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Some Experiments in Spoken Word Recoghnition

Abstract: This paper describes some experimental work in the recognition of limited-size, but arbitrary, vocabularies of spoken
words. The equipment consists of a filter-bank voice-spectrum analyzer providing real-time input of measurement data
to an IBM 1620-II digital computer system. The computer implements various transformations on the input data and also
implements various linear decision functions which are designed by means of adaptive algorithms. Recognition experiments
have investigated the recognition capability of this system on arbitrary vocabularies of up to 30 words. Several normalizing
transformations on the primary measurements were investigated.

Introduction

This work is concerned with machine recognition of
spoken words. An experimental system capable of recog-
nizing an arbitrary vocabulary of spoken words is de-
scribed. The equipment consists of a voice spectrum
analyzer acting as on-line input to an IBM 1620-IT digital
computer system. The basis of the spectrum analyzer is a
contiguously tuned bank of bandpass filters whose in-
stantaneous outputs are continuously compared in such a
way as to locate the instantaneous peaks in the envelope
of the speech spectrum. The output of the spectrum
analyzer is a binary coded representation of the peaks of
the envelope of the frequency spectrum as a function of
time; it serves as input to the IBM 1620.

A programming system that allows application of vari-
ous transformations to this input measurement space has
been written for the digital machine. This transformed
measurement space then is used as the input to the cate-
gorizer section of the recognition system. The categorizer
section consists of linear decision functions in which the
weights are obtained using an adaptive algorithm.

Filter bank analyzers have been much used (e.g., by
Abramson, et al.,' Denes and Mathews,? Olson and Belar,’
Davis, et al.,* and Talbert, et al.’) and so the primary meas-
urement space used here is similar to that employed in
those other works. Talbert, et al.” and Dammann® have
reported on the use of adaptive linear decision functions
in speech recognition studies, but the decision algorithm
used here is different. Dersch’ has used a distinctly differ-
ent measurement space to accomplish the recognition of
a vocabulary that is essentially the same as one used here.
Rosenblatt,® who is responsible for much of the early

work in adaptive networks, has also proposed a speech
recognition machine using a multi-layer adaptive system.
A good over-all survey of past and current work in the
field of speech recognition has recently been published by
Lindgren.’

This work extends the results existing in the literature
in that it deals with significantly larger sample sizes than
have commonly been used, with a limited number of differ-
ent vocabularies, and with the effect of transformations
of the primary measurement space on recognition per-
formance.

In the first part of this paper the major functions neces-
sary in any pattern recognition system are noted, aspects
of decision theory as pertinent to the present work are
summarized, and a theoretical model for speech synthesis
is described. These considerations have provided the basis
for the experimental approach taken in this work, It is
shown that, specifically, a means is required for deriving
the time variation of the speech waveform frequency spec-
trum envelope.

The second part of the paper describes two parts of the
experimental system—the spectrum analyzer and the linear
decision function—in some detail. Most of the circuitry
of the spectrum analyzer is conventional, although some
special circuits were designed for critical applications.

In the third part a rationale for a set of recognition
experiments is developed and the experimental results
using this apparatus are presented. Finally, the results are
assessed with the view toward determining the direction of
future work.
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Theoretical basis for experimental system

o Pattern recognition systems

The automatic recognition of spoken words is here con-
sidered as one member of the broad class of pattern recog-
nition problems, which have been much discussed in the
technical literature.'® There are three main sections in any
pattern recognition system:

(1) The Measurement Section performs measurements on
the primary input signal. These measurements may be
preserved in analog or digital form.

(2) The Transformation Section manipulates the original
measurements and converts them into different represen-
tations (or measurement spaces) that are more suitable for
the particular decision function to be used.

(3) The Decision Section implements the decision func-
tions used to classify the transformed measurements into
the classes of input signals.

There is, of course, significant interaction between the
design of these three sections; e.g., the choice of a par-
ticular measurement space may require the use of an ex-
tremely complex Decision Section. In addition, there are
many purely hardware considerations that dictate the
particular choice of measurement, transformation, or de-
cision function to be used; certain measurement spaces
may require much more digital storage than others. Con-
siderations that lead to the choice of a particular initial
measurement space for the recognition of speech sounds
will be briefly discussed here. In later parts of the paper,
the interaction between the three sections of a pattern
recognition system will be further discussed.

o Decision theory

The decision problem involved here can be formulated as
follows: Given a set of measurements, X, it is required to
decide which word, out of a finite set of possible words,
was uttered. The theoretical solution to this problem is
contained in the statistical decision theory as formulated
by Wald." A decision in favor of a particular class of
pattern (or word) &;, is based on a set of weighted com-
parisons of the a posteriori conditional probabilities,

PBE G| X), (1)

where 8 is the unknown pattern (or speech utterance) re-
ceived by the recognition machine and j is an integer
ranging over the interval 1, 2, - - - , p (where p is the number
of classes of pattern to be recognized, or, in this case, the
number of words in the vocabulary). It is well known that
Bayes’ theorem allows the computation of P(8 € &;|X)
to be replaced by the computation of the conditional
probability densities of P(X|8 € &,).

One approach of interest assumes the existence of a per-
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fect measurement X; for each class of utterance. It also
assumes that the variety of measurements is the result of
the perfect measurements being corrupted by additive
noise. Abramson et al.' view this noise as resulting in a
statistical spreading of measurements, X, about the set X;.
For the special case where the noise may be viewed as a
multivariate, normal, random variable with zero mean and
equal variance on each component, the optimum decision
strategy, i.e., the computation of the conditional prob-
abilities P(X|8 & &;), reduces to a comparison of a set
of linear functionals, one functional associated with each
class of utterance. There are many factors which conspire
to preclude the possibility of there being a perfect measure-
ment, X;, if the transformation X = u(f) is used, where
v(?) is the microphone voltage waveform, the most obvieus
being the variation in the speed of talking. A more
promising ‘“‘measurement space” for speech recognition
is suggested by a consideration of a theoretical model
for the generation of synthetic speech sounds.

o A theoretical model for speech synthesis

A simple model for human speech was originally formu-
lated by H. W. Dudley.'” It relies on the observation that
during a human speech utterance (especially during the
“voiced” portions), the acoustic energy is mainly concen-
trated in only a few relatively narrow regions of the fre-
quency spectrum. It has also been observed that the loca-
tions of these energy concentrations occur in particular
ways that are characteristic of the limited repertoire of
vowel and consonant sounds that the human is capable
of producing. Usually there are three distinct energy con-
centrations in the frequency range from 300 to 3,000 cps.
In the “parlance of the trade,” these energy concentrations
are known as formants. During the utterance of a word
the position and relation of the formants change, creating
a characteristic “pattern™ distinctive of the word and, to
some extent, the speaker. The noteworthy success of a
number of speech synthesizers (as determined by human
recognizability of the produced sounds) attest to its
validity.'*** A version of Dudley’s speech synthesis model
is described below and in Fig. 1.

A source of controls generates the signals U, Y, Z (func-
tions of time).* For the synthesis of a word, a particular
set of control signals U, Y;, Z; is generated. The U signal
controls the glottal excitation source, G(s, U), which is a
time variable source of broadband energy (here s =
a 1+ jw). The control signal, Y, similarly controls the
“hiss” excitation source, N(s, Y). The outputs of these

* Some liberties with mathematical rigor are taken here to simplify the
description of a waveform that varies slowly with time. It will be
observed that the error is not very great if U, ¥, and Z are consid-
ered as essentially constant during several periods of the lowest fre-
quency components of G and N,
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Figure 1 Model for synthetic speech production.

two sources are fed to the input of a time variable filter
H(s, Z) which is an analog of the vocal tract. The filter
H{(s, Z) is operated on by the Z control signals.

It is the relatively slow variation of the pole locations
of H(s, Z) which, for the most part, determines the loca-
tion in the frequency domain for the formant structure of
the synthetically spoken word. The U and Y control
signals determine the duration, intensity, and to some
extent the formant structure of the voiced and unvoiced
portions of the word, respectively.

The success of speech synthesizers based on Dudley’s
model has adequately demonstrated that it is the fre-
quency spectrum (specifically, the energy concentrations
in the frequency domain, or “formants”) of the speech
waveform v(?), that is the information carrier.

o A suitable measurement method

If a continuous spectrum analysis of v(¢) with a frequency
resolution sufficiently fine (~200 cps) to resolve the for-
mants is performed, but not so fine as to resolve the dis-
crete harmonics of G(s, U), the result will be a repre-
sentation of a sound that is dependent mainly on U, Y, Z.
This representation should be very consistent for the
same word because the U, Y, and Z functions are unique
for each word. Such an analysis is done by the *“‘sono-
graph,” which is a type of spectrum analyzer manufactured
by the Kay Electronics Co., Pine Brook, N. J. (The out-
put of the sonograph is a continuous record of frequency
and amplitude vs time; this record is called a sonogram.)

As a result of the spectrum analysis, a measurement X(?)
will be obtained. Here, X(¥) = x,(#), x5(?), - -+ , x,(?), each
x(1) being the output of a bandpass filter. X(¢) may be con-
sidered an approximate representation of the output of a
sonograph. More realistically, noise will be considered to
be mixed with the transmitted signal v(¢). The result is
that there will be some variation in the measurement X
even for the same word. However, X should be a statisti-

cally invariant measure, unique for each word class in the
vocabulary of the synthesizer.

If the various components of X are sampled and binary
quantized at successive intervals during a speech utter-
ance, each variation of X may then be viewed as a point
in a multi-dimensional measurement space, M. It will be
found, that due to the effects of noise, there is a distribu-
tion of the X’s on M associated with each word class.
Thus, the design of an optimum recognizer for this situ-
ation is again best considered from the point of view of
statistical decision theory.

Although it is reasonable to assume there is a “perfect”
signal (or measurement) for each word uttered by an
ensemble of artificial synthesizers, the set of perfect
measurements may not necessarily be known. For the
case of additive noise of the character postulated above,
there exist a number of effective algorithms for finding
suitable decision boundaries, without the knowledge of
the perfect X; (this is discussed later). Some are variants
of iterative routines which operate on a sequence of meas-
urements, X,, X,, +-+ , X, where the class associations
are known a priori and the number of measurements from
each class is large enough to be representative. After a
suitable number of iterations, the process either converges,
or else the performance of the system ceases to improve
(on the basis of the representative sample); e.g., the reject
and substitution rates remain essentially constant for any
further iterations.'” ™’ Nonconvergence indicates either
overlap of the distributions associated with certain or all
pairs of classes or else linear inseparability.

If recognition of artificial speech utterances were the
goal, the techniques outlined above would probably be
quite suitable. However, there is one important difference
between artificial and human-produced speech: there is a
considerable variation in the speed of talking and the
nature of sounds (expression, accent) produced by indi-
vidual speakers. If an operation on the measurements,
X' = g(X), could be discovered that would eliminate
the effects of wvariation in speed of talking, volume,
and expression between speakers, the problem of recog-
nition of human speech might still be approached from
the perfect signal point of view.’

A similar problem (the lack of a “perfect” signal source)
is encountered in the recognition of handwritten or printed
characters. The problem is not present in the recognition
of single-font typewritten material where the typebar
itself is the ““perfect signal source.

The intent of this work has been to perform experi-
ments investigating the utility of the measurements X(r)
for the recognition of human speech utterances. The fore-
going analysis has already shown its relevance to the recog-
nition of artificial speech.

A further aim is to investigate methods of designing
the Transformation and Decision Sections of the recog-
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Figure 2 Schematic diagram of measurement apparatus for the experimental system.

nition system to tolerate or eliminate the variations in the sensitivity to discrete harmonics is minimized. Since
the measurements, X, when they are made on human the main interest is in the location in the frequency spec-
speech waveforms. The following Section describes the trum of each formant, and not in its absolute intensity,
method and circuitry used for extraction of the measure- a considerable simplification is allowed in the hardware.
ments from the speech waveforms, and the selection of Again the footsteps of others are followed here. As shown
transformation and decision sections of theoretical merit. in the schematic of Fig. 2 the instantaneous magnitudes

of the envelope from each bandpass filter are compared
by means of a set of difference detectors. By the suitable
ANDIng together of the bi-polar outputs of the difference

Design of experimental system

o The measurement apparatus

The method chosen for the analysis of the speech wave- detectors, a representation of the instantaneous local
form is based on techniques similar to those used by others spectrum maxima is obtained.’ These maxima presumably
for this same purpose.””* Functionally, the first part of the correspond to the formants. If the output of the set of
system (Fig. 2) consists of a microphone (transducer for AND gates is periodically sampled and stored during a
producing an electrical analog of the acoustic pressure speech utterance, the nominal result is 2 quantized record
waveform) and a preamplifier-equalizer. The preamplifier- of the formant structure of a spoken word.

equalizer has an amplitude vs frequency response that is Specifically, a binary array, or matrix, is formed, in
the inverse of the average variation in amplitude vs fre- which the rows correspond to discrete contiguous fre-
quency of normal speech. The second part consists of a quencies, and the columns, scanning from left to right,
bank of contiguously tuned bandpass filters (the outputs correspond to successive intervals of time. If the conven-
of which are envelope detected) which perform the func- tion is adopted that a oNE bit corresponds to a local in-
tion of gross spectrum analysis on the speech waveform, stantaneous maximum in the spectrum, then the analyzer
v(?). The frequency increment between filters and the band- should produce one-bit arrangements (resulting from a
width of each are adjusted so that the nominally closest speech utterance) that correspond directly to the spectral

68 spacing of two formants can be just resolved and so that maxima as displayed on a sonogram.
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The envelope detectors are actually full wave rectifiers. Figure 3 Typical sonogram and display matrix.
Low pass filters, which follow, serve the function of re- .
moving the beat note (about 100 cps) between the discrete
harmonics of the speech spectrum; they also improve the
signal-to-noise ratio at this point in the system by remov-
ing some of the effects of unsteadiness in the voice.

This analyzer differs from some others® * in that there is
no AGC (automatic gain control) in the microphone pre-
amplifier-equalizer. Most simple AGC systems for speech
suffer from the deleterious effects of loop delay (overshoot
and distortion). Of the two, distortion would probably
be the most harmful in that it could alter the gross enve-
lope of the spectrum. A somewhat unorthodox method of
compressing the output waveform of each bandpass filter
circumvents this difficulty. This is accomplished by means )
of an active network which has a transfer function approxi-
mately defined by:

[ Jiog (1 + ew)| for ewm >0 @
—|log (1 — e;n)] for e < 0.

€out =

Admittedly, this operation also produces distortion, but
this occurs after the frequency-selective filtering. The
result is that, for a pure sine wave signal into the system,
the difference voltages supplied to the difference detectors
are closely proportional to the ratio of the outputs of the
respective filters over about a 30 dB range, thus making
the sensitivity of the system less dependent on the absolute
input level. For a speech waveform input the result is
similar, but now the distortion of the waveforms due to
the discrete harmonics degrades the performance of the
envelope detectors somewhat.

It is well known that during the noise-excited portions
of speech most of the energy is concentrated above the
frequency range of the three principle formants, although
the formant resonances are nevertheless still excited.
During voiced portions most of the energy is concentrated
within the range of the three principle formants, i.e.,
below 4 kc/sec. This immediately suggests that a simple
highpass filtering technique might be adequate to dis-
tinguish (detect) noise excitation. This has been the stand-
ard approach and is the one that is employed here. Thus,
by comparing levels of energy in the highpass range with
the average level in the formant range, the system is able
to distinguish, with some degree of reliability, between
noise-excited and glottal-excited (or both) portions of
spoken words.

FREQUENCY IN KC/SEC

(a)

e Choice of decision function

The binary quantized representation of the spoken word
produced by the measurement apparatus is used as the
input data to the categorizer portion of the recognition
system studied here. This measurement space has some (b) 69
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correspondence with the sonogram of a spoken word;
Fig. 3 shows an example of the degree of correspondence
that is achieved. Note that a “light on” condition in the
display matrix corresponds to a relatively darker region
of the sonogram.

Changes in the speed of talking have the effect of chang-
ing the relative time scale of the display matrix. A given
word spoken rapidly will produce a foreshortened pattern,
whereas the same word uttered slowly and deliberately
will produce a horizontally elongated pattern (more
samples) but one which would have essentially the same
topological features.

From this observation it might be concluded that if all
words were simply normalized to the same length (number
of samples) by a uniform stretching operation, this *“tim-
ing” problem might be eliminated.” In theory this should
work quite well, since the problem would be reduced to
one closely analogous to that of the recognition of a set
of “perfect” signals combined with additive noise. The
one disadvantage here is the considerable amount of data
processing involved in each normalization. It should be
noted that this normalization (transformation) would not
be effective in reducing other disturbances due to speaker
differences, particularly those due to anatomical differ-
ences in the vocal tract cavities. Nevertheless, normal-
ization of this sort can be thought of as a method for pro-
ducing a reference standard measurement space if one
were dealing with only single-speaker word recognition.

There are other methods currently in vogue in the field
of character recognition for eliminating the effects of
such distortions as stretching, skewing, magnification,
etc. Many of these may be referred to as “feature detec-
tion” methods, although they variously go by the names:
n-tuple detection, zoned n-tuples, stroke detection, lakes
and bays, etc. Feature detection performs a transforma-
tion on the primary measurement space, with the intention
of producing a secondary measurement space in which
the effects due to the aforementioned distortions are
largely normalized out. These techniques have found the
greatest application so far in multifont-character, hand-
printing, and handwriting recognition.’®"*

Another point worth mentioning here is that transfor-
mations may be either of the discrete or continuous type.
Linear transformations are not necessary since they are
automatically incorporated into any linear decision func-
tion. Continuous nonlinear transformations have the
greatest theoretical merit (as discussed later) because they
do not influence the size of the recognition unit (word,
syllable, etc.). However, practical considerations place
constraints on the complexity of nonlinear transforma-
tions that may be employed. Therefore, it becomes almost
a necessity to investigate the usefulness of various “feature
detection” transformations which are discrete in nature
but easy to implement.
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It is one of the purposes of the present work to postu-
late and compare the effectiveness of various transforma-
tions in a speech recognition system. This is done by
comparing the performance of recognition systems which
differ only by the use of the different transformations, in
a standard recognition experiment.

It will be recalled that the application of a transforma-
tion of either of the kinds mentioned above can be viewed
as a method of producing a measurement space in which
the “perfect signal™ situation (corrupted by noise) exists.
It has been stated that in this situation a linear decision
function, in which one linear functional is associated with
each class, is the optimum one. This is the decision func-
tion used in the present work.

o The linear decision function: adaptive algorithm

The decision function to be used here has already been
alluded to. If

W{'X+ti2 Wj'X+ti+€ for all _];él, (3)

then the measurement X is assigned to class i. Otherwise,
the pattern is rejected; e is a fixed positive constant chosen
in advance and results in reject zones or regions in the
measurement space.

The adaptive procedure used to determine the set of
vectors and constants, W, and ¢; is given here. It is a
variant of procedures reported previously in other works.
Let 8,, 85, -+ , 8, be a sequence of words of the vocabu-
lary, of which 8, is a particular member. Each word of
the vocabulary should occur many times in this sequence.
Let Xy, X,, -+ , X, be the corresponding sequence of
vectors arising in measurement space due to the sequence
of words 8,, 85, -+ , &,.

Let T;, be any vector (say the zero vector) and v,; be
any number (say, zero), where i denotes the class of

word and i = 1, 2, --- , p. We define sequences of a
set of vectors Ty, Tioy +*- 5 Ti(ns1y and constants v;,,
Usay *** » Di(ne1y iteratively as follows: If 8, is from &; and

T X v > Tins Xo + 05 + 6 for all j # i, (4)

then,
Tinrn = T and 0641 = Uigs
Tigey = Ty and vjgeany = Ujss
but if

T Xe Foa < T Xy + vy, + @ for any j # i, (5)
then
Tiwey = Tip + BX, and Uitk+1) = Uig + B,

Tigeny = T — X, and ;4. = Uy — 1,
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Figure 4 Block diagrams showing correspondence between experimental system components and those of a general pattern

recognition system.

where B is the number of linear functionals indexed by j
for which Eq. (5) is satisfied and 6 is a fixed positive con-
stant chosen in advance.

The sets of vectors T, ., and constants v;(,,1) are a
tentative choice for W, and #,, respectively. The process
can be repeated on the sequence of words §,, 8, +++ , 8,
(sometimes called the analysis sample or training sample)
until no further corrections are made in a pass. This
condition is called convergence, and can be expected
to occur only for certain distributions of the measurements,
X, in the measurement space.

The vector W; and constant ¢;, chosen in this way will
be “good” choices, if the sequence of measurements due
to the words in the analysis sample is representative of
those measurements to be encountered in the later en-
vironment of the recognition system.

There is another adaption algorithm which has been
found useful”® ™" for obtaining a set of linear functionals
useful for recognition using the decision function of Eq.
(3). It is an iterative routine which attempts to find, for a

sample sequence of measurement vectors X, X,, -+« , X,
a set of linear functionals, L,, L,, --- , L, such that for
al X € &,

L;,>6 for i=1,2,---,p

and

L, < —@ forall j#i.

o The experimental system

The Transformation and Decision Sections of the recog-

nition system explored here are simulated using an IBM
1620 computer. The 1620 operates fast enough so that
recognition can be accomplished on-line (for the vocabu-
lary size used here), and the flexibility provided by a gen-
eral purpose digital computer allows the desired investi-
gation of various transformations and vocabulary sizes.

Thus, the speech analyzer described here was connected
on-line to an IBM 1620-II computer. A programming
system for the 1620 was developed that allows the various
transformations and decision functions to operate on the
original measurement space. The system is capable of
(1) applying these various transformations, either singly
or in series, to the original space, and then (2) applying the
decision function (or categorizer) to the transformed
measurements.

In addition, by preserving in punched card form the
primary measurements resulting from spoken utterances,
a universe of patterns may be built up for one or many
speakers allowing various comparative experiments to
be performed. This system and its correspondence to the
parts of a general decision-theoretic recognition model
are shown in Fig. 4.

Rationale for a suitable set of recognition
experiments

This section presents the reasons for the choice of the par-
ticular experiments reported here. The hypothesis has been
made that the spectrum analysis of a speech waveform
provides measurements that contain, if they are not them-
selves, statistically invariant measures of the spoken word.
If this is so, then for single-speaker word recognition and
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for a particular vocabulary, the performance level (error
rate) of the speech recognition system using this measure-
ment space (or some transformation of this space) should
be relatively independent of the particular speaker. To
verify this, experiments designed to yield the following
results should be conducted:

(a) Performance level of the system using a fixed vocabu-
lary for a number of different speakers singly.

(b) Performance level of the system using one speaker
(or a fixed set of speakers) for a number of distinct and
arbitrary vocabularies of equal size.

The method used to obtain the “performance level” is
as follows: The measurements, X, resulting from a large
number of utterances of the vocabulary involved, by
the speaker concerned, are recorded in binary form on
punched cards. This sample is divided into two parts, the
analysis sample and the recognition sample. The analysis
sample is used to obtain the linear functionals L; by one
of the adaptive methods described earlier; the recognition
sample is used to test the system. The ““performance level”
is the error rate of the system on a recognition sample,
after the W, and ¢, have been determined using the analy-
sis sample. The size of the analysis sample should be large
enough to represent the utterances in the recognition
sample. If the measurement apparatus is stable, and the
measures are truly statistically invariant, the W; and
constants #; obtained from the analysis sample of one
speaker should allow good performance on the recog-
nition sample of another speaker. Thus, further experi-
ments should be conducted yielding:

(c) Performance level of the system adapted on an analy-
sis sample of one speaker and tested on a recognition
sample of a different speaker.

(d) Performance level of the system adapted on an analy-
sis sample of a set of speakers and tested on a recognition
sample of the same set of speakers.

From an information-theoretic point of view it would
be expected that for the same information channel ca-
pacity, the error rate will increase as the number of pos-
sible messages (vocabulary size) is increased.'® The follow-
ing experiment should be done to verify this:

(e) Performance level of the system using one speaker for
vocabularies of increasing size.

From this same consideration, the lowest error rate should
be obtained by using the largest possible message length
as the unit of recognition.'® The largest possible message
length, in this case, is a single word of the vocabulary.
Certain of the transformations of interest in this work
essentially perform the recognition of subunits of the
word. Transformations 1 and 2, to be described later,
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recognize topological features in the original measurement
space and ‘“‘characteristic sounds,” respectively. Thus, the
following result will be of interest:

(f) Performance levels of systems using different units of
recognition (as performed by the Transformation Section)
for the same analysis and recognition samples.

The above result is of further interest, for certain trans-
formations may produce a measurement space that is
closer to the perfect-signal space than the original meas-
urement space (as noted earlier under “Choice of Decision
Function’’) which might more than offset the effects due
to changing the size of the unit of recognition.

Experimental results

The experiments reported here were carried out according
to the rationale of the previous section. In some of these
experiments (1 through 6) primary measurements, X, were
used and the Decision Section was composed of fifteen
linear functionals derived by the method shown in the part
of the paper entitled “Linear Decision Function, Adaptive
Algorithm.” The analysis sample used for each speaker
is noted in each table. In all the recognition experiments
the results are reported in terms of a ““forced decision”
substitution rate; that is, no reject errors are permitted
(e = 0in Eq. (3)). The intent is to allow better comparison
of these results to those of other workers, for there are
many possible ways of introducing reject criteria into a
decision function, and comparisons of reject rates may be
misleading.

The other experiments (7 through 9) involved processing
the original measurements, X, in such a way that the basic
units of recognition were smaller than the word.

The vocabularies used throughout the experiments were
the following:

Vocabulary 1: one, two, three, four, five, six, seven, eight,
nine, zero, minus, plus, times, over, total.

Vocabulary 2: clear, patterns, weights, date, 1.D., learn,
print, code, punch, process, read, speaker,
cards, report, run. This list was chosen with-
out regard for phonetic content; it is simply
a number of words used in the program-
ming system for the IBM 1620.

Vocabulary 3: This vocabulary is the conjunction of Vo-
cabularies 1 and 2.

e Group A:. Primary measurement space

Experiment 1: Fixed vocabulary, different speakers. The
most extensive experimentation was performed on Vo-
cabulary 1. This particular set of words was chosen to
allow the direct dictation of simple arithmetic problems
to the recognition system. This is merely a fringe benefit
gained from the use of a general purpose digital computer,




WORD RECOGNIZED AS WORD RECOGNIZED AS
] =4 @ ) ul w
ONE 89 1 ONE 75
TWO 90 TWO 74
THREE 90 THREE 75
FOUR 90 FOUR 73 2
FIVE 90 FIVE 75
SIX 90 SIX 75
SEVEN S0 SEVEN 75
EIGHT 90 EIGHT 75
NINE 90 NINE 75
ZERO 90 ZERO 1 74
MINUS 90 MINUS 74 1
PLUS %0 PLUS - 75
TIMES 1 89 TIMES 1 74
OVER 90 OVER 1 1 1 72
TOTAL 1 89 TOTAL 75
fa) (b)
Figure 5 Confusion matrices for three speakers of Vocabu- WORD RECOGNIZED AS
lary 1. Experimental conditions are given in Table 1. (a) " " ~
Speaker A, (b) Speaker B, (¢) Speaker C. wlo ‘%J § . ; g g % 2 E g EJ g
oO|F|lFIE || |o|lw|lZz|~NiZ | D |[F]O]|F
ONE 114 1
TWO 115
but it provides an interesting demonstration of speech THREE 12| 1 1 1
recognition. Table 1 compares system performance for FOUR R 2
three different speakers of Vocabulary 1. The confusion . 3 . .
matrices for these speakers are shown in Fig. 5. o T
Analysis sample sizes used in this experiment varied
from 35 to 50 alphabets and recognition sample sizes from SEvEn ! e
75 to 115 alphabets. (The word “alphabet” is used here to EiGHT ' B !
denote one set of utterances of the words in a vocabu- NINE ! 112 2
lary.) In all cases, of course, the analysis and recognition ZERO 1 13 1
samples were distinct. The number of bits in this original MINUS 3| 11
measurement space is 320; the space is in the form of a PLS 115
matrix having 16 rows corresponding to the 16 frequency s o ) : P ) o7
bands, and a maximum of 20 columns. P . ) ] ol
The forced decision substitution rate for the three
speakers ranged from 0.2 to 2.4%,. Speakers A and B were ToTA ! ! ! %
male whereas Speaker C was female. The difference in (c)

performance on Speakers A and B is statistically signifi-
cant; to what this difference should be attributed is not
yet clear, but it has been suggested that there might have
been more speed-of-talking variation with Speaker B. This
speculation is unconfirmed since we have not as yet run
an experiment with a destretching normalization.”®

The order of magnitude poorer performance with the
female voice can be at least partially attributed to the
higher frequency of the voice fundamental. Visual exami-
nation of the quantized spectrograms on the display matrix

revealed that the location of the lowest frequency formant
using this technique is much more erratic with female
voices. This result demonstrates the fundamental weak-
ness of the short-term Fourier analysis in locating the
poles of the vocal tract.

The error rates with Speakers A and B compare favor-
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Table 1 Effect of different speakers on recognition of Vocabulary 1. Analysis sample and test sample were obtained from
same speaker in each case. Measurement space contains 320 bits/word. Analysis § = 200.

“Forced decision” test results

Number of
analysis Number of Number of
sample test correct rec- Number of Percent Percent
Speaker alphabets alphabets ognitions substitutions correct substituted
A 35 90 3 99.8 0.2
B 50 75 9 99.2 0.8
C 40 115 42 97.6 2.4

Table 2 Recognition of different vocabularies as spoken by same person. Analysis and test samples were both obtained from
Speaker B. Untransformed measurement space contains 320 bits/word. Analysis § = 200 for Vocabularies 1 and 2, and 100

for Vocabulary 3.

“Forced decision” test results

Number of
analysis Number of Number of
sample test correct rec- Number of Percent Percent
Vocabulary alphabets alphabets ognitions substitutions correct substituted
1 50 75 9 99.2 0.8
2 45 80 10 99.2 0.8
3 45 30 12 98.7 1.3

Table 3 Recognition of Vocabulary 1 with recognition and analysis samples obtained from different speakers. Measurement

space contains 320 bits/word. Analysis § = 200.

“Forced decision” test results

Number of
analysis Number of Number of
sample test correct rec- Number of Percent Percent
Speaker alphabets alphabets ognitions substitutions correct substituted

Analysis: A 35 20 137 54 46
Test: B
Analysis: B 50 20 45 85 15
Test: A

ably with any that may be found in the literature on speech
recognition. Although the experiments thus far have been
on a limited number of speakers, the size of the samples
used allows confidence that these results represent the
true recognition capability of such a system for single
speakers.

Experiment 2: Same speaker, different vocabularies of equal
size. Table 2 compares system performance for the equal-
size Vocabularies 1 and 2, as spoken by the same person.
The Table also shows the performance when the conjunc-
tion of Vocabularies 1 and 2 (Vocabulary 3) was spoken
by this person.
The forced decision substitution rate on Vocabulary 2
74 was 0.8, identical with the recognition result on Vocabu-

J. H. KING, JR. AND C. J. TUNIS

lary 1. As noted, this second vocabulary was somewhat
arbitrarily chosen. It seems, therefore, that the recognition
performance is not a function of the particular vocabulary
used. This experiment tends to confirm the generality of
the measurement space and its applicability to the recog-
nition of arbitrary sounds.

Experiment 3: Analysis and recognition samples from differ-
ent speakers. Table 3 shows the recognition performance
on Speaker B when the analysis sample is from Speaker A
and the performance on Speaker A when the analysis
sample is from Speaker B. This experiment was intended
to indicate the degree of invariance of the measurements,
X(9) with respect to different speakers.

As shown in the Table, the analysis sample of one




speaker is not a good statistical representation of the test
sample of a different speaker. It must be noted, however,
that the performance of the system was significantly better
than chance, implying that there is some degree of sta-
tistical invariance in the measurements X(f) from one
speaker to another.

Experiment 4: Analysis and recognition samples from same
set of speakers. Table 4 shows the recognition performance
on Vocabulary 1 for Speakers A and B after the system
has been adapted using the analysis sample of Speakers A
and B. For comparison, this table includes the perform-
ance data on Vocabulary 1 when the analysis and recog-
nition samples were obtained from Speaker B, alone. In
the case of the pair of speakers, the substitution rate was
0.8%, the same as that obtained for Speaker B, alone. It
should be noted that, in this case, 15 of the 19 errors
originated from the utterances of Speaker B. This experi-
ment indicates that the original measurement space may
allow the recognition of a limited vocabulary uttered by
an ensemble of male speakers.

Experiment 5: Same speaker, vocabularies of different size.
Here the system performance in recognizing the 30-word
Vocabulary 3 was compared with its performance on the
15-word Vocabularies 1 and 2. The data for this experi-
ment have already been shown in Table 2.

The forced decision substitution rate on the 30-word
vocabulary was 1.39. On the individual 15-word vocabu-
laries the rate was 0.8%,. It is seen that the recognition
performance did not drastically deteriorate as the number
of words in the vocabulary was increased and suggests that
good performance on vocabularies larger than 15 words
is achievable.

Experiment 6: “Sample on Change.” The measurement
apparatus used here samples the speech waveform at a
fixed rate, in this case at 30 msec intervals. Some workers
have suggested that it is more efficient, in terms of total
measurements made, to sample the speech waveform only
when there is a detected change in its frequency compo-
sition.? This method of sampling has been simulated using
the IBM 1620; Table 5 shows recognition resuits when
this method of sampling was used with the same original
measurements, X, In this experiment the original analysis
and recognition samples were the same as those used in
Experiment 1.

It should also be noted here that the measurement
apparatus as originally constructed sampled the spectrum
analysis on the basis of detected changes of state of the
input lines to the sample register (see Fig. 2). It was experi-
mentally determined that a sampling dead-time of about
15-30 msec produced patterns of the best uniformity.
Shorter dead time resulted in large variations in the pat-

Table 4 Recognition of Vocabulary 1 with recognition analysis samples obtained by joining individual samples from Speakers
A and B. Results with Speaker B alone are shown for comparison, easurement space contains 320 bits°word. Analysis § =

200.
“Forced decision” test results
Number of

analysis Number of Number of

sample test correct rec- Number of Percent Percent
Speaker alphabets alphabets ognitions substitutions correct substituted
A+ B 85 165 2456 19 99.2 0.8

B 50 75 1116 9 99.2 0.8

Table 5 Effect of “sample on change” transformation on recognition of Vocabulary 1 as spoken by Speaker A. Measurement
space contains 320 bits/word max. Analysis § — 100 for transformed results; ¢ — 200 for others.

“Forced decision” test results

Number of
analysis Number of Number of
Trans- sample test correct rec- Number of Percent Percent
formation alphabets alphabets ognitions substitutions correct substituted
Sample on
change 35 90 1323 27 98.0 2.0
Fixed sampling
rate 35 90 1347 3 99.8 0.2
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Figure 6 Threshold logic for topological feature transformation. Feature shapes are outlined on the drawing. If the sum of
the weighted inputs to a summing element is > 1, the threshold detector will set a bit that indicates identification of a feature
into a predetermined output-matrix cell. Starting with columns 1, 2, 3, of the input matrix, the system checks for “up-glides
and “down-glides” in each of four overlapping sets of rows, and for “horizontals” in each of 15 rows. It repeats the process in

columns 2, 3, 4; 3, 4, 5; etc.

terns of any given class; also, the number of samples
exceeded 20(n =2 320 bits) for some utterances. Prelimi-
nary recognition experiments gave relatively poor results
using this sampling scheme, and it was soon abandoned.
It will be observed that this result is in contradistinction
to the philosophy of some other workers?® It must be
emphasized, however, that the “sampling on change” per-
formed here by computer processing of the original meas-
urement is different only in detail from the “sample on
change’ schemes described in the literature.

It is difficult to say whether the poorer performance was
due entirely to the greater variability in the number of
samples (stretching) for each word class, or partly to the
fewer average number of samples. It would seem that most
of the performance degradation could be attributed to the
greater variability of the resultant measurements.

J. H. KING, JR. AND C. J. TUNIS

o Group B: Transformations of primary measurement space

To date, three transformations have been investigated.
Transformations 1 and 2 are of the type that recognize
subunits of the spoken word; they are described below.
Transformation 3 has been used to simulate operations
that could be performed by a modified measurement appa-
ratus; this method produces fewer bits in the measurement
space. It has been used in series with Transformations 1
and 2. In this set of experiments only one speaker’s
(Speaker A) performance was tested. The analysis and
test samples were derived from the same primary meas-
urements used for the analysis and test sample in Ex-
periment 1.

Transformation 1. This transformation applies a layer of
feature detectors (see Fig. 6) to the original measurement
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Figure 7 Example of logic for performing a 2-tuple transformation. A six-row input matrix is shown here for simplicity. Each
cell in a column is paired with all other cells in the column except for those that are adjacent to it. The same logic is per-
formed, in turn, on each column. In the experiment reported here, the 2-tuples were applied to rows 5-15 of the basic 16-

row input matrix.

space, resulting in a new feature space. There were two
kinds of feature detectors applied to the original space,
those which detected formant glides and those which de-
tected steady formants.

Transformation 2. This transformation applies “n-tuple”
detectors to each column of the original measurement
space. The sets of n-tuples are used to detect the occur-
rence of particular sounds during the word (e.g., combi-
nations of formant frequencies). Both 2-tuple (Transfor-
mation 2a) and 3-tuple (Transformation 2b) detectors were
used (see Fig. 7).

Transformation 3. This is a transformation designed to
reduce the number of columns in the measurement space
presented to the decision function. The number of columns
hitherto have been dictated by the duration of the word
and the sampling rate. This particular transformation
arbitrarily compacts the measurement space (the n-tuple
or feature space) to 3 columns. To accomplish this the
n-tuple or feature space is divided as near as possible

into 3 equal portions; the columns within each portion
are ored together to preserve the occurrence of a par-
ticular feature within any portion of the word. Thus, the
features or n-tuples are zoned into three relative portions
of each word: early, middle, and late.

Experiment 7: Fixed vocabulary, single speaker, zoned
feature detectors with Transformations 1 and 3. In this
experiment the primary measurements are successively
transformed by Transformations 1 and 3 resulting in a
three-zoned feature measurement space. The number of
bits in this measurement space is 72.

Experiment 8: Fixed vocabulary, single speaker, zoned
column 2-tuples with Transformations 2a and 3. The appli-
cation of Transformations 2a and 3 in series yields a three-
zone measurement space of 144 bits, since there are forty-
eight 2-tuples in each zone.

Experiment 9: Fixed vocabulary, single speaker, zoned
column 3-tuples with Transformations 2b and 3. This experi-
ment was identical to Experiment 8 except that 3-tuples
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were utilized instead of 2-tuples. Eighty-eight different
3-tuples were used, giving 264 bits in this measurement
space. The performance of the various transformed meas-
urements is compared in Table 6. The transformations
used in these experiments recognize subunits of the word
and are independent of the length of the word, itself.

It should be emphasized that these experiments were
done using the same analysis and test samples of spoken
utterances throughout. Thus, the only variable in each
of these experiments is the transformation on the original
measurement space.

None of the transformations provided a system with a
performance as good as that obtained by using the original
measurement space. From the point of view of information
theory this is not a surprising result, but it was of interest
to see how close to this performance a transformed meas-
urement space could come. It will be observed from the
table that Transformations 2a and 3 in series provide a
result comparable to that obtained with the original meas-
urement space even though a significantly smaller number
of bits is used.

Conclusions

A frequency-quantized, continuous, short-term, spectrum-
analysis technique capable of extracting statistically
invariant properties of human speech has been described.
The effectiveness of this measurement depends to some
extent on the particular speaker, as evidenced by the order
of magnitude poorer performance on Speaker C (a female).
Apparently a high-pitched voice (female) makes for con-
siderably less reliability in detection of the formants by
this technique.

The transformations investigated here yielded substi-
tution rates from 3 to 10 times higher than those obtained
using the original measurement space, but with a signifi-
cantly reduced number of bits per word in some cases.
Transformations that will eliminate the effects of variations
in speed of talking and other differences in formant
structure between speakers must still be found.

Finally, it may be concluded that the techniques investi-

gated in this work are adequate for achieving a forced
decision recognition rate of at least 989, over a range of
male speakers and for arbitrary vocabularies of up to
thirty words.

Since the running, short term spectral envelope is not
always a reliable method of locating the vocal tract poles
(formants) alternative methods should be explored. A
few techniques exist that have been briefly experimented
with by others and show some promise of better accuracy
and reliability.21 However, some of them do not operate
in real time. Other areas which require additional work
include the problems of word segmentation, and discrimi-
nation of voiced, unvoiced, and mixed speech from back-
ground noise.

Given better formant locators, speed invariant repre-
sentations of the spoken word (such as that obtained from
its representation as a trace in a formant frequency space)
and other transformations should be investigated.*
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