones or regions  in the 
measurement  space. 

The  adaptive  procedure  used to determine the set  of 
vectors and constants, Wi and ti is  given  here. It is a 
variant of procedures reported previously  in other works. 
Let a1, a,, * - , 6, be a sequence of words of the vocabu- 
lary, of  which ab is a particular member.  Each  word of 
the vocabulary should occur  many  times  in this sequence. 
Let X , ,  X,,  , X ,  be the corresponding  sequence of 
vectors  arising  in  measurement  space  due to the sequence 
of  words al, a,, - , a,. 

Let Ti,  be  any  vector  (say the zero  vector) and oil be 
any  number  (say,  zero),  where i denotes the class of 
word and i = 1, 2, , p. We  define sequences of a 
set of vectors Til, Ti*, . , Ti ( n + l )  and constants oil, 
uiz, * * , ui (n+l) iteratively  as  follows: If gk is  from Gi and 

T z k .  X, + v i k  > T , , .  X, f v ik  f 0 for all j # i ,  (4) 

then, 

but if 

T z k .  X, 4- u , k  5 T i k X k  + C j k  + 0 for any j # i ,  ( 5 )  

then 

= T j k  - X, and u,(,+~) = u j b  - 1, 
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where B is the number of linear functionals indexed by j 
for which Eq. ( 5 )  is satisfied and 0 is a fixed positive con- 
stant chosen in advance. 

The sets of vectors Tic,+l, and constants u ~ ( ~ + ~ )  are a 
tentative choice for Wi and t i ,  respectively. The process 
can be repeated on  the sequence of words el ,  82, , 8, 
(sometimes called the analysis sample or training sample) 
until no further  corrections are  made in a pass. This 
condition is called convergence, and can be expected 
to occur only for certain distributions of the measurements, 
X, in the measurement space. 

The vector Wi and  constant ti, chosen in  this way will 
be “good” choices, if the sequence of measurements due 
to the words  in the analysis sample is representative of 
those measurements to be encountered  in the later  en- 
vironment of the recognition system. 

There is another  adaption algorithm which has been 
found u s e f ~ l ’ ~ - l ~  for obtaining a set of linear functionals 
useful for recognition using the decision function of Eq. 
(3). It is an iterative routine which attempts to find, for a 
sample sequence of measurement vectors X,, X p ,  . . . , X,, 
a set of linear functionals, L1, L2,  * * . , L,  such that  for 

nition system explored here are simulated using an IBM 
1620 computer. The 1620 operates  fast  enough so that 
recognition can be accomplished on-line (for the vocabu- 
lary size used here), and  the flexibility provided by a gen- 
eral purpose digital computer allows the desired investi- 
gation of various transformations and vocabulary sizes. 

Thus, the speech analyzer described here was connected 
on-line to  an IBM 1620-11 computer. A programming 
system for the 1620 was developed that allows the various 
transformations and decision functions to operate  on  the 
original measurement space. The system is capable of 
(1) applying these various  transformations,  either singly 
or in series, to  the original space, and then (2) applying the 
decision function  (or categorizer) to the transformed 
measurements. 

In addition, by preserving in punched card  form  the 
primary measurements resulting from spoken  utterances, 
a universe of patterns may be  built up  for one or many 
speakers allowing various  comparative experiments to 
be performed. This system and its correspondence to  the 
parts of a general decision-theoretic recognition model 
are shown in Fig. 4. 

Rationale for a suitable set of recognition 
experiments 

and This section presents the reasons for the choice of the par- 

L ,  < - 0  for all j # i. 
ticular experiments reported here. The hypothesis has been 
made  that  the spectrum analysis of a speech waveform 
provides measurements that contain, if they are  not them- 
selves, statistically invariant measures of the spoken word. e The experimental system 

The Transformation and Decision Sections of the recog- If this is so, then for single-speaker word recognition and 71 
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for a particular vocabulary, the performance  level (error 
rate) of the speech  recognition  system  using this measure- 
ment  space (or some transformation of this space) should 
be  relatively  independent of the particular speaker. To 
verify this, experiments  designed to yield the following 
results should be conducted: 

(a)  Performance level  of the system  using a fixed vocabu- 
lary for a number of different  speakers  singly. 
(b) Performance level  of the system  using  one  speaker 
(or a fixed set of speakers) for a number of distinct and 
arbitrary vocabularies of equal size. 

The method  used to obtain the “performance level”  is 
as follows: The measurements, X ,  resulting from a large 
number of utterances of the vocabulary  involved, by 
the speaker  concerned, are recorded in binary form on 
punched  cards.  This  sample  is  divided into two parts, the 
analysis  sample and the recognition  sample. The analysis 
sample  is  used to obtain the linear  functionals Li by one 
of the adaptive  methods  described earlier; the recognition 
sample  is  used to test the system. The “performance level” 
is the error rate of the system on a recognition  sample, 
after the Wi and ti have been determined  using the analy- 
sis  sample. The size  of the analysis  sample should be  large 
enough to represent the utterances in the recognition 
sample. If the measurement apparatus is  stable, and the 
measures are truly statistically invariant, the Wi and 
constants ti obtained  from the analysis  sample of one 
speaker  should allow good  performance on the recog- 
nition  sample of another speaker.  Thus, further experi- 
ments should be conducted  yielding: 

(c) Performance level  of the system adapted on an analy- 
sis  sample of one  speaker and tested on a recognition 
sample of a different  speaker. 
(d) Performance level  of the system adapted on an analy- 
sis  sample of a set of speakers and tested on a recognition 
sample of the same  set of speakers. 

From an information-theoretic  point of  view it would 
be expected that for the same  information  channel  ca- 
pacity, the error rate will increase as the number of pos- 
sible  messages  (vocabulary  size)  is increa~ed.’~ The follow- 
ing  experiment should be done to verify this: 

(e)  Performance level  of the system  using  one  speaker for 
vocabularies of increasing  size. 

From this same  consideration, the lowest error rate should 
be obtained by using the largest  possible  message  length 
as the unit of re~ognition.’~ The largest  possible  message 
length,  in this case,  is a single  word of the vocabulary. 
Certain of the transformations of interest in this work 
essentially  perform the recognition of subunits of the 

72 word.  Transformations 1 and 2, to be  described later, 

recognize  topological  features  in the original  measurement 
space and “characteristic sounds,” respectively.  Thus, the 
following  result  will  be of interest : 

(f) Performance levels  of  systems  using  different  units  of 
recognition  (as  performed by the Transformation Section) 
for the same  analysis and recognition  samples. 

The above  result  is of further interest, for certain trans- 
formations may  produce a measurement  space that is 
closer to the perfect-signal  space than the original meas- 
urement  space  (as  noted  earlier under “Choice  of  Decision 
Function”) which  might  more than offset the effects due 
to changing the size of the unit of recognition. 

Experimental results 

The experiments reported here were carried out according 
to the rationale of the previous  section. In some of these 
experiments (1 through 6) primary  measurements, X ,  were 
used and the Decision  Section  was  composed  of  fifteen 
linear  functionals  derived by the method  shown in the part 
of the paper entitled “Linear  Decision Function, Adaptive 
Algorithm.” The analysis  sample  used for each  speaker 
is noted in each  table. In all the recognition  experiments 
the results are reported  in terms of a “forced  decision” 
substitution rate;  that is, no reject errors are permitted 
( B = 0 in Eq. (3)). The intent is to allow  better  comparison 
of these  results to those of other workers, for there are 
many  possible  ways  of introducing reject  criteria into a 
decision function, and comparisons of reject rates may be 
misleading. 

The other experiments (7 through 9) involved  processing 
the original  measurements, X ,  in  such a way that the basic 
units of recognition were smaller than the word. 

The vocabularies  used throughout the experiments  were 
the following: 

Vocabulary 1 : one, two, three, four, jive,  six, seven, eight, 
nine, zero, minus, plus, times, over,  total. 

Vocabulary 2: clear, patterns, weights, date, I.D., learn, 
print, code, punch, process,  read,  speaker, 
cards, report, run. This  list  was  chosen  with- 
out regard for phonetic content ; it is simply 
a number of words  used in the program- 
ming  system for the IBM 1620. 

Vocabulary 3: This  vocabulary is the conjunction of  Vo- 
cabularies 1 and 2. 

Group A : Primary measurement space 

Experiment 1: Fixed  vocabulary, different speakers. The 
most  extensive  experimentation  was  performed on Vo- 
cabulary 1. This  particular  set of words  was  chosen to 
allow the direct dictation of simple  arithmetic  problems 
to the recognition  system.  This  is merely a fringe benefit 
gained  from the use of a general  purpose  digital  computer, 
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Figure 5 Confusion  matrices for three speakers of Vocabu- 
lary 1.  Experimental  conditions are given in Table 1. (a) 
Speaker A, (b) Speaker B, (c) Speaker C .  

but it provides an interesting  demonstration of speech 
recognition. Table 1 compares system performance for 
three different speakers of Vocabulary 1. The confusion 
matrices for these speakers are shown in Fig. 5. 

Analysis sample sizes used in  this experiment varied 
from 35 to 50 alphabets and recognition sample sizes from 
75 to 115 alphabets. (The  word "alphabet" is used here to 
denote one  set of utterances of the words  in a vocabu- 
lary.) In  all cases, of course, the analysis and recognition 
samples were distinct. The number of bits in this  original 
measurement space is 320; the space is in  the  form of a 
matrix having 16 rows corresponding to  the 16 frequency 
bands, and a maximum of 20 columns. 

The forced decision substitution rate for the three 
speakers ranged  from 0.2 to 2.4%. Speakers A and B were 
male whereas Speaker C was female. The difference in 
performance on Speakers A and B is statistically signifi- 
cant;  to what  this difference should be attributed is not 
yet clear, but it has been suggested that there might have 
been more speed-of-talking variation with Speaker B. This 
speculation is unconfirmed since we have not as yet run 
an experiment with a destretching normalization.2'6 

The  order of magnitude poorer  performance  with the 
female voice can be at least partially attributed  to  the 
higher frequency of the voice fundamental. Visual exami- 
nation of the quantized spectrograms on  the display matrix 
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revealed that  the location of the lowest frequency formant 
using this technique is much more  erratic with female 
voices. This result demonstrates the fundamental weak- 
ness of the short-term  Fourier analysis in locating the 
poles of the vocal  tract. 

The  error rates with Speakers A and B compare favor- 73 
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Table 1 Effect  of different  speakers on recognition of Vocabulary 1. Analysis  sample and test  sample were obtained from 
same  speaker in each  case.  Measurement  space  contains 320 bits/word. Analysis 8 = 200. 

“Forced decision” test results 
Number of 

analysis Number of Number of 
sample test correct rec- Number of Percent Percent 

Speaker alphabets alphabets ognitions substitutions correct  substituted 

A 35 90 1347 3 99.8 0.2 
B 50 75 1116 9 99.2  0.8 
C 40 115 1683 42 97.6  2.4 

Table 2 Recognition of different  vocabularies as spoken by same  person.  Analysis and test  samples  were  both  obtained from 
Speaker B. Untransformed measurement space contains 320 bits/word.  Analysis 8 E 200 for Vocabularies 1 and 2, and 100 
for Vocabulary 3. 

“Forced decision” test results 
Number of 

analysis Number of Number of 
sample test correct rec- Number of Percent Percent 

Vocabulary alphabets alphabets ognitions substitutions correct  substituted 

1 50 75 1116 9 99.2  0.8 
2 45 80 1190 10 99.2  0.8 
3 45 30  888 12 98.7  1.3 

Table 3 Recognition of Vocabulary 1 with  recognition and analysis  samples  obtained  from  different  speakers.  Measurement 
space  contains 320 bits/word. Analysis 8 200. 

“Forced decision” test results 
Number of 

analysis Number of Number of 
sample test correct rec- Number of Percent Percent 

Speaker alphabets alphabets ognitions substitutions correct substituted 

Analysis: A 35  20  163  137  54 46 
Test: B 

Analysis: B 50  20  255 45 85  15 
Test: A 

ably with any that may be found  in the literature on speech 
recognition. Although the experiments thus far have been 
on a limited number of speakers, the size of the samples 
used allows confidence that these results represent the 
true recognition capability of such a system for single 
speakers. 

Experiment 2: Same  speaker, different uocabularies of equal 
size. Table 2 compares system performance for the equal- 
size Vocabularies 1 and 2, as  spoken by the same person. 
The Table  also shows the performance when the conjunc- 
tion of Vocabularies 1 and 2 (Vocabulary 3) was spoken 
by this person. 

The forced decision substitution rate  on Vocabulary 2 

I 74 was 0.8y0, identical with the recognition result on Vocabu- 

lary 1. As noted,  this second vocabulary was somewhat 
arbitrarily chosen. It seems, therefore, that  the recognition 
performance is not a function of the particular vocabulary 
used. This experiment tends to confirm the generality of 
the measurement space and  its applicability to the recog- 
nition of arbitrary sounds. 

Experiment 3 :  Analysis and recognition samples from dijier- 
ent speakers. Table 3 shows the recognition performance 
on Speaker B when the analysis sample is from Speaker A 
and  the performance on Speaker A when the analysis 
sample is from Speaker B. This experiment was intended 
to indicate the degree of invariance of the measurements, 
X(t )  with respect to different speakers. 

As shown in the Table, the analysis sample of one 
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speaker is not a good  statistical  representation of the test 
sample of a different speaker. It must  be noted, however, 
that  the performance of the system was significantly better 
than chance, implying that there is some degree of sta- 
tistical  invariance  in the measurements X ( t )  from  one 
speaker to another. 

Experiment 4 :  Analysis  and  recognition  samples  from  same 
set of speakers. Table 4 shows the recognition performance 
on Vocabulary 1 for Speakers A and B after the system 
has been adapted using the analysis sample of Speakers A 
and B. For comparison,  this table includes the perform- 
ance data  on Vocabulary 1 when the analysis and recog- 
nition samples were obtained from Speaker B, alone. In 
the case of the pair of speakers, the substitution rate was 
0.8yo, the same  as that obtained for Speaker B, alone. It 
should  be noted  that,  in this case, 15 of the 19 errors 
originated from  the utterances of Speaker B. This experi- 
ment  indicates that  the original measurement space may 
allow the recognition of a limited vocabulary uttered by 
an ensemble of male speakers. 

Experiment 5 :  Same  speaker,  vocabularies of different  size. 
Here the system performance in recognizing the 30-word 
Vocabulary 3 was compared with its performance on  the 
15-word Vocabularies 1 and 2. The  data for  this experi- 
ment have already been shown in Table 2. 

The forced decision substitution rate  on  the 30-word 
vocabulary was 1.3Y0. On  the individual 15-word vocabu- 
laries the  rate was 0.8%. It is seen that  the recognition 
performance did not drastically deteriorate  as the number 
of words in  the vocabulary was increased and suggests that 
good performance on vocabularies larger than 15  words 
is achievable. 

Experiment 6: “Sample on Change.” The measurement 
apparatus used here samples the speech waveform at a 
fixed rate,  in this case at 30 msec intervals. Some  workers 
have suggested that it is more efficient, in terms of total 
measurements made, to sample the speech waveform only 
when there is a detected change in its frequency compo- 
~ i t i o n . ~  This  method of sampling has been simulated using 
the  IBM 1620; Table 5 shows recognition results when 
this method of sampling was used with the same original 
measurements, X .  In this experiment the original analysis 
and recognition samples were the same as  those used in 
Experiment 1. 

It should also be noted here that  the measurement 
apparatus  as originally constructed  sampled the spectrum 
analysis on  the basis of detected changes of state of the 
input lines to the sample register (see Fig. 2). It was experi- 
mentally determined that a sampling dead-time of about 
15-30 msec produced  patterns of the best uniformity. 
Shorter dead  time resulted in large variations  in the pat- 

Table 4 Recognition of Vocabulary 1 with  recognition  analysis  samples  obtained by joining  individual  samples from Speakers 
A and B. Results  with  Speaker B alone are shown for comparison,  easurement  space  contains 320 bitsoword. Analysis e X 

200. 

“Forced decision” test results 
Number of 

analysis Number of Number of 
sample test correct rec- Number of Percent Percent 

Speaker alphabets alphabets ognitions substitutions correct  substituted 

75 
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A + B  85 165 2456 
~ ~~~ ~ 

19 99.2 0.8 
75 1116 9 99.2 0.8 B 50 

Table 5 Effect of “sample on change” transformation on recognition of Vocabulary 1 as spoken by Speaker A. Measurement 
space contains 320 bits/word max. Analysis e 100 for transformed  results; e = 200 for others. 

“Forced decision” test results 
Number of 

analysis Number of Number of 
Trans- sample test correct  rec- Number of Percent Percent 

formation alphabets alphabets ognitions substitutions correct substituted 

Sample on 
change 35 YO 1323 27 98.0 2.0 

Fixed sampling 
rate 35 YO 1347 3 99.8 0.2 
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Figure 6 Threshold logic for topological feature  transformation.  Feature  shapes  are  outlined on the  drawing.  If  the  sum of 
the  weighted  inputs to a  summing  element is 2 1, the  threshold  detector will set a bit  that  indicates  identification of a feature 
into  a  predetermined  output-matrix cell. Starting  with  columns 1, 2, 3, of  the  input  matrix,  the  system  checks for “up-glides 
and  “down-glides”  in each of four overlapping  sets  of  rows, and for “horizontals”  in each of 15 rows. It  repeats  the  process  in 
columns 2, 3,  4; 3,  4, 5; etc. 

terns of any given class; also, the number of samples Group B: Transformations of primary measurement space 
exceeded  20(n iZ 320 bits) for some  utterances.  Prelimi- 
nary recognition  experiments  gave  relatively poor results 
using this sampling  scheme, and it was soon abandoned. 
It will  be  observed that this  result is in contradistinction 
to the philosophy of some other  worker^.^ It must  be 
emphasized,  however, that the “sampling on change”  per- 
formed  here by computer  processing of the original  meas- 
urement is different  only in detail from the “sample on 
change”  schemes  described in the literature. 

It is  difficult to say whether the poorer  performance was 
due  entirely to the greater  variability in the number of 
samples  (stretching) for each  word  class, or partly to the 
fewer  average  number of samples. It would  seem that most 

To date, three transformations have been  investigated. 
Transformations 1 and 2 are of the type that recognize 
subunits of the spoken word; they are described  below. 
Transformation 3 has been  used to simulate operations 
that could be performed by a modified  measurement appa- 
ratus; this method produces fewer bits  in the measurement 
space. It has been  used  in  series  with  Transformations 1 
and 2. In this  set of experiments  only  one  speaker’s 
(Speaker A) performance was tested. The analysis and 
test  samples  were  derived from the same  primary meas- 
urements  used for the analysis and test  sample  in Ex- 
periment 1. 

of the performance  degradation  could be attributed to the Transformation 1. This transformation applies a layer of 
76 greater  variability of the resultant  measurements. feature detectors (see  Fig. 6 )  to the original  measurement 

J. H. KING, JR. AND C .  J. TUNIS 



AND GATES 
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Figure 7 Example of logic for performing a 2-tuple transformation. A six-row  input matrix is  shown here for simplicity.  Each 
cell in a column is paired with all other cells in the column  except for those that are adjacent to it. The same  logic is per- 
formed,  in turn, on  each  column. In the  experiment  reported  here, the 2-tuples  were  applied to rows 5-15 of the basic 16- 
row input matrix. 

space, resulting in a new feature space. There were two 
kinds of feature  detectors  applied to  the original space, 
those which detected formant glides and those which de- 
tected  steady  formants. 

Transformation 2. This transformation applies “n-tuple” 
detectors to each column of the original measurement 
space. The sets of n-tuples are used to detect the occur- 
rence of particular sounds during the word (e.g., combi- 
nations of formant frequencies). Both 2-tuple (Transfor- 
mation 2a) and 3-tuple (Transformation 2b) detectors were 
used (see Fig. 7). 

Transformation 3. This is a transformation designed to 
reduce the number of columns in  the measurement space 
presented to  the decision function. The number of columns 
hitherto have been dictated by the  duration of the word 
and  the sampling  rate.  This  particular  transformation 
arbitrarily compacts the measurement space (the n-tuple 
or feature space) to 3 columns. To accomplish this the 
n-tuple or feature  space is divided as near as possible 

into 3 equal  portions;  the columns within each  portion 
are oRed together to preserve the occurrence of a par- 
ticular  feature within any portion of the word. Thus, the 
features or n-tuples are zoned into three relative portions 
of each word: early, middle, and late. 

Experiment 7: Fixed vocabulary, single speaker, zoned 
feature detectors  with Transformations I and 3. In  this 
experiment the primary measurements are successively 
transformed by Transformations 1 and 3 resulting in a 
three-zoned feature measurement space. The number of 
bits in this measurement space is 72. 

Experiment 8:  Fixed  vocabulary, single speaker, zoned 
column 2-tuples with Transformations 2a and 3. The appli- 
cation of Transformations  2a and 3 in series yields a three- 
zone measurement space of 144 bits, since there are forty- 
eight 2-tuples in  each zone. 

Experiment 9 :  Fixed vocabulary, single speaker, zoned 
column 3-tuples with Transformations 2b and 3. This experi- 
ment was identical to Experiment 8 except that 3-tuples 77 
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were  utilized  instead of 2-tuples.  Eighty-eight  different 
3-tuples  were  used,  giving 264 bits in this measurement 
space. The performance of the various  transformed  meas- 
urements  is  compared in Table 6. The transformations 
used in these  experiments  recognize  subunits of the word 
and are independent of the length of the word,  itself. 

It should be  emphasized that these  experiments  were 
done using the same  analysis and test  samples of spoken 
utterances throughout. Thus, the only  variable in each 
of these  experiments is the transformation on the original 
measurement  space. 

None of the transformations provided a system  with a 
performance as good as that obtained by using the original 
measurement  space. From the point of  view  of information 
theory this is not a surprising  result, but it was  of interest 
to see  how  close to this performance a transformed meas- 
urement  space  could come. It will  be  observed from the 
table that Transformations 2a and 3 in series  provide a 
result  comparable to  that obtained  with the original  meas- 
urement  space even though a significantly  smaller  number 
of bits  is  used. 

Conclusions 

A frequency-quantized, continuous, short-term, spectrum- 
analysis  technique  capable of extracting  statistically 
invariant properties of human  speech  has  been  described. 
The effectiveness of this measurement  depends to some 
extent on the particular speaker,  as  evidenced by the order 
of magnitude poorer performance on Speaker C (a female). 
Apparently a high-pitched voice  (female)  makes for con- 
siderably less reliability in detection of the formants by 
this technique. 

The transformations investigated  here yielded substi- 
tution rates from 3 to 10 times  higher than those  obtained 
using the original measurement  space, but with a signifi- 
cantly  reduced  number of bits  per  word in some  cases. 
Transformations that will eliminate the effects  of variations 
in speed of talking and other differences  in formant 
structure between speakers  must  still  be found. 

Finally, it may  be  concluded that the techniques  investi- 

gated  in  this  work are adequate for achieving a forced 
decision  recognition rate of at least 98% over a range of 
male  speakers and for arbitrary vocabularies of up to 
thirty words. 

Since the running, short term spectral envelope is not 
always a reliable  method of locating the vocal tract poles 
(formants) alternative methods should be  explored. A 
few techniques  exist that have  been  briefly  experimented 
with by others and show  some  promise of better  accuracy 
and reliability.”  However,  some of them do not operate 
in real time. Other areas which require additional work 
include the problems of word  segmentation, and discrimi- 
nation of voiced,  unvoiced, and mixed  speech  from  back- 
ground noise. 

Given  better formant locators,  speed invariant repre- 
sentations of the spoken  word  (such as that obtained from 
its  representation as a trace in a formant frequency  space) 
and other transformations should be inve~tigated.~ 
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