
R. F. lever 

Computation of Ion Trajectories 
in the  Monopole  Mass  Spectrometer by 
Numerical  Integration of Mathieu's  Equation* 

Abstract: A high  speed  digital  computer  used  with an off-line curve plotter enabled  ion  trajectories to be readily  obtained in 
terms of the initial conditions and the parameters appearing in the differential equation of motion  (Mathieu's equation). A 
study of these trajectories has led to the conclusion that ions should not be  injected parallel to the  axis of the instrument, as 
is done at present,  but through the axis and at an angle to it. A simple empirical expression  enables the variation of posi- 
tion of ion  fucus  with  mass  and  operating parameters to be predicted. 

Introduction 

As vacuum techniques have become more  sophisticated, 
increasing attention  has been paid to the chemical com- 
position of the gaseous mixtures in high  vacuum systems, 
in addition to the  total  quantity as  measured  in an 
ionization gauge. The ionization gauge operates  by 
bombarding the gas with electrons of about 100 eV 
energy, collecting the resulting ions at a collector electrode, 
and measuring the  ion current with an electrometer. The 
ion  currents involved can be extremely small;  for example, 
a pressure of 10"' atmospheres typically yields an  ion 
current of 10"' ampere. Nevertheless, the chemical 
composition of the gas can be determined by separating 
ions of different charge/mass ratio  and measuring sepa- 
rately the currents that  are due to  the different ion species. 
For chemical analysis in high and ultra-high vacuum 
systems, such a mass analyzer must  be of simple and 
rugged construction,  must  be bakeable, and must  have 
sufficient resolving power to completely separate  adjacent 
masses. The high resolution that is needed to detect mass 
defects is not needed in chemical analysis. 

The mass analyzer that  has been most widely used is 
the familiar magnetic analyzer, in which a monoenergetic 
beam of ions is injected into a uniform magnetic field 
at right angles to the direction of ion  motion;  the ions 
then take  on circular trajectories whose curvature is 
proportional to the  square  root of the charge/mass  ratio. 
After the pioneering work of Paul  et al.: however, there 
has been strong interest  in radiofrequency analyzers of 
the  quadrupole type. These  instruments  have  advantages 
in  that they do  not require a magnet and  are equally 

convenient for high or low masses; further, the  quadrupole 
does not require a well-defined ion injection velocity. 
Although the monopole mass spectrometer has a similar 
field configuration, it requires that  the  ion injection be 
well-defined. At  the  same time it has  the  important merit 
that its resolving power is less limited by the velocity 
spread in the  ion beam than  is  that of a magnetic analyzer. 

A further distinction between the magnetic analyzer 
and  the monopole  instrument is that  the circular ion 
trajectories of the former are well known and easily 
calculated, while those of the  latter  are highly complex, 
difficult to treat analytically and, except for  one example 
given by von Zahn?  not available in  graphic  form. 
The purpose of this  paper is to offer an extensive com- 
pilation of trajectories derived for  the monopole  instrument 
through computer  solutions to the differential equations 
that obtain. 

In both  the monopole and  quadrupole mass spectrom- 
eters:'2 ions are caused to oscillate in the segment of 
the electric quadrupole field described by 

4 = [(x2 - y2)/Y3 (U + v cos 4 ,  (1) 

for which y > 1x1. This field has equipotentials  in the 
form of rectangular hyperbolae with asymptotes y = &x. 
It has  the desirable property, xy terms being absent, that 
(134/dx) and (&$/dy), the x and y components of the 
electric field, are independent of y and x respectively, so 
that  the motion of the ions may be resolved into inde- 
pendent x and y vibrations. Since (a+/&) = 0, the z 
component of the motion is a steady drift determined by 
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Figure 1 (a) Schematic view of quadrupole mass filter. (b)  Schematic view of monopole  mass  spectrometer  with  ions in- 
jected  on  the z axis but at an  angle to it, with 3 positive.  Ions are usually  injected parallel to  the z axis as described by von 
Zahn and by Hudson [Refs. 2 and 71. 

the injection conditions, i.e.,  by the accelerating potentials 
on  the  ion gun. In  the  quadrupole mass analyzer, 
the desired field is achieved by applying potentials of 
&(U f V cos ut) to four electrodes in the configuration 
shown  in Fig. l(a). In  the monopole, Fig. l(b),  the field 
configuration is achieved by placing a  grounded Vee- 
shaped  electrode at y = &x,  y > 0 and  an electrode of 
potential -(u + v cos ut) at y2 - x' = ri. In practice, 
for reasons of mechanical convenience, the electrodes are 
in the  form of circular cylinders, whose radius R is made 
equal  to 1.15 r, in order to minimize the resulting field 
distortion.''3 

In  the monopole  instrument the main reason for 
utilizing only  one-quarter of the  quadrupole field is to 
achieve mechanical and electrical simplicity. In  the 
quadrupole, the field pattern  has  the desired symmetry 
and  shape only if the four electrodes are supplied with 
voltages of exactly correct  amplitude and phase;  in the 
monopole, however, only one electrode must  be supplied. 
In  both  the  quadrupole  and monopole  instruments it 
has hitherto been common practice to inject ions close 
and parallel to the z However, one of the conclu- 
sions of this  paper is that,  for a monopole, the ions 
should  be injected at an angle to  the z axis. Figure l(b) 
illustrates  this recommended mode of operation. 

Since the field distribution is identical for  both  the 
monopole and  quadrupole configurations, the ion tra- 
jectories calculated in  this  paper can be considered to 
apply to either  instrument. However, as is shown in the 

next section, in  the monopole the coincidence of a physical 
boundary  with the  ground planes places restrictions on 
the way in which a monopole  can be used and, in practice, 
the two  instruments  operate on different principles. In  the 
quadrupole,  operating  conditions are chosen so that 
only a narrow band of ion masses describe stable tra- 
jectories. Higher masses describe unstable oscillations 
in the y direction and strike the y electrodes, while lower 
masses describe unstable oscillations in the x direction 
and strike the x electrodes. The quadrupole is, therefore, 
a true mass filter irrespective of the value of u,, the drift 
velocity in the z direction. As will be shown, the monopole 
utilizes ion focussing of the  quadrupole field along the z 
direction and so requires a reasonably well-defined value 
of u,. Almost all  ions that  are eliminated by striking the 
grounded Vee electrodes are ions that describe stable 
trajectories and  that would be transmitted  through  a 
quadrupole instrument. 

Mathematical background 

The x and y vibrations obey Mathieu's equation''' 

- + (a + 2q cos 2E)r = 0 ,  
d2r 

where : 
4' 

{ =  a w t ;  

(2 )  

for r = x, a = 8eU/mw2ri and q = 4eV/rnu2ri; 
for r = y ,  a = -8eU/mw'r~ and q = -4eV/rnu2ri. 27 
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(In Eq. (2),  e is the electronic  charge and m is the mass 
of the ion.) If we write M for the mass/charge ratio of the 
ion  in  amu /electron, U and V in  volts, f the frequency in 
megacycles  sec”, and r, in  centimeters, we have 

a = 0.196 U/Mf2r i ,  q = 0.098 V/Mf2r i .  

From the above, it is seen that a = 2(U/v>q so that for 
given U and V the operating point  must  lie on a straight 
line through the origin of the (a, q) diagram  with  slope 
U/V. The effect of varying ion mass or frequency  is 
merely to shift the operating point along this line. 

The drift velocity in the z direction is given  by 3 mu: = 
eW cos2 0 where W is the ion  accelerating  voltage and 0 
the angle of injection  relative to the z axis.  Hence z is 
given in terms of C; by the relation 

z2 = (8eW/mw2)(( - E,,)’ cos’ e. 
In the practical units used  above, W being  in  volts, this 
gives us 

Z’ = (0.196 w/~f’)({ - COS’ e. 
A mechanical  analogy is provided by the motion of 

the bob of a simple  pendulum  with  mass m and length 1 
describing  small  oscillations under the influence of a 
periodic  force F cos w t  vertically downward on the bob. In 
this case we have E = 3 ut with a = 4g/w21, q = 2F/w2ml 
for a conventional  pendulum  (corresponding to the x 
vibration) and a = -4g/w21, q = -2F/w2ml for an 
inverted  pendulum,  corresponding to the y vibration. The 
transformation E = 3 ut is chosen  since, for q << a, 
unstable solutions  then  exist for a = n’ where n is an 
integer.  This  reflects the well-known fact that one may 
“pump up” a garden swing  by applying a vertical  force 
at twice the natural frequency of the swing, corresponding 
to w = 2 (g/l)”’, i.e., a = 1. For increasing  values of q, 
unstable solutions to Eq. (2)  occur for an increasingly 
wider range of a values until for values of q comparable to 
or greater than a, most (a, q) values  result in unstable  solu- 
tions.  These  results are expressed in the well-known (a, q)  
diagram. In this paper  one  is  concerned  only  with the part 
of the (a, q) diagram rather close to  the origin,  with 
q < 0.8 and -0.25 < a < +0.25. The reason for this is 
that for the monopole  one  is  interested  only in stable 
ion  trajectories. For ions to describe stable trajectories  in 
a quadrupole field it is necessary that both the x and y 
trajectories be stable so that if an (a, q) diagram  be  super- 
imposed  on a (- a, - q) diagram,  only those comparatively 
small  areas  corresponding to the overlap of stable areas 
on both diagrams  will yield stable ion  trajectories. The 
doubly stable area near the origin  is the only one used 
since the others encompass  relatively  high  values of a and 
q which are difficult to achieve  in  practice. 

tions lie between the curves a. and b1 representing the 
stability  boundaries. For (a, q) values on ao, a solution 
may  be  obtained  corresponding to the tabulated function 
ceo(C;, q); this function is periodic in E with  period a and 
has the interesting property that, for the portion of a. 
shown in Fig. 2, it does not go  negative at any  value of C;. 
The solution so obtained is  of little practical use, however, 
since in general it must  be  linearly  combined wth a 
second solution, which  is  unstable.  Similarly, solutions 
for (a, q) values on b, are, in general,  made up of the 
tabulated function se,(E, q)  which  is stable with  period a, 
and an unstable solution.  However, for (a, q) values  lying 
between a. and bl a pair of stable solutions ces(z, q) and 
seg(z, q)  exist for all (a, q). These  have the 

ces m 
cos 

xes sin 
( t ,  4) = C 4? (2n  + PIC;, (3) 

%=-LC 

where the A’,, and p are functions of (a, q) only. In partic- 
ular, is a smoothly  varying  function of (a, q), being 0 
on a, and 1 on b,. In Fig. 1 iso-p  lines are plotted for 
/3 = p/10, 0 < p < 10, in addition to the plots for a. 
and 6,. 

As pointed out by M~Lachlan:’~ if /3 = p/s,  where p 
and s are integers  having no common  factors, the functions 
ces and ses are periodic  with a period 2as in the variable 
C;. However,  examination of the form of ces and sea enables 
one to go  somewhat further than this,  depending on 
whether p is  even or odd. Addition of as to f increases 
all the arguments in Eq. (3) by the quantity (2ans + ap). 
Hence, if p is even, this increase  will  leave all the terms 
unchanged, so that ces and ses will  have  period as. On 
the other hand, if p is odd, all the terms will be  increased 
by an odd number of a’s and, thus, ces and sea will be 
inverted. The practical  significance of this is as follows: 
Suppose that both the x and y trajectories  could  have 
a period 2as in common. In this paper  several illustrative 
families of ion  trajectories are shown  for  which s = 10. 
This  does not imply equal values,  only that pz and p, 
should be rational fractions  having s as a common  denom- 
inator. In this  case and for a quadrupole instrument, perfect 
erect  images of the ion  source  would be formed at intervals 
of 2sa in C;, that is,  spatially at z intervals of 4asv,/w where v, 
is the drift  velocity of the ions in the z direction. Unfortu- 
nately, this perfect  focussing property cannot be  utilized 
in the monopole.  While the x vibration is unrestricted 
except for 1x1 < y,  the y vibration cannot go  negative. 
Since, in describing a complete  period all ces and ses 
must go negative  (with the single  exception of ceo which, 
in practice, is of no value) all the ions would hit the 

28 
The portion of the (a, q) diagram of interest  is  shown  grounded Vee electrode  before  reaching the first  image 

in  Fig. 2. The (a, q)  values  corresponding to stable soh- point. However,  if p, = l / s  an inverted y image  will 

R. F. LEVER I 



Figure 2 The (a,  q )  diagram for Mathieu's equation show- 
ing the extent of the first  stable  region  and  iso-p  lines for 
0 < p < 1 at p intervals of 0.1. The lines are numbered 
with the integer p where p p/lO. 

occur at (E - Eo) = xs, ( z  = su,/f), where lo is the value 
of E at z = 0; if the source is a point  source on axis, 
this image will also fall within the instrument, i.e., it 
will also form  on axis. If  we also choose pz = p / s ,  1 5 
p < s, then an x image will likewise occur at  the same 
point, erect if p contains  more  factors of 2 than s but 
inverted if not. 

The considerations just discussed give the necessary 
conditions for ions leaving a point  source to come to a 
point focus. That they are also sufficient conditions, in  that 
the y trajectories do  not go negative' between E - Eo = 0 
and 6 - Eo = xs will be  demonstrated  later by inspection 
of the trajectories. These restrictive conditions on @. and 
@, mean that  the desired double-focussing conditions can 
be  obtained only for certain  pairs of (a, q) values;  this is 
illustrated  in Fig. 2, where the curves for = p/10 are 
plotted, but where the curves for negative q are  not shown 
since the iso-@ curves are symmetrical about  the a axis.+ 

taken by curve a, which is  obtained by reflection of b, in the a axis. 
t The curve b, is not symmetrical about  the a axis, but its place is 

From Figure 2 it is seen that if one wishes to work with 
a y focus at E - Eo = lox, i.e., p, = 1/10, then one must 
choose (ay, qy)  values on Curve 1, where @ = 1/10. If 
an x focus also is desired at  the  same point, it is necessary 
that pz = p/lO. Suppose one decides to make p = 5 so 
that there will be an x focus at E = 29, 4x,  6a, 8a, 
and 10n. One must  then choose (ay,  qy)  so that (-av, -qy )  
will lie on  the curve @ = 5/10. Since the iso-p curves are 
symmetrical about  the a axis, this means that (-ay, qv) 
must  lie on /3 = 5/10. It is possible to choose 9 
pairs of (a, q) values in this way corresponding to 
p = 1, 2, 3, . . . , 9. (The  value p = 10 giving 0, = 1.0 is 
not of practical use since it is on  the stability  boundary 
and  the x trajectory  would  be  stable only for  one particular 
phase of injection.) These  nine  points are shown in Fig. 2 
and correspond to points where the /3 = 1/10 curve, 
reflected in the q axis, would cut  the  other iso-@ curves. 
Values of (a, q) for given ( p ,  s) are given in  Table 1 (page 
30) for 2 < s < 12, 1 < p < s. (The  method of calculation 
is described in the appendix). 

An example of the use of Table 1 is as follows. Suppose 
we decide to operate our spectrometer  under  conditions 
such that  the ions remain in the rf  field for exactly 8 rf 
cycles, i.e., ( E  - Eo) = 8a, or s = 8. This decision restricts 
our choice of (a, q) values to those lying on  the line 
0, = 0.125, which lies just above the line for which 
p = 1 in Fig. 2. In this way, a y focus is assured. How- 
ever, we would like also an x focus so that @= = p / 8 ,  
where 0 < p < 8. Suppose we choose p = 5, then Table 1 
tells us that  the corresponding (a, q) value is (0.147256, 
0.576545). 

Calculation of the ion trajectories 

Although tabulated values exist for  the Mathieu  functions 
of integral order,  the calculation of functions of fractional 
order is not a simple matter. Even after a pair of solutions 
for a given (a, q)  has been found, it would be  somewhat 
tedious to combine  them to fit the various initial condi- 
tions. Since the ions are injected continually, it is necessary 
to calculate  trajectories for several different phases of in- 
jection. It is also necessary to determine the effect of 
varying the initial values of y and dy/d[. Even after solu- 
tions  have been obtained in  tabular  form, they are very 
tedious to plot because of their oscillatory nature. 

In view of these difficulties, the problem  appears to 
be one  that  should be solved by recourse to  an analog 
computer, with which it would be possible to obtain out- 
put  in graphic form,  the only input needed being (a, q) 
and  the initial conditions. This  could  be  done, of course, 
by constructing an inverted pendulum, applying a vertical 
periodic force of the desired magnitude (by magnetic 
or  other means), and releasing the  bob of the pendulum 
at the desired phase and with the desired initial position 
and velocity. 29 
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Table 1 Paired values of a [upper]  and q [lower]  satisfying  the  condition p(a, q )  = l/s, p(-a, -9)  = p / s ,  for 2 < s < 1 
p 5 s. These are operating  points for double  focussing in the monopole  mass  spectrometer. 

‘alues  Values of p 
ofs 1 2  3  4 5 6  7 8 9  10 11 12 

3 .000000 .117076 .183624 
.451105 .656266 .752057 

4 .000000 .078407 .166227 .206116 
.344959 .522848 .673016 .732687 

5 .OOOOO0 .053806 .126186 .190656 .216980 
.278436 .429064 .575816 .683276 .723310 

6 .000000 .038706 .095019 .156067 .204406 .223000 
.233150 .362294 .495503 .610395 .689585 .718107 

7 .000000 .029026 .073030 .125161 .175636 .212867 .226671 
.200422 .312945 .432374 .542783 .633358 .693652 .714933 

8 .OOOOO0 .022510 .057492 .lo0984 .147256 .189023 .218429 .229069 
.I75699 .275178 .382516 .485382 .576545 .649155 .696401 .712857 

9 .OOOOO0 .017941 .046272 .OS2550 .123236 .163704 .198534 .222274 .230721 
.I56378 .245420 .3425OO .437523 .525286 .601176 .660405 .698336 .711428 

10 .COO000 .(I14622 .037966 .068448 .lo3772 .140909 .I76176 .205510 .225041 .231906 
.I40869 .221402 .309820 .397543 ,480593 .555717 .619571 .668668 .699745 .710402 

11 .000000 .012139 .031673 .057528 .OS8154 .121500 .155027 .185808 .210768 .227097 .232785 
.128150 .201625 .282696 ,363872 .441966 .514574 .579307 .633616 .674900 .700802 .709641 

12 .OOOOO0 .010235 .026802 .048948 .075590 .lo5293 .I36268 .I66407 .193377 .214824 .228667 .23345 
.I17532 .I85067 .259856 .335236 .408554 .477963 .5417o0 .597892 .644554 .679707 .701613 .70906 

~ 

The procedure actually employed is to use a digital 
computer to numerically integrate the differentialequation, 
conjoined with an automatic  plotter which plots the trajec- 
tories  from the digital information stored  on  an  output 
tape.g The combination  is,  in  effect,  a versatile analog 
computer, where the differential equation supplies the 
physical information that is essential for the computer to 
simulate a pendulum, while the plotting  equipment replaces 
the transducers and display devices that would be required 
to yield a record of the motion of the bob. This  procedure 
allows one to  obtain solutions  without  any knowledge of 
the analytic theory of Mathieu’s equation. 

In  the first instance of its use an (a, q) pair was chosen 
at  random somewhere near the stability boundary at a 
desired (a/q) ratio,  and (a, q) values corresponding to a 
periodic solution were obtained by trial  and error.  This 
trial  did not, of course,  lead to a periodic x trajectory at 
the same time, and  to have attempted to arrive at  the 
(a, q)  values for  double focussing by trial  and  error would 
have been a wasteful procedure. In practice, it  has proved 
more convenient to rely on  the analytic theory to provide 
the (a ,  q )  values needed to  obtain solutions of the desired 
periodicity, as described in the Appendix. 

The numerical  integration was accomplished by the 
fourth-order  Runge-Kutta  method as shown in Fig. 3. 
The subroutine shown calculates a complete series of y 

30 and dy/dt  values as a function of .$ for given (a ,  q) and a 

specified .$ interval h, which is chosen to be a  submultiple 
of T .  The  array E is obtained by dividing the number of 
iterations by the quantity ENQ, and is more convenient 
than 4 (represented by Z) for reference and plotting  pur- 
poses. Arrays  containing the values of y ,   dy jd f ; ,  .$ and E 
are obtained by the instruction 

CALL  RUNGE (Y,  DY, MT, A, Q) 

in the main program, the corresponding data for  the x 
trajectory being obtained by 

CALL  RUNGE (X,  DX, MT,  AA, QQ) 

where MT is the  total number of iterations, a = A = - AA 
and q = Q = - QQ. The  arrays  are then  written on  tape 
for subsequent off-line operation of the plotter.  Initial 
values of .$, y ,  dy/d( ,   x ,   dx/d.$ are developed in the main 
program, the initial value of 2: being transmitted to the 
subroutine by the “common”  statement.  Plots of both x 
and y trajectories were obtained at initial phases En of 
0, ~ / 1 6  - . .  15~/16,  and T ,  and were plotted on  the 
same axes as  a  function of - (0; this  procedure  pro- 
vided, in effect, an envelope of spatial trajectories since 
z = 20,(( - &)/a. Sixteen trajectories were superimposed 
for all plots shown in  this  paper.  A  step size of h = a/50 
was employed for most of the plots. 

It was established that  the numerical  integration was 
working correctly by applying two criteria: 
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(1) Changing the step size h to a/100 or 9/32 did not 
materially affect the tabulated  output.  For h = ~ / l 0  the 
tabulated  output was noticeably different, although  this 
difference would have been barely visible on the plots. 

(2) Perfect focussing was observed at (a, q) values for 
which the theory predicts perfect focussing. 

Results 

The types of trajectory  obtained when ions are injected 
on axis, but with finite radial velocity j o  or .in, are well 
exemplified in Figs. 4(a) and (b). To aid  the eye, curves 
for trajectories corresponding to to = 0 have been made 
prominent. A whole family of trajectories is shown, corre- 
sponding to E,, = 0, 9/16, 9/8 ... 1 5 ~ / 1 6 .  The (a, q) 
value was chosen to give a half period  in y of 2 0 ~  with 
p, = 1/20 and pz = 19/20. It is seen that  the image of 
the source  forms on axis, as expected, and,  that  further- 
more, the y trajectories do  not go negative at any (t - &) 
value between 0 and 209. Hence, if a and q can be  main- 
tained  constant with sufficient precision, all  ions injected 
at  an angle through  the point (0, 0, 0) will pass through 

Figure 3 The  subroutine used for numerical  integration of 
Mathieu's equation by the fourth-order Runge-Kutta  method. 
The  variable E is represented by Z. 

SUBROUTINE  RUNGE (V,DV,NT,A,Q) 
COMMON H,Z,E,ENQ 
DIMENSION E(2500),Z(250O),V(25OO),DV(2500) 

GRAD(V,Z)=(A+2.0*Q*COS  (2.0*Z))*V 
DO 20 N=l,NT 
A1  =DV(N)*H 

B1 =GRAD(V(N),Z(N))*H 
A2=(DV(N)+O.S*Bl)"H 
B2=GRAD(V(N)+0.5*Al,Z(N)+0.5*H)*H 

A3=(DV(N)+0.5*B2)*H 
B3=GRAD(V(N)i-O.5*A2,Z(N)+O.5*H)*H 
A4=(DV(N)+B3)*H 

B4=GRAD(V(N)+A3,Z(N)+H)*H 
V(N+l)=V(N)+(A1+2.0*A2+2.O*A3+A4)/6.0 
DV(N+l)=DV(N)+(Bl+2.0*B2+2.O*B3fB4)/6.0 

EN=N 
E(N) = (EN-l.)/ENQ 
20  Z(N+l)=Z(l)+  EN*H 

RETURN 
END 

~ 

the  point (0, 0, 20u,/f) without  striking the angle elec- 
trode  in  the interval 0 < z < 20u,/f. It is of course obvious 
from  the  form of the differential equation that if R({) is 
a solution then k R ( 0  is also a solution where k is a con- 
stant.  The y and x values in the plots may therefore be 
scaled in  an  arbitrary manner. In Figs. 4a, 4b, 5 ,  6,  7, 
and 8 the scales on  the ordinates are drawn  correspond- 
ing to initial  conditions x, or yo = 0, and (&/d& or 
(dy/&)o = 1, but in Figs. 4(c) and (d) the correspond- 
ing initial  conditions are x. or yn = 1 and (dx/do0 or 
(dy/d& = 0. The  actual initial values fed into  the com- 
puter were different from unity, and were chosen to give 
a convenient plot size. 

Injection parallel to the axis without  radial velocity is 
shown in Figs. 4(c) and (d). In this case (a, q) is chosen 
to give p, = 1/10, pz = 1/2 and a fully period is shown 
as would exist in a quadrupole instrument. The inverted 
focussing property for ( - to = TS, /3 = p / s  where p is 
odd, is  well illustrated.  Other  plots, not shown, were 
obtained  for  initial  conditions where both yo and (dy/d.$)o 
were finite, and similar inverted foci obtained,  although 
generally with somewhat larger amplitudes of oscillation 
than in Figs. 4(c) and (d). It is  seen that  about half of the 
injected ions strike the Vee-electrode after  a few  rf  cycles, 
as  pointed out by von Zahn,z  and although  there is a 
visible tendency for  some  ions to bunch on  the .$ axis 
just  short of ( 4  - to) = 109, a good focus is not obtained 
within the confines of a  monopole  instrument, i.e., y > 0, 

It is clear that injection of the ions on axis but at an 
angle to it should give superior resolution because of the 
excellent focussing, and also  superior sensitivity, since all 
the injected ions pass through  the instrument, irrespective 
of their  phase of injection. Furthermore, injection through 
the grounded Vee-electrode could be accomplished with 
almost no disturbance to  the monopole field. Injection 
parallel to the axis, as presently employed, must inevitably 
introduce  end effects which are almost impossible to cal- 
culate and difficult to keep under experimental control. 

In Figs. 5 and 6 are shown the x and y trajectories for 
p, = 1/10, pz = p/10 where 0 < p < 10 with initial 
conditions y = 0 or x = 0, and (dy /d t )  = 1 or (dx/dt) = 1 .  
These plots  correspond to operating at (a ,  9 )  values co- 
incident with the  dots on Fig. 2, and represent all possible 
trajectories having both x and y foci at ( E  - (0) = 1 0 ~ .  
It is seen that  the y vibrations follow a similar pattern 
irrespective of (a ,  q) but with a gradually increasing amp- 
litude  as we move along the p, = 0.1 line to higher q 
values. The x vibrations  are, of course,  quite varied in 
appearance. As will be expected from  the considerations 
in preceding sections, the x vibration has  period 209 for 
p = 1 ,  3, 7 and 9; 107r for p = 2 and 6; 57r for p = 4 and 
8; and  49 for p = 5 .  Inverted images at  the half-period 
values are formed except for p = 4 and 8. These cor- 

1x1 < Y .  
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respond to PI values of 2 / 5  and 4/5 having an even nu- 
merator  after  cancelling, and so the period  is 5a, not loa. 

Trajectories obtained for arbitrarily selected PI and p, 
cre  essentially  similar to those shown in Figs. 5 and 6 
axcept that focussing is not usually  obtained on the first 
erossing of the z axis. The effect  of  varying a and q for a 
constant a/q  is shown  in  Figs. 7 and 8. In these  figures, 
the portions of the x and y trajectories  near f - f o  = 10a 
are shown  near the operating point pz = 9/10,p, = 1/10. 
The (a, q)  values are chosen, at intervals of 0.20/,, so that 
a and q take values of from  -0.8% to +0.8% greater 
than the value  (0.225041, 0.699745) shown  in Table 1. It 
is  seen that an increase of +0.8y0 results  in the y focus 
being  shifted just short of f = 9a. Note that  not only do 
the  values of f - f,, for y = 0 decrease as a and q increase, 
but  also that the focus  worsens  markedly  as  one  moves 
away from the value f - f ,  = loa, then improves  again 
as the values 9a and 1 1 7  are approached. The operating 
point  chosen  is quite near the x stability boundary, and in 
consequence a considerable  increase  in the amplitude of 
the x vibration  is  observed for a 0.8% increase  in a and q. 

The remainder of this paper  will  be  mainly  concerned 
with the y trajectory, it being understood that the x 
trajectories  can  always  be brought to a focus if required 
by selecting an appropriate pZ. Similar  series of curves are 
obtained for different operating points on the (a, q) 
diagram. The characteristic  movement of the y trajectory 
envelope,  shown  in  Fig. 7, with  good  focussing at - 
Eo = na and only  crude  focussing effects at ,$ - f o  = 
(n + 1/2)a, is obtained in all cases; the main  difference 
resides  in the percentage of variation  in q that is required 
to cause the change. It is of particular interest to relate 
the variation in z,, the position of approximate focus, 
to the variation  in q for constant a/q since this gives 
the spatial mass  resolution,  mass  being  inversely pro- 
portional to q for given  values  of the instrument param- 
eters U, V,  W and r,. However,  variation  in  ion  mass 
changes not only q but also,  for a fixed W, the value of 
v,; this change  must  be  allowed for. 

As described  under  "Mathematical  background", z is 
given  in  terms  of (E - Eo),  as 

z2 = (8e W / m o 2 ) ( f  - lo)' cos2 8,  (4) 

an expression  which  may  be  combined  with the approxi- 
mate  relation  (exact when s is integral), 

( E  - E o ) ,  = ../B = as, 

where ( f  - Eo), is the approximate  value of ( f  - f,) for 
focus.  On substituting for e/mw2 in  terms of q, V and r,, 
one  then obtains 

z: = 2a24 cos2 e( W/ v)qs2. ( 5 )  

The spatial mass resolution is then obtained from the 
32 variation of qs2 with q at constant (u/q). This  has been 
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Table 2 Values  of qo and q?(q - qo) for five different  val- 
ues of a/q. The  various s values  are  tabulated  at  the  right. 
The  table  demonstrates  that qd(q - qo) is reasonably con- 
stant with varying s and is approximately  equal  to 2. 

Values 
a /q :  0. 0.066042  .172178  .253562  .321604 of 

S 

40: 0. 0.132336  .348874  .521757  .673539 

qs2(q-qrJ 1.904  1.878  1.828  1.778  1.726  4 
1.957 1.938 1.896 1.848 1.795 6 
1.976 1.961 1.922 1.874 1.821 8 
1.984 1.972 1.935 1.887 1.834  10 

1.994 1.985 1.949 1.901 1.848 16 
1.998 1.991 1.957 1.909 1.855 32 
2.000 1.993 1.959 1.911 1.856 64 
2.000 1.994 1.959 1.911 1.857 160 

calculated by a method  similar to  that described  in the 
appendix for obtaining the double  focus  condition. A 
binary  search on q was made for the condition a(q, p) - 
(u/q)q = 0, for given 6 and (ulq). In this way an approxi- 
mate  empirical  relation was found, namely, 

4s2 = 2/(q - a ) ,  (6)  

where qo is the value of q for /3 = 0 (s = a) for the (u/q)  
value  in  question.  Values  of the quantity qs2(q - qo) are 
shown in Table 2 for various s values  along  five  different 
operating lines  passing through the points 8, = 0.1, and 
pZ = 0.1, 0.2, 0.4, 0.6, and 0.9, respectively. The quantity 
qs2(q - 4,) is not exactly constant for a given a/q,  and 
its value  decreases  somewhat  with  increasing u/q. Never- 
theless, the relation is accurate to approximately 10% 
and, in view  of its  simplicity, is preferable to the more 
complex  empirical  relations which could  be devised. The 
relation is meant to be  used  only for s > 5, i.e., for op- 
erating points  reasonably  close to the line uo in Fig. 2. 
Hence, substituting Eq. (6) in Eq. ( 5 )  and differentiating, 
we obtain 

Az,/zf % -0.5Aq/(q - 9,) % 0.5Am/(mo - m) ,  

(7) 

where m, is the mass  corresponding to the stability  bound- 
ary for a given set of operating conditions. Any ion of 
smaller  mass/charge ratio will  come to an approximate 
focus on the z axis  within  some  finite  distance from the 
source. If one  substitutes for (q - qo) in Eq. (7) one 
obtains what  is  perhaps the most  useful relationship: 

Az~/z, = -(@/2)'(Aq/q) = +(@/2)'Am/m. (8) 

Discussion 

The plots  shown demonstrate clearly that, for a monopole 
spectrometer, very  exact  focussing  can  be obtained, at 



Figure 4 Ion trajectories  computed for various  initial conditions. Plot a . . . y trajectory for yo = 0, yo = 1: a = --.233982; q = -.704396; s = 20; p = 19. 
The abscissae are (I - t n )  where to is the initial  value of g. In this 
and subsequent figures, 17 plots are superimposed corresponding to Plot b . . . x trajectory for xc = 0, i n  = 1: a = +.233982; q = +.704396; s = 20; p = 19. 

x T being identical. For the purpose of visualizing the spatial  tra- Plot c . . . y trajectory for y o  = 1 ,  30 = 0: a = -.225041; q = -.699745; s = 10: p = 9. 
jectories, (E - to )  may be regarded as equivalent to  the spatial  co- 
ordinate z (Fig. 1). They  are related by z = 2u,-' w (6 - to) .  Plot d . . . x trajectory for x .  = 1, io 1 0: a +.225041; q = +.699745; s = 10; p = 9. 

t n  = 0, ~ / 1 6 ,   2 ~ / 1 6 ,  . * , 15~ /16 ,  X with the plots for to = 0 and 

2 

0 

-2 



Figure 5 Plots of y trajectories for s = 10 and for initialconditions y I 0, 9 = 1, 0 < to < A, at intervals of ~ / 1 6 .  
Each set of trajectories is for different integral p values 0 < p < 1 0  where ,B = p / 1 0 .  



Figure 6 Plots of x trajectories for s = 10 and for initial conditions x 1 0, k = 1, 0 < to < 7, at intervals of ~ / 1 6 .  Each set 
of trajectories is for different integral p values 0 < p < 10, where /3 = p / l O .  
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least in principle, if the ions  emerge from a point source 
on the z axis. Injection of the ions off the z axis cannot 
produce a focus  within the physical  bounds of the instru- 
ment, although such a mode of injection  is  conventional 
in the quadrupole instrument.' The trajectories we have 
shown are applicable to any  angle of injection  since the x 
and y vibrations may  be  multiplied by arbitrary, and 
different,  scaling factors. The angle of injection for the 
y trajectory should be  chosen as large as possible,  con- 
sistent  with the necessity that the desired  trajectories not 
strike the cylindrical  electrode at their position of  maxi- 
mum amplitude.  This  will  be  satisfied in practice if an 
undefected ion  beam  would strike the cylindrical  electrode 
about three-fourths of the way from the source aperture 
to the collector aperture. The x trajectories  can  also  be 
utilized if the ions are deliberately  injected  with  finite x, 
the requirement being that 1x1 < y for the desired  trajec- 
tories so that the ions do not strike the Vee electrode. 

From Fig. 7 and other plots not presented it is clear 
that a variation  from s = n to s = n f 1, where n is an 
integer,  results  in widely separated trajectory  envelopes, 
each of  which  cross the axis  in a region no greater  in 
extent than the source. It is  sometimes  convenient to 
think  in  terms of the percentage  variation in s, regarding 
s not as  an  integer but simply as pi ' .  On differentiating 
the empirical  relation of Eq. (6) one obtains 

and hence,  from  Eq. (S), 

Since operating conditions  will  normally be  chosen  so 
that q's' >> 2, one may  usually  neglect the effect  of  varying 
mass  on drift velocity and equate dz/z to ds/s. This 
equivalence is not true, of course, for an operating  line 
a = 0 for which (qs)' = 2 and dz/z = 0.5 ds/s = 0.5 dq/q. 
It is  clear that dz/z can never  be smaller than this, how- 
ever, so that even for small  values of a/q ,  when s is chosen 
large  enough  an  appreciable spatial resolution  is  obtained. 
The advantage in working  with a nonzero U value  is, 
of course, that qs can  be  made very large by working 
close to the stability  boundary, s approaching infinity 
while q remains  finite, and very  high  resolution  thereby 
obtained. 

The application of Eq.  (9)  may  be  illustrated  with  refer- 
ence to Fig. 7, which  shows the variation of the trajectories 
for a &0.8'% variation in q around an operating point for 
which s = 10 and q 3 0.7. This gives  (qs/2)' = 12.25 and 
for As = f 1, we find Aq/q 3 =F 0.8% in  agreement  with 
Fig. 7. A similar  series of  figures for s = 20 varying about 
the trajectory  shown in Fig. 4(a)  gave a variation  in s 
from  approximately 19.6 to 20 for Aq/q  = 0.4%. From 

36 Eq.  (9),  with As = 0.4, s = 20, q = 0.7, we obtain 
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(qs/2)' = 50 and As/s = 0.02, hence Aq/q  = 0.04%, 
which is in  agreement  with the above. If one  supposes 
that As = 0.1  can  be  resolved, this gives a mass  resolution 
of  0.01% (or for s = 20, q = 0.7. It should be 
recognized,  however, that  the excellent  focussing charac- 
teristic for integral values  of s requires not only a perfectly 
periodic solution, and hence  very constant U,  V, r,, and w ,  
but also a very  low spread in u,, for otherwise the ions 
would all cross the z axis at the same  time interval after 
injection, but at slightly  different  positions. 

Some  typical operating conditions may  be derived as 
follows:  Unlike the quadrupole mass  filter,' the monopole 
requires  reasonably  monoenergetic  ions  since the peri- 
odicity in 5 can  be translated into a focussing  action  along 
the z axis  only if u, is well  defined. In order to obtain a 
reasonably  monoenergetic  beam of appreciable  intensity, 
an ion  accelerating  voltage of the order of 100  volts is 
desirable.  Hence, putting cos 0 = 1 and W = 100, one 
obtains z2 = 20(r - .$,)'/Mf2 from the relation given on 
page 28. If a convenient  length z is taken as 32  cm this 
gives (5 - Eo)' = 50 Mf'. Writing E - lo = TS, this gives 
s' = 5 Mf',  where M is in atomic  mass  units  per  electron 
and f is in Mc/sec. It is clear that a fairly  high  frequency 
is  required to enable the ions to experience an appreciable 
number of  cycles  of the alternating field within a reasonable 
length. If one now considers an operating  condition for 
which s = 10, then f' = 20/M. That is, a range of M 
from 1 amu/electron to 500 amu/electron  would  require 
f to vary  from 4.5 Mc/sec down to 200 kc/sec. 

One  can, of course,  scan the mass  range by  varying U 
and V keeping U/V ~onstant ,~ provided that W is also 
varied to ensure that the ions always  experience the desired 
number of  rf  cycles within the specified length. If this 
were not done,  then the slower,  heavier  molecules  would 
require a higher  value of s to focus in a given length, and 
the operating point would shift to lower (a, q) values as 
the mass  range was scanned from low to high  masses. 
Since s would not, in general,  be integral in  such a mode 
of operation, the good  focussing  properties  associated 
with integral s values  could not be  utilized. 

Having  chosen z ,  s and W and having obtained the 
result Mf' = 20,  we  now have a = 10-'U/r; and 
q = 5 X lO-'V/r;. Hence, if r: is  chosen to be  approxi- 
mately 10 cm'  we have U = 103a and V = 2 X 103q. 
From Eq. (8) we require qs to be  as large as possible for 
maximum  resolution.  Let us, therefore,  choose q W 0.7, 
corresponding to pz = 9/10, in  which  case V = 1400 
volts.  Even  if  we  were to choose a = 0, giving the minimum 
value of qs = 1.4,  we  get q = 0.14 and V = 280 volts. 
There  is,  therefore, a requirement for a supply of alter- 
nating potential of the order of 1 kV  having a precisely 
defined but variable  frequency and an amplitude at least 
as well  defined as the desired  mass  resolution. Another 
requirement  is that the physical  extent of the ion  collector 



Figure 7 (at  left)  The effect of varying q at constant a / q  on  the quality and position of focus for  the y trajectory.  Initial 
conditions y = 0, + = 1, 0 < to < T ,  at intervals of ~ / 1 6 .  Each set of trajectories is for different (a ,  q )  values, with (a ,  q) 
varying from -0.8% to +0.8% of the operating  point (-0.225041, -0.699745) at intervals of 0.2%. Vertical scales are 
as in Fig. 5. 

Figure 8 (at right) As Fig. 7, but for the  corresponding x trajectories; i.e., (a ,  q )  = ($0.225041,  +0.699745). Vertical scales 
are as in Figure 6. 
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must be at least as great as that of the source, together 
with an allowance for the spread in u, inevitable in any 
ion beam. It is of interest to note that if u, is well  defined 
but  has a different value from  that for which the instru- 
ment has been adjusted, then the mass peaks observed 
on varying f will be broadened. The system will attempt 
to produce an “exact” focus after the ions have been in 
the field for s cycles, s being defined by (a, q), i.e.,  by 
U, V,  Mj2 and ro. If, however, u, is too large, this focus 
will not occur at the collector aperture,  but beyond it, 
and  no signal will be detected. In order to bring the ions 
into the collector it will be necessary to, in effect, reduce s. 
If frequency scanning is employed this will be done by 
decreasing the frequency and hence increasing a and q, 
thereby increasing p, and hence decreasing s. Since s will 
thereby have a nonintegral value, the focus will be broad- 
ened. If, therefore, the instrument  is sufficiently  well ad- 
justed that  the periodic variation in  the quality of focus 
illustrated in Fig. 7 can be observed as (a, q) is changed 
at constant a/q, then a variation in W should  shift  the 
frequency at which a mass peak is observed and also 
broaden that peak. This sensitivity of the position of the 
focal spot to the value of u,  is therefore an advantage, on 
the whole, since it can be used to provide information  on 
ion energies when the energy is well defined but unknown. 

It is instructive to compare the effect  of varying ion 
velocity on  apparent mass with the corresponding effect 
in a magnetic mass analyzer. In  the latter case, we have 
r = rnu/eB where r is the radius of curvature of the ion 
trajectory, B the magnetic induction and u the ion velocity. 
Clearly, an  error in the ion velocity would appear as an 
equal error  in  the mass. In  the monopole mass spectrom- 
eter, an  error in u will produce an  equal  error in z,, the posi- 
tion of focus. Hence, from Eq. (8) Au/u = (q~/2)~Am/rn. 

For large values of qs, a variation in u will have a much 
smaller effect on  the apparent mass than  in  the case of 
the magnetic mass analyzer. However, for a = 0, then 
qs = fi and Au/u = 0.5Am/m so that if one operates 
with alternating  potential only, the instrument is twice as 
sensitive to velocity variation as a magnetic mass analyzer. 
For  the operating point shown in Figs. 7 and 8, i.e., p, = 
1/10, pz = 9/10, qs is equal  to 7 and hence Au/u = 12.5 
Am/m so that a 1% change in u will cause only an 0.08% 
change in apparent mass as observed on  the frequency scan. 
A 1% spread in u would not, therefore, broaden the mass 
peak  very much although it could reduce the sensitivity 
if the collector aperture were not designed to accommodate 
such a spread. 

Another source of resolution loss is variation in ro. 
Such a variation is mathematically complicated since it 
transforms the simple Mathieu equation into Hill’s equa- 
tion, for the reason that  any spatial variation in ro within 
the range of the instrument, e.g., from { - lo = 0 to loa, 

38 can be regarded as a periodic variation in a and q, e.g., 

of period 1 0 ~ .  Furthermore, variations in ro necessarily 
introduce small fields in the z direction and also destroy 
the complete independence of the x and y vibrations. The 
latter is also accomplished by the fact that,  in practice, 
the cylindrical electrode is not perfectly hyperbolic and, 
in fact, is often circular for  constructional convenience. 
However, variations in r, have the great advantage of not 
varying in time. An investigation of the effect  of a small 
variation in ro was undertaken by altering the subroutine 
described by Fig. 3 to allow a variation in a and q from 
- 1% at 4 - lo = 0 to +1% at E - lo = 10n. When this 
was done, the trajectories “overshot,” crossing the (5  - lo) 
axis between 1 0 . 3 ~  < 4 < 10.6~. Although the average 
values of a and q were unchanged, this result is not un- 
expected since the average values of s would be raised, 
as can be seen from Eq. (6) and Fig. 2. It was found, 
however, that  on increasing a and q at constant a/q until 
the trajectory envelope straddled E - lo = 10n, a quite 
narrow focus was obtained, having a spread in ( E  - E o )  
of only ~ / 2 0 .  It would, therefore, seem that small varia- 
tions in ro need not be too serious in practice, in that good 
focussing can be obtained even when Mathieu’s equation 
no longer holds strictly. 

Conclusions 

1) All injected ions of the desired charge/mass ratio can 
be brought to a focus on  the axis of the monopole by 
correct choice of operating conditions, provided the ions 
are injected on  the axis and at an angle to it. The value 
of the angle is not critical, but the injection velocity must 
be  well  defined. 

2) Ion trajectories for a given a/q and given initial con- 
ditions may readily be generated by numerically integrating 
Mathieu’s equation on a digital computer. These trajec- 
tories are readily displayed graphically by plotting off 
line from an output  tape using an  automatic  plotter. 

3) Very  high resolution can be attained. The main limita- 
tion is probably the amplitude stability of the  alternating 
potential. 

4) Small deviations from perfect geometry do  not greatly 
affect the quality of focus. 
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Appendix: Calculation of (a, q) values for double focussing 

Values of a may be calculated for a given q and 0 by the method described by  Tamir.’ The first step is to calculate 
three successive iterations of the continued fraction relation 

( 2  - p)” - a 1(4 - P)” - u 

Tamir showed that  the above iteration converges in an 
alternating fashion, although sometimes this convergence 
is  very slow; therefore, he tested for “fast” or “slow” 
convergence and in the latter case took the arithmetic 
mean of two succeeding iterations  as  the  starting  point 
for the next two. 

To avoid this need for a test for convergence rate, 
the following procedure was adopted. If the first three 
iterations be denoted by a,,, uI2 and a13 then a2,, the 
starting  point for the next three iterations, is  given  by 

a21 - a13 = (a21 - a31)2/[(a21 - a31) f (a21 - all ) ] .  

It was found that ael, ae2 never differed in the seventh 
place even for /3 = 1 where the normal iteration procedure 
was slightly divergent. Five terms were found  quite ade- 
quate for the summation of each continued fraction. As 
previously described, the physics  of the monopole provides 
that  the a value for the x vibration is minus the a value 
for the y vibration. If, therefore, we require a pair of 

Nomenclature 

a Coefficient occurring in Mathieu’s equation. In the 
monopole mass spectrometer, a = 0.196 V/Mf2ri. 

a,, b, Curves denoting stability boundaries on the (a ,  q) 
diagram, as in Fig. 2 

Electronic charge 
Frequency of alternating  potential in Mc/sec 
Mass of ion 
Mass/charge ratio of an ion, in amu/electron 
Integer used in  specifying operating point 
Coefficient occurring in Mathieu’s equation.  In the 
monopole mass spectrometer q = 0.098 V/Mf2ri. 

The closest distance between the cylindrical elec- 
trode surface and  the z axis (Fig. 1) 

Equal  to I/& In this paper, s is usually an integer 
except in  the discussion section. 
Steady potential applied to  the cylindrical electrode 

values (a, q)  and (-a, -4) such that for the y vibration 
0, = l/s and for the x vibration 0% = p / s ,  we then require 
that  the  quantity +(q) = a(q, pZ) + a(q, P,) = 0, the 
iso-0 lines being symmetrical about the a axis. As can 
be  seen from Fig. 1, +(q) is a monotonically decreasing 
function of q, so that a simple binary search for  the con- 
dition 4(q) = 0 yields the required q(p, s) and a(p, s). 
Since the double focussing points for s > 2 occur at q 
values below 0.8, the search procedure was to  start with 
q > 0.4, Aq = 0.2, adding or subtracting Aq depending 
on the sign of +, and halving Aq after each iteration. 

The values thus obtained are displayed in Table 1. One 
cannot, of course, control a and q to six  figures in a 
practical instrument. This degree of accuracy is retained 
for convenience, in recognition that a six-figure quantity 
is just as convenient for input to a computer program  as a 
three-figure one; by yielding more exactly the result 
y = x = 0 at 4 = ST, the six-figure quantity allows a more 
sensitive test of the validity of the numerical integration. 

us Drift velocity along the z direction. 
V Alternating potential applied to  the cylindrical 

electrode 

W Energy, in  eV, with which ions enter the instrument 
x, y,  z Spatial coordinates as in Fig. 1 
Z Used for in Fig. 3 
P Quantity occurring in  the solution of Mathieu’s 

equation [See Eq. (3)]. In general, if 1/0 is an 
integer, the corresponding solutions of Mathieu’s 
equation will have period 2 ~ / / 3  in 4. 

pz Value of for the x trajectory, usually equal  to p / s .  
0, Value of ,6 for the y trajectory. It is equal to l/s. 
4 Dependent variable in Mathieu’s equation, equal 

to +ut 

0 Angle which injected ions make with the z axis 
w Angular frequency of the alternating potential in 

radians sec-l 39 

MASS SPECTROMETER ION TRAJECTORIES 



References 
1. 

2. 

3. 

4. 

5. 

40 

R. F. LEVER 

w. Paul, H. p. Reinhard, and U. von Zahn, 2. Physik 152, 6. This was also pointed out by von Zahn. See page 2 of 
143  (1958).  Ref. 2. 

U. von Zahn, Rev.  Sei. Inst. 34, 1 (1963). 

Sci. Inst. 25, 485  (1954). 
I. E. Dayton, F. C. Schoemaker, and R. F. Mozley, Rev. 8. T. Tamir, Math. Camp. 16, 77 (1962). 

9. Calculations were programmed in FORTRAN IV, run  on 
N. W. McLachlan, Phil. Mag. 36, 403  (1945). an IBM 7094 computer, and plotted output obtained on  an 

N. W. McLachlan, Theory and Application of Mathieu 
Functions, Oxford University Press, 1951,  pages 79-81. Received August 5, 196.5. 

7. John B. Hudson, American Vacuum Society-11th National 
Symposium, 1964 (unpublished). 

IBM 1627 plotter. 


