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Computation of lon Trajectories
in the Monopole Mass Spectrometer by
Numerical Integration of Mathieu’s Equation®

Abstract: A high speed digital computer used with an off-line curve plotter enabled ion trajectories to be readily obtained in
terms of the initial conditions and the parameters appearing in the differential equation of motion (Mathieu’s equation). A
study of these trajectories has led to the conclusion that ions should not be injected parallel to the axis of the instrument, as
is done at present, but through the axis and at an angle to it. A simple empirical expression enables the variation of posi-
tion of ion focus with mass and operating parameters to be predicted.

Introduction

As vacuum techniques have become more sophisticated,
increasing attention has been paid to the chemical com-
position of the gaseous mixtures in high vacuum systems,
in addition to the total quantity as measured in an
ionization gauge. The ionization gauge operates by
bombarding the gas with electrons of about 100 eV
energy, collecting the resulting ions at a collector electrode,
and measuring the ion current with an electrometer. The
ion currents involved can be extremely small; for example,
a pressure of 107'* atmospheres typically yields an ion
current of 107 ampere. Nevertheless, the chemical
composition of the gas can be determined by separating
ions of different charge/mass ratio and measuring sepa-
rately the currents that are due to the different ion species.
For chemical analysis in high and ultra-high vacuum
systems, such a mass analyzer must be of simple and
rugged construction, must be bakeable, and must have
sufficient resolving power to completely separate adjacent
masses. The high resolution that is needed to detect mass
defects is not needed in chemical analysis.

The mass analyzer that has been most widely used is
the familiar magnetic analyzer, in which a monoenergetic
beam of ions is injected into a uniform magnetic field
at right angles to the direction of ion motion; the ions
then take on circular trajectories whose curvature is
proportional to the square root of the charge/mass ratio.
After the pioneering work of Paul et al.,' however, there
has been strong interest in radiofrequency analyzers of
the quadrupole type. These instruments have advantages
in that they do not require a magnet and are equally

* Sponsored in part by the Air Force Office of Scientific Research
of the Office of Aerospace Research under Contract AF 49(638)-1201.

IBM JOURNAL °* JANUARY 1966

convenient for high or low masses; further, the quadrupole
does not require a well-defined ion injection velocity.
Although the monopole mass spectrometer has a similar
field configuration, it requires that the ion injection be
well-defined. At the same time it has the important merit
that its resolving power is less limited by the velocity
spread in the ion beam than is that of a magnetic analyzer.

A further distinction between the magnetic analyzer
and the monopole instrument is that the circular ion
trajectories of the former are well known and easily
calculated, while those of the latter are highly complex,
difficult to treat analytically and, except for one example
given by von Zahn,® not available in graphic form.
The purpose of this paper is to offer an extensive com-
pilation of trajectories derived for the monopole instrument
through computer solutions to the differential equations
that obtain.’

In both the monopole and quadrupole mass spectrom-
eters,””” ions are caused to oscillate in the segment of
the electric quadrupole field described by

¢ = [(x* — ¥)/rJ(U + V cos wi), M

for which y > |x|. This field has equipotentials in the
form of rectangular hyperbolae with asymptotes y = £+ x.
It has the desirable property, xy terms being absent, that
(0¢/9x) and (3¢/dy), the x and y components of the
electric field, are independent of y and x respectively, so
that the motion of the ions may be resolved into inde-
pendent x and y vibrations. Since (d¢/dz) = 0, the z
component of the motion is a steady drift determined by

T A summary of nomenclature is given on page 39.
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Figure 1 (a) Schematic view of quadrupole mass filter. (b) Schematic view of monopole mass spectrometer with ions in-
jected on the z axis but at an angle to it, with y positive. Ions are usually injected parallel to the z axis as described by von

Zahn and by Hudson [Refs. 2 and 7].

the injection conditions, i.e., by the accelerating potentials
on the ion gun. In the quadrupole mass analyzer,
the desired field is achieved by applying potentials of
+(U + V cos wi) to four electrodes in the configuration
shown in Fig. 1(a). In the monopole, Fig. 1(b), the field
configuration is achieved by placing a grounded Vee-
shaped electrode at y = £x, y > 0 and an electrode of
potential —(U 4 ¥ cos wf) at ° — x* = rZ In practice,
for reasons of mechanical convenience, the electrodes are
in the form of circular cylinders, whose radius R is made
equal to 1.15 r, in order to minimize the resulting field
distortion.'*®

In the monopole instrument the main reason for
utilizing only one-quarter of the quadrupole field is to
achieve mechanical and electrical simplicity. In the
quadrupole, the field pattern has the desired symmetry
and shape only if the four electrodes are supplied with
voltages of exactly correct amplitude and phase; in the
monopole, however, only one electrode must be supplied.
In both the quadrupole and monopole instruments it
has hitherto been common practice to inject ions close
and parallel to the z axis."'* However, one of the conclu-
sions of this paper is that, for a monopole, the ions
should be injected at an angle to the z axis. Figure 1(b)
illustrates this recommended mode of operation.

Since the field distribution is identical for both the
monopole and quadrupole configurations, the ion tra-
jectories calculated in this paper can be considered to
apply to either instrument. However, as is shown in the

next section, in the monopole the coincidence of a physical
boundary with the ground planes places restrictions on
the way in which a monopole can be used and, in practice,
the two instruments operate on different principles. In the
quadrupole, operating conditions are chosen so that
only a narrow band of ion masses describe stable tra-
jectories. Higher masses describe unstable oscillations
in the y direction and strike the y electrodes, while lower
masses describe unstable oscillations in the x direction
and strike the x electrodes. The gquadrupole is, therefore,
a true mass filter irrespective of the value of v,, the drift
velocity in the z direction. As will be shown, the monopole
utilizes ion focussing of the quadrupole field along the z
direction and so requires a reasonably well-defined value
of v,. Almost all ions that are eliminated by striking the
grounded Vee electrodes are ions that describe stable
trajectories and that would be transmitted through a
quadrupole instrument.

Mathematical background

The x and y vibrations obey Mathieu’s equation'*

d2

;IS—Z 4 (a + 2q cos 28)r = 0, )
where:

E=fot;

for r = x, a = 8eU/mw'r; and q = 4eV/mw’r;
for r = y, a = —8eU/mu’r} and g = —4eV/mu’r’.
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(In Eq. (2), e is the electronic charge and m is the mass
of the ion.) If we write M for the mass/charge ratio of the
ion in amu /electron, U and V in volts, f the frequency in
megacycles sec”’, and 7, in centimeters, we have

a = 0.196U/Mfr;, q = 0.098V/Mjfr;.

From the above, it is seen that @ = 2(U/V)q so that for
given U and V the operating point must lie on a straight
line through the origin of the (a, q) diagram with slope
U/V. The effect of varying ion mass or frequency is
merely to shift the operating point along this line.

The drift velocity in the z direction is given by 1 mv® =
eW cos® § where W is the ion accelerating voltage and 6
the angle of injection relative to the z axis. Hence z is
given in terms of £ by the relation

= BeW/mu")E — &) cos® 6.

In the practical units used above, W being in volts, this
gives us

= (0.196 W/Mf)¢ — &) cos’ 6.

A mechanical analogy is provided by the motion of
the bob of a simple pendulum with mass m and length /
describing small oscillations under the influence of a
periodic force F cos wt vertically downward on the bob. In
this case we have £ = 1 wz with a = 4g/w’l, ¢ = 2F/w’ml
for a conventional pendulum (corresponding to the x
vibration) and a = —4g/w’l, ¢ = —2F/w’ml for an
inverted pendulum, corresponding to the y vibration. The
transformation £ = 1 wt is chosen since, for ¢ < a,
unstable solutions then exist for a = »° where n is an
integer. This reflects the well-known fact that one may
““pump up” a garden swing by applying a vertical force
at twice the natural frequency of the swing, corresponding
tow = 2 (g/D"? ie., a = 1. For increasing values of g,
unstable solutions to Eq. (2) occur for an increasingly
wider range of a values until for values of g comparable to
or greater than a, most (a, q) values result in unstable solu-
tions. These results are expressed in the well-known (a, q)
diagram. In this paper one is concerned only with the part
of the (a, q) diagram rather close to the origin, with
g < 0.8 and —0.25 < a < +40.25. The reason for this is
that for the monopole one is interested only in stable
ion trajectories. For ions to describe stable trajectories in
a quadrupole field it is necessary that both the x and y
trajectories be stable so that if an (a, g) diagram be super-
imposed on a (—a, —¢q) diagram, only those comparatively
small areas corresponding to the overlap of stable areas
on both diagrams will yield stable ion trajectories. The
doubly stable area near the origin is the only one used
since the others encompass relatively high values of @ and
g which are difficult to achieve in practice.

The portion of the (a, g) diagram of interest is shown
in Fig. 2. The (a, g) values corresponding to stable solu-

tions lie between the curves a, and b, representing the
stability boundaries. For (a, ¢q) values on a,, a solution
may be obtained corresponding to the tabulated function
cey(§, q); this function is periodic in £ with period = and
has the interesting property that, for the portion of a,
shown in Fig. 2, it does not go negative at any value of £.
The solution so obtained is of little practical use, however,
since in general it must be linearly combined with a
second solution, which is unstable. Similarly, solutions
for (a, q) values on b, are, in general, made up of the
tabulated function se, (£, g) which is stable with period ,
and an unstable solution. However, for (a, g) values lying
between a, and b, a pair of stable solutions ceg(z, g) and
seg(z, g) exist for all (a, g). These have the form*'®

ceg cos

€a) = > 4D (nt ek ®

n=—00

seg sin

where the 4., and § are functions of (a, ¢) only. In partic-
ular, 8 is a smoothly varying function of (a, g), being 0
on a, and 1 on b,. In Fig. 1 iso-8 lines are plotted for
8 = p/10, 0 < p < 10, in addition to the plots for a,
and b,.

As pointed out by McLachlan,*® if 8 = p/s, where p
and s are integers having no common factors, the functions
ceg and se; are periodic with a period 2xs in the variable
£. However, examination of the form of ces and seg enables
one to go somewhat further than this, depending on
whether p is even or odd. Addition of ws to £ increases
all the arguments in Eq. (3) by the quantity (2wns + wp).
Hence, if p is even, this increase will leave all the terms
unchanged, so that ceg and seg will have period xs. On
the other hand, if p is odd, all the terms will be increased
by an odd number of #’s and, thus, ces and seg will be
inverted. The practical significance of this is as follows:
Suppose that both the x and y trajectories could have
a period 2ms in common. In this paper several illustrative
families of ion trajectories are shown for which s = 10.
This does not imply equal 8 values, only that 8, and 3,
should be rational fractions having s as a common denom-
inator. In this case and for a quadrupole instrument, perfect
erect images of the ion source would be formed at intervals
of 2sw in £, that is, spatially at z intervals of 4wsv,/w where v,
is the drift velocity of the ions in the z direction. Unfortu-
nately, this perfect focussing property cannot be utilized
in the monopole. While the x vibration is unrestricted
except for |x| < y, the y vibration cannot go negative.
Since, in describing a complete period all ceg and seg
must go negative (with the single exception of ce, which,
in practice, is of no value) all the ions would hit the
grounded Vee electrode before reaching the first image
point. However, if 8, = 1/s an inverted y image will




Figure 2 The (a, q) diagram for Mathieu’s equation show-
ing the extent of the first stable region and iso-g lines for
0 < B <« 1 at g intervals of 0.1. The lines are numbered
with the integer p where g = p/10.
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occur at (¢ — &) = 7s, (z = sv,/f), where & is the value
of £ at z = 0; if the source is a point source on axis,
this image will also fall within the instrument, i.e., it
will also form on axis. If we also choose 3, = p/s, 1 <
p < s, then an x image will likewise occur at the same
point, erect if p contains more factors of 2 than s but
inverted if not.

The considerations just discussed give the necessary
conditions for ions leaving a point source to come to a
point focus. That they are also sufficient conditions, in that
the y trajectories do not go negative® between £ — & = 0
and £ — & = ws will be demonstrated later by inspection
of the trajectories. These restrictive conditions on 3, and
B, mean that the desired double-focussing conditions can
be obtained only for certain pairs of (a, q) values; this is
illustrated in Fig. 2, where the curves for 8 = p/10 are
plotted, but where the curves for negative g are not shown
since the iso-8 curves are symmetrical about the a axis.®

t The curve b, is not symmetrical about the @ axis, but its place is
taken by curve a, which is obtained by reflection of b, in the ¢ axis.

From Figure 2 it is seen that if one wishes to work with
a y focus at £ — & = 10r, i.e., 8, = 1/10, then one must
choose (a,, ¢,) values on Curve 1, where § = 1/10. If
an x focus also is desired at the same point, it is necessary
that 8, = p/10. Suppose one decides to make p = 5 so
that there will be an x focus at § = 27, 4w, 6w, 8,
and 10z, One must then choose (a,, ¢,) so that (—a,, —g,)
will lie on the curve 8 = 5/10. Since the iso-3 curves are
symmetrical about the a axis, this means that (—a,, g,)
must lie on 8 = 5/10. It is possible to choose 9
pairs of (a, g) values in this way corresponding to
p=1,2,3,...,9. (The value p = 10 giving 3, = 1.0 is
not of practical use since it is on the stability boundary
and the x trajectory would be stable only for one particular
phase of injection.) These nine points are shown in Fig. 2
and correspond to points where the 8 = 1/10 curve,
reflected in the g axis, would cut the other iso-8 curves.
Values of (a, g) for given (p, s) are given in Table 1 (page
30) for 2 < 5§ < 12,1 < p < 5. (The method of calculation
is described in the appendix).

An example of the use of Table 1 is as follows. Suppose
we decide to operate our spectrometer under conditions
such that the ions remain in the rf field for exactly 8 rf
cycles, i.e., (§ — &) = 8, or s = 8. This decision restricts
our choice of (a, g) values to those lying on the line
B8, = 0.125, which lies just above the line for which
p = 1 in Fig. 2. In this way, a y focus is assured. How-
ever, we would like also an x focus so that 38, = p/8,
where 0 < p < 8. Suppose we choose p = 5, then Table 1
tells us that the corresponding (a, ¢) value is (0.147256,
0.576545).

Calculation of the ion trajectories

Although tabulated values exist for the Mathieu functions
of integral order, the calculation of functions of fractional
order is not a simple matter. Even after a pair of solutions
for a given (a, ¢) has been found, it would be somewhat
tedious to combine them to fit the various initial condi-
tions. Since the ions are injected continually, it is necessary
to calculate trajectories for several different phases of in-
jection. It is also necessary to determine the effect of
varying the initial values of y and dy/d{. Even after solu-
tions have been obtained in tabular form, they are very
tedious to plot because of their oscillatory nature.

In view of these difficulties, the problem appears to
be one that should be solved by recourse to an analog
computer, with which it would be possible to obtain out-
put in graphic form, the only input needed being (a, q)
and the initial conditions. This could be done, of course,
by constructing an inverted pendulum, applying a vertical
periodic force of the desired magnitude (by magnetic
or other means), and releasing the bob of the pendulum
at the desired phase and with the desired initial position
and velocity.
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Table 1 Paired values of a [upper] and g [lower] satisfying the condition 8(a, q) = 1/s, B(—a, —q) = p/s, for 2 < s < 13,
p < s. These are operating points for double focussing in the monopole mass spectrometer.

Values Values of p
of s 1 2 3 4 5

3 .000000 .117076 .183624
.451105 .656266 .752057

4 .000000 .078407 .166227 .206116
.344959 .522848 .673016 .732687

5 .000000 .053806 .126186 .190656 .216980
.278436 .429064 .575816 .683276 .723310

6 .000000 .038706 .095019 .156067 .204406 .223000
.233150 .362294 .495503 .610395 .689585 .718107

7 .000000 .029026 .073030 .125161 .175636 .212867 .226671
.200422  .312945 .432374 542783 .633358 .693652 .714933

8 .000000 .022510 .057492 .100984 .147256 .189023
.175699  .275178 .382516 .485382 .576545 .649155 .696401 .712857

9 .000000 .017941 .046272 .082550 .123236 .163704 .198534 .222274 .230721
.156378  .245420 .342500 .437523 .525286 .601176 .660405 .698336 .711428

10 .000000 .014622 .037966 .068448 .103772 .140909 .176176 .205510 .225041 .231906
.140869 .221402 .309820 .397543 .480593 .555717 .619571 .668668 .699745 .710402

11 .000000 .012139 .031673 .057528 .088154 .121500 .155027 .185808 .210768 .227097 .232785
.128150 .201625 .282696 .363872 .441966 .514574 .579307 .633616 .674900 .700802 .709641

12 .000000 .010235 .026802 .048948 .075590 .105293 .136268 .166407 .193377 .214824 228667 .233455
-117532 .185067 .259856 .335236 .408554 .477963 .541700 .597892 .644554 .679707 .701613 .709061

.218429 .229069

The procedure actually employed is to use a digital
computer to numerically integrate the differential equation,
conjoined with an automatic plotter which plots the trajec-
tories from the digital information stored on an output
tape.” The combination is, in effect, a versatile analog
computer, where the differential equation supplies the
physical information that is essential for the computer to
simulate a pendulum, while the plotting equipment replaces
the transducers and display devices that would be required
to yield a record of the motion of the bob. This procedure
allows one to obtain solutions without any knowledge of
the analytic theory of Mathieu’s equation.

In the first instance of its use an (a, g) pair was chosen
at random somewhere near the stability boundary at a
desired (a/q) ratio, and (a, q) values corresponding to a
periodic solution were obtained by trial and error. This
trial did not, of course, lead to a periodic x trajectory at
the same time, and to have attempted to arrive at the
(a, q) values for double focussing by trial and error would
have been a wasteful procedure. In practice, it has proved
more convenient to rely on the analytic theory to provide
the (a, ¢) values needed to obtain solutions of the desired
periodicity, as described in the Appendix.

The numerical integration was accomplished by the
fourth-order Runge-Kutta method as shown in Fig. 3.
The subroutine shown calculates a complete series of y
and dy/dt values as a function of ¢ for given (a, ¢) and a
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specified £ interval /4, which is chosen to be a submultiple
of w. The array E is obtained by dividing the number of
iterations by the quantity ENQ, and is more convenient
than £ (represented by Z) for reference and plotting pur-
poses. Arrays containing the values of y, dy/dg, £ and E
are obtained by the instruction

CALL RUNGE (Y, DY, MT, A, Q)

in the main program, the corresponding data for the x
trajectory being obtained by

CALL RUNGE (X, DX, MT, AA, QQ)

where MT is the total number of iterations,a = A = — AA
and g = Q = —QQ. The arrays are then written on tape
for subsequent off-line operation of the plotter. Initial
values of £ y, dy/d¢, x, dx/dg are developed in the main
program, the initial value of { being transmitted to the
subroutine by the “common” statement. Plots of both x
and y trajectories were obtained at initial phases £ of
0, 7/16 --- 157/16, and =, and were plotted on the
same axes as a function of £ — &;; this procedure pro-
vided, in effect, an envelope of spatial trajectories since
z = 2v,(¢ — &)/w. Sixteen trajectories were superimposed
for all plots shown in this paper. A step size of & = 7/50
was employed for most of the plots.

It was established that the numerical integration was
working correctly by applying two criteria:




(1) Changing the step size /4 to /100 or #/32 did not
materially affect the tabulated output. For 4 = = /10 the
tabulated output was noticeably different, although this
difference would have been barely visible on the plots.

(2) Perfect focussing was observed at (a, q) values for
which the theory predicts perfect focussing.

Resulis

The types of trajectory obtained when ions are injected
on axis, but with finite radial velocity y, or X,, are well
exemplified in Figs. 4(a) and (b). To aid the eye, curves
for trajectories corresponding to & = 0 have been made
prominent. A whole family of trajectories is shown, corre-
sponding to & = 0, #/16, #/8 -+ 15x/16. The (a, q)
value was chosen to give a half period in y of 207 with
B8, = 1/20 and 8, = 19/20. It is seen that the image of
the source forms on axis, as expected, and, that further-
more, the y trajectories do not go negative at any (¢ — &)
value between 0 and 20x. Hence, if a and g can be main-
tained constant with sufficient precision, all ions injected
at an angle through the point (0, 0, 0) will pass through

Figure 3 The subroutine used for numerical integration of
Mathieu’s equation by the fourth-order Runge-Kutta method.
The variable ¢ is represented by Z.

SUBROUTINE RUNGE (V,DV,NT,A,Q)
COMMON H,Z,E.ENQ
DIMENSION E(2500),Z(2500),V(2500),DV(2500)

GRAD(V,Z)=(A+-2.0*Q*COS (2.0*Z))*V
DO 20 N=1,NT
A1=DV(N)*H

B1=GRAD(V(N),Z(N))*H
A2—=(DV(N)4-0.5*B1)*H
B2=GRAD(V(N)+0.5*A1,Z(N)4-0.5*H)*H

A3=(DV(N)4-0.5*B2)*H
B3—=GRAD(V(N)4-0.5*A2,Z(N)4-0.5*H)*H
A4—(DV(N)-+B3)*H

B4—=GRAD(V(N)-}-A3,Z(N)-+H)*H
V(IN--T)=V(N)-+(A1-+2.0*A2-1-2.0*A3+A4)/6.0
DV(N+1)=DV(N)-}-(B1+42.0*B2-+-2.0*B3}-B4)/6.0
EN=N

E(N) = (EN—1.)/ENQ

20 Z(N+4-1)=Z(1)+ EN*H

RETURN

END

the point (0, 0, 20v,/f) without striking the angle elec-
trode in the interval 0 < z < 20v,/7. It is of course obvious
from the form of the differential equation that if R({) is
a solution then kR(§) is also a solution where k is a con-
stant. The y and x values in the plots may therefore be
scaled in an arbitrary manner. In Figs. 4a, 4b, §, 6, 7,
and 8 the scales on the ordinates are drawn correspond-
ing to initial conditions x, or yo = 0, and (dx/df), or
(dy/dt), = 1, but in Figs. 4(c) and (d) the correspond-
ing initial conditions are x, or y, = 1 and (dx/d§), or
(dy/dt), = 0. The actual initial values fed into the com-
puter were different from unity, and were chosen to give
a convenient plot size.

Injection parallel to the axis without radial velocity is
shown in Figs. 4(c) and (d). In this case (a, g) is chosen
to give 8, = 1/10, 8, = 1/2 and a full y period is shown
as would exist in a quadrupole instrument. The inverted
focussing property for ¢ — & = s, 8 = p/s where p is
odd, is well iliustrated. Other plots, not shown, were
obtained for initial conditions where both y, and (dy/d£),
were finite, and similar inverted foci obtained, although
generally with somewhat larger amplitudes of oscillation
than in Figs. 4(c) and (d). It is seen that about half of the
injected ions strike the Vee-electrode after a few rf cycles,
as pointed out by von Zahn,” and although there is a
visible tendency for some ions to bunch on the § axis
just short of (§ — &) = 10w, a good focus is not obtained
within the confines of a monopole instrument, i.e., y > 0,
[x}] < y.

It is clear that injection of the ions on axis but at an
angle to it should give superior resolution because of the
excellent focussing, and also superior sensitivity, since all
the injected ions pass through the instrument, irrespective
of their phase of injection. Furthermore, injection through
the grounded Vee-electrode could be accomplished with
almost no disturbance to the monopole field. Injection
parallel to the axis, as presently employed, must inevitably
introduce end effects which are almost impossible to cal-
culate and difficult to keep under experimental control.

In Figs. 5 and 6 are shown the x and y trajectories for
B8, = 1/10, 8, = p/10 where 0 < p < 10 with initial
conditions y = 0 or x = 0, and (dy/dt) = 1 or (dx/df) = 1.
These plots correspond to operating at (a, g) values co-
incident with the dots on Fig. 2, and represent all possible
trajectories having both x and y foci at (¢ — &) = 10x.
It is seen that the y vibrations follow a similar pattern
irrespective of (a, g) but with a gradually increasing amp-
litude as we move along the 3, = 0.1 line to higher g
values. The x vibrations are, of course, quite varied in
appearance. As will be expected from the considerations
in preceding sections, the x vibration has period 20x for
p=1,3,7and 9; 107 for p = 2 and 6; 5= for p = 4 and
8; and 4r for p = 5. Inverted images at the half-period
values are formed except for p = 4 and 8. These cor-
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respond to 3, values of 2/5 and 4/5 having an even nu-
merator after cancelling, and so the period is 5, not 107.

Trajectories obtained for arbitrarily selected 8, and 8,
cre essentially similar to those shown in Figs. 5 and 6
axcept that focussing is not usually obtained on the first
erossing of the z axis. The effect of varying a and q for a
constant a/q is shown in Figs. 7 and 8. In these figures,
the portions of the x and y trajectories near £ — § = 107
are shown near the operating point 3, = 9/10, 8, = 1/10.
The (a, g) values are chosen, at intervals of 0.297, so that
a and g take values of from —0.89, to 0.89, greater
than the value (0.225041, 0.699745) shown in Table 1. It
is seen that an increase of 40.89%, results in the y focus
being shifted just short of £ = 9. Note that not only do
the values of £ — & for y = 0 decrease as a and q increase,
but also that the focus worsens markedly as one moves
away from the value { — §, = 10w, then improves again
as the values 97 and 117 are approached. The operating
point chosen is quite near the x stability boundary, and in
consequence a considerable increase in the amplitude of
the x vibration is observed for a 0.8%, increase in a and g.

The remainder of this paper will be mainly concerned
with the y trajectory, it being understood that the x
trajectories can always be brought to a focus if required
by selecting an appropriate 3,. Similar series of curves are
obtained for different operating points on the (a, gq)
diagram. The characteristic movement of the y trajectory
envelope, shown in Fig. 7, with good focussing at £ —
¢, = nm and only crude focussing effects at § — & =
(n + 1/2)r, is obtained in all cases; the main difference
resides in the percentage of variation in g that is required
to cause the change. It is of particular interest to relate
the variation in z,, the position of approximate focus,
to the variation in g for constant a/q since this gives
the spatial mass resolution, mass being inversely pro-
portional to g for given values of the instrument param-
eters U, V, W and r,. However, variation in ion mass
changes not only g but also, for a fixed W, the value of
v,; this change must be allowed for.

As described under “Mathematical background”, z is
given in terms of (¢ — &), as

2= (8eW/mw')E — &) cos” 0, 4

an expression which may be combined with the approxi-
mate relation (exact when s is integral),

&£ — Eo)f = =/B = =s,

where (¢ — %), is the approximate value of (¢ — &) for
focus. On substituting for e/mw” in terms of g, ¥ and ry,
one then obtains

7y = 2mry cos” O(W/V)gs . (5)

The spatial mass resolution is then obtained from the
variation of gs° with ¢ at constant (a/g). This has been

Table 2 Values of ¢ and ¢s°(¢ — ¢o) for five different val-
ues of a/q. The various s values are tabulated at the right.
The table demonstrates that gs’(q — ¢o) is reasonably con-
stant with varying s and is approximately equal to 2.

Values
a/q: 0. 0.066042 .172178 .253562 .321604 of
s
go: 0. 0.132336 .348874 ,521757 .673539
gs¥g—qo) 1.904 1.878 1.828 1.778 1.726 4
1.957 1.938 1.896  1.848 1.795 6
1.976 1.961 1.922 1.874 1.821 8
1.984 1972 1.935 1.887 1.834 10
1.994 1.985 1.949 1.901 1.848 16
1.998 1.991 1,957 1.909 1.855 32
2.000 1.993 1.959 1.911 1.856 64
2.000 1.994 1.959 1.911 1.857 160

calculated by a method similar to that described in the
appendix for obtaining the double focus condition. A
binary search on ¢ was made for the condition a(g, 3) —
(a/q)q = 0, for given 8 and (a/q). In this way an approxi-
mate empirical relation was found, namely,

as® = 2/(qg — q0), (6)

where g, is the value of g for 8 = 0 (s = =) for the (a/q)
value in question. Values of the quantity gs’(q — qo) are
shown in Table 2 for various s values along five different
operating lines passing through the points 8, = 0.1, and
8. = 0.1, 0.2, 0.4, 0.6, and 0.9, respectively. The quantity
gs°(qg — qo) is not exactly constant for a given a/g, and
its value decreases somewhat with increasing a/q. Never-
theless, the relation is accurate to approximately 109,
and, in view of its simplicity, is preferable to the more
complex empirical relations which could be devised. The
relation is meant to be used only for s > 3§, i.e., for op-
erating points reasonably close to the line g, in Fig. 2.
Hence, substituting Eq. (6) in Eq. (5) and differentiating,
we obtain

Azs/z; =~ —0.5Aq/(q — aq0) = 0.54m/(my — m),
7

where m, is the mass corresponding to the stability bound-
ary for a given set of operating conditions. Any ion of
smaller mass/charge ratio will come to an approximate
focus on the z axis within some finite distance from the
source. If one substitutes for (g — go) in Eq. (7) one
obtains what is perhaps the most useful relationship:

Az;/z; = —(as/2)*(Aa/aq) = +(gs/2)’Am/m. (8)

Discussion

The plots shown demonstrate clearly that, for a monopole
spectrometer, very exact focussing can be obtained, at
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Figure 5 Plots of y trajectories for s = 10 and for initial conditions y = 0, ¥ = 1, 0 < & < =, at intervals of =/16.
Each set of trajectories is for different integral p values 0 < p < 10 where g = p/10.
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Figure 6 Plots of x trajectories for s = 10 and for initial conditions x = 0, * = 1, 0 < & < =, at intervals of =/16. Each set
of trajectories is for different integral p values 0 < p < 10, where g = p/10.
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least in principle, if the ions emerge from a point source
on the z axis. Injection of the ions off the z axis cannot
produce a focus within the physical bounds of the instru-
ment, although such a mode of injection is conventional
in the quadrupole instrument.” The trajectories we have
shown are applicable to any angle of injection since the x
and y vibrations may be multiplied by arbitrary, and
different, scaling factors. The angle of injection for the
y trajectory should be chosen as large as possible, con-
sistent with the necessity that the desired trajectories not
strike the cylindrical electrode at their position of maxi-
mum amplitude. This will be satisfied in practice if an
undeflected ion beam would strike the cylindrical electrode
about three-fourths of the way from the source aperture
to the collector aperture. The x trajectories can also be
utilized if the ions are deliberately injected with finite x,
the requirement being that |x| < y for the desired trajec-
tories so that the ions do not strike the Vee electrode.

From Fig. 7 and other plots not presented it is clear
that a variation from s = nto s = n =+ 1, where nis an
integer, results in widely separated trajectory envelopes,
each of which cross the axis in a region no greater in
extent than the source. It is sometimes convenient to
think in terms of the percentage variation in s, regarding
s not as an integer but simply as 8;*. On differentiating
the empirical relation of Eq. (6) one obtains

ds/s = —[(gs/2)" + 0.5] dq/q, )
and hence, from Eq. (8),

dz/z = |:————-q2s2 ][é}
q2s2 + 2 s |

Since operating conditions will normally be chosen so
that ¢°s° 3> 2, one may usually neglect the effect of varying
mass on drift velocity and equate dz/z to ds/s. This
equivalence is not true, of course, for an operating line
a = 0 for which (¢gs)* = 2 and dz/z = 0.5ds/s = 0.5dg/q.
It is clear that dz/z can never be smaller than this, how-
ever, so that even for small values of a/q, when s is chosen
large enough an appreciable spatial resolution is obtained.
The advantage in working with a nonzero U value is,
of course, that gs can be made very large by working
close to the stability boundary, s approaching infinity
while g remains finite, and very high resolution thereby
obtained.

The application of Eq. (9) may be illustrated with refer-
ence to Fig. 7, which shows the variation of the trajectories
for a 4-0.89, variation in g around an operating point for
which s = 10 and g &2 0.7. This gives (gs/2)* = 12.25 and
for As = 1, we find Ag/q ~ F 0.8%, in agreement with
Fig. 7. A similar series of figures for s = 20 varying about
the trajectory shown in Fig. 4(a) gave a variation in s
from approximately 19.6 to 20 for Ag/q = 0.4%,. From
Eq. (9), with As = 04, s = 20, g = 0.7, we obtain

(10)

(gs/2f° = 50 and As/s = 0.02, hence Ag/q = 0.04%,
which is in agreement with the above. If one supposes
that As = 0.1 can be resolved, this gives a mass resolution
of 0.019, (or 107%), for s = 20, ¢ = 0.7. It should be
recognized, however, that the excellent focussing charac-
teristic for integral values of s requires not only a perfectly
periodic solution, and hence very constant U, V, ry, and w,
but also a very low spread in v,, for otherwise the ions
would all cross the z axis at the same time interval after
injection, but at slightly different positions.

Some typical operating conditions may be derived as
follows: Unlike the quadrupole mass filter," the monopole
requires reasonably monoenergetic ions since the peri-
odicity in £ can be translated into a focussing action along
the z axis only if v, is well defined. In order to obtain a
reasonably monoenergetic beam of appreciable intensity,
an ion accelerating voltage of the order of 100 volts is
desirable. Hence, putting cos § = 1 and W = 100, one
obtains z7© = 20(¢ — &,)°/Mj* from the relation given on
page 28. If a convenient length z is taken as 32 cm this
gives (£ — &)’ = 50 Mf*. Writing £ — £, = s, this gives
s° = 5 Mf’, where M is in atomic mass units per electron
and f is in Mc/sec. It is clear that a fairly high frequency
is required to enable the ions to experience an appreciable
number of cycles of the alternating field within a reasonable
length. If one now considers an operating condition for
which s = 10, then f* = 20/M. That is, a range of M
from 1 amu/electron to 500 amu/electron would require
{ to vary from 4.5 Mc/sec down to 200 kc/sec.

One can, of course, scan the mass range by varying U
and ¥V keeping U/V constant,” provided that W is also
varied to ensure that the ions always experience the desired
number of rf cycles within the specified length. If this
were not done, then the slower, heavier molecules would
require a higher value of s to focus in a given length, and
the operating point would shift to lower (a, ¢) values as
the mass range was scanned from low to high masses.
Since s would not, in general, be integral in such a mode
of operation, the good focussing properties associated
with integral s values could not be utilized.

Having chosen z, s and W and having obtained the
result Mf° = 20, we now have a = 107°U/r? and
g = 5 X 107°V/rl. Hence, if r; is chosen to be approxi-
mately 10 cm® we have U = 10% and V = 2 X 10%g.
From Eq. (8) we require gs to be as large as possible for
maximum resolution. Let us, therefore, choose ¢ =~ 0.7,
corresponding to 8, = 9/10, in which case ¥V = 1400
volts. Even if we were to choose a = 0, giving the minimum
value of gs = 1.4, we get ¢ = 0.14 and V' = 280 volts.
There is, therefore, a requirement for a supply of alter-
nating potential of the order of 1 kV having a precisely
defined but variable frequency and an amplitude at least
as well defined as the desired mass resolution. Another
requirement is that the physical extent of the ion collector




Figure 7 (at left) The effect of varying g at constant a/q on the quality and position of focus for the y trajectory. Initial
conditions y = 0,y = 1, 0 < & < =, at intervals of =/16. Each set of trajectories is for different (a, g) values, with (a, q)
varying from —0.8% to 4-0.8% of the operating point (—0.225041, —0.699745) at intervals of 0.2%. Vertical scales are
as in Fig. 5.

Figure 8 (at right) As Fig. 7, but for the corresponding x trajectories; i.e., (a, ¢) = (40.225041, 4-0.699745). Vertical scales
are as in Figure 6.
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must be at least as great as that of the source, together
with an allowance for the spread in v, inevitable in any
ion beam. It is of interest to note that if v, is well defined
but has a different value from that for which the instru-
ment has been adjusted, then the mass peaks observed
on varying f will be broadened. The system will attempt
to produce an “exact” focus after the ions have been in
the field for s cycles, s being defined by (g, ¢), i.e., by
U, V, Mf* and r,. If, however, v, is too large, this focus
will not occur at the collector aperture, but beyond it,
and no signal will be detected. In order to bring the ions
into the collector it will be necessary to, in effect, reduce s.
If frequency scanning is employed this will be done by
decreasing the frequency and hence increasing @ and gq,
thereby increasing 3, and hence decreasing s. Since s will
thereby have a nonintegral value, the focus will be broad-
ened. If, therefore, the instrument is sufficiently well ad-
justed that the periodic variation in the quality of focus
illustrated in Fig. 7 can be observed as (a, g) is changed
at constant a/q, then a variation in W should shift the
frequency at which a mass peak is observed and also
broaden that peak. This sensitivity of the position of the
focal spot to the value of v, is therefore an advantage, on
the whole, since it can be used to provide information on
ion energies when the energy is well defined but unknown.

It is instructive to compare the effect of varying ion
velocity on apparent mass with the corresponding effect
in a magnetic mass analyzer. In the latter case, we have
r = mv/eB where r is the radius of curvature of the ion
trajectory, B the magnetic induction and v the ion velocity.
Clearly, an error in the ion velocity would appear as an
equal error in the mass. In the monopole mass spectrom-
eter, an error in v will produce an equal error in z,, the posi-
tion of focus. Hence, from Eq. (8) Av/v = (gs/2)°Am/m.

For large values of gs, a variation in v will have a much
smaller effect on the apparent mass than in the case of
the magnetic mass analyzer. However, for a = 0, then
gs = V/2 and Av/v = 0.5Am/m so that if one operates
with alternating potential only, the instrument is twice as
sensitive to velocity variation as a magnetic mass analyzer.
For the operating point shown in Figs. 7 and 8§, i.e., 8, =
1/10, B, = 9/10, gs is equal to 7 and hence Av/v = 12.5
Am/m so that a 19, change in v will cause only an 0.089,
change in apparent mass as observed on the frequency scan.
A 19, spread in v would not, therefore, broaden the mass
peak very much although it could reduce the sensitivity
if the collector aperture were not designed to accommodate
such a spread.

Another source of resolution loss is variation in r,.
Such a variation is mathematically complicated since it
transforms the simple Mathieu equation into Hill’s equa-
tion, for the reason that any spatial variation in r, within
the range of the instrument, e.g., from ¢ — &, = 0 to 10m,
can be regarded as a periodic variation in a and g, e.g.,

R. F. LEVER

of period 107. Furthermore, variations in », necessarily
introduce small fields in the z direction and also destroy
the complete independence of the x and y vibrations. The
latter is also accomplished by the fact that, in practice,
the cylindrical electrode is not perfectly hyperbolic and,
in fact, is often circular for constructional convenience.
However, variations in r, have the great advantage of not
varying in time. An investigation of the effect of a small
variation in 7, was undertaken by altering the subroutine
described by Fig. 3 to allow a variation in ¢ and g from
—19% att— & = 0to-+19, at £ — & = 10x. When this
was done, the trajectories “overshot,” crossing the (¢ — &)
axis between 10.37 < £ < 10.6w. Although the average
values of a and g were unchanged, this result is not un-
expected since the average values of s would be raised,
as can be seen from Eq. (6) and Fig. 2. It was found,
however, that on increasing a and g at constant a/q until
the trajectory envelope straddled § — & = 10w, a quite
narrow focus was obtained, having a spread in (¢ — &)
of only 7/20. It would, therefore, seem that small varia-
tions in 7, need not be too serious in practice, in that good
focussing can be obtained even when Mathieu’s equation
no longer holds strictly.

Conclusions

1) All injected ions of the desired charge/mass ratio can
be brought to a focus on the axis of the monopole by
correct choice of operating conditions, provided the ions
are injected on the axis and at an angle to it. The value
of the angle is not critical, but the injection velocity must
be well defined.

2) Ton trajectories for a given a/q and given initial con-
ditions may readily be generated by numerically integrating
Mathieu’s equation on a digital computer. These trajec-
tories are readily displayed graphically by plotting off
line from an output tape using an automatic plotter.

3) Very high resolution can be attained. The main limita-
tion is probably the amplitude stability of the alternating
potential.

4) Small deviations from perfect geometry do not greatly
affect the quality of focus.
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Appendix: Calculation of (a, q) values for double focussing

Values of @ may be calculated for a given g and 8 by the method described by Tamir.® The first step is to calculate
three successive iterations of the continued fraction relation

a =8 — i [__ q | _‘__q_Z___l
248 ~a |4+8—a l2n + B8)° — a
_ g | _ 4 | _ ,__,__i__.._l_... n o= A-1
G- —a J4—8—a Gn = BF — a (=123

Tamir showed that the above iteration converges in an
alternating fashion, although sometimes this convergence
is very slow; therefore, he tested for “fast” or “slow”
convergence and in the latter case took the arithmetic
mean of two succeeding iterations as the starting point
for the next two.

To avoid this need for a test for convergence rate,
the following procedure was adopted. If the first three
iterations be denoted by a,,, a;» and a3 then a,,, the
starting point for the next three iterations, is given by

- 031)2/[(021 - as:) + (azt - au)]-

It was found that ag, as never differed in the seventh
place even for 8 = 1 where the normal iteration procedure
was slightly divergent. Five terms were found quite ade-
quate for the summation of each continued fraction. As
previously described, the physics of the monopole provides
that the a value for the x vibration is minus the a value
for the y vibration. If, therefore, we require a pair of

Ay — Q13 = (421

Nomenclature

a Coefficient occurring in Mathieu’s equation. In the
monopole mass spectrometer, a = 0.196 V/ Mf2r§.

ag, b, Curves denoting stability boundaries on the (a, g)

diagram, as in Fig. 2

Electronic charge

Frequency of alternating potential in Mc/sec

Mass of ion

Mass/charge ratio of an ion, in amu/electron

Integer used in specifying operating point

aﬁgg\&

Coefficient occurring in Mathieu’s equation. In the
monopole mass spectrometer ¢ = 0.098 V/Mf’rZ.

ro The closest distance between the cylindrical elec-
trode surface and the z axis (Fig. 1)

s Equal to 1/8,. In this paper, s is usually an integer
except in the discussion section.

U Steady potential applied to the cylindrical electrode

values (a, q) and (—a, —gq) such that for the y vibration
8, = 1/s and for the x vibration 8, = p/s, we then require
that the quantity ¢(g) = alg, 8.) + a(g, 8,) = 0, the
iso-8 lines being symmetrical about the a axis. As can
be seen from Fig. 1, ¢(g) is a monotonically decreasing
function of ¢, so that a simple binary search for the con-
dition ¢(q) = 0 yields the required g(p, 5) and a(p, s).
Since the double focussing points for s > 2 occur at g
values below 0.8, the search procedure was to start with
g > 0.4, Ag = 0.2, adding or subtracting Ag depending
on the sign of ¢, and halving Ag after each iteration.

The values thus obtained are displayed in Table 1. One
cannot, of course, control a and ¢ to six figures in a
practical instrument. This degree of accuracy is retained
for convenience, in recognition that a six-figure quantity
is just as convenient for input to a computer program as a
three-figure one; by yielding more exactly the result
y = x = Qat £ = s, the six-figure quantity allows a more
sensitive test of the validity of the numerical integration.

v, Drift velocity along the z direction.
4 Alternating potential applied to the cylindrical
electrode

W Energy, in €V, with which ions enter the instrument
x, ¥, z Spatial coordinates as in Fig. 1

VA Used for ¢ in Fig. 3

B Quantity occurring in the solution of Mathieu’s
equation [See Eq. (3)]. In general, if 1/8 is an
integer, the corresponding solutions of Mathieu’s
equation will have period 27/8 in £.

8. Value of 8 for the x trajectory, usually equal to p/s.
8. Value of 8 for the y trajectory. It is equal to 1/s.
£ Dependent variable in Mathieu’s equation, equal
to 3wt
Angle which injected ions make with the z axis

w Angular frequency of the alternating potential in
radians sec™
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