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Solution of the Partial Differential Equations
Describing Photodecomposition in a Light-absorbing
Matrix having Light-absorbing Photoproducts

Abstract: A solution has been obtained for the system of partial differential equations describing the photolysis of an arbi-
trary number of light-sensitive materials contained in a semirigid, nonscattering, actinic light-absorbing matrix. Each photo-
reactant may produce stable, actinic light-absorbing products. The solutions reduce to known closed form expressions for the

simplest cases.

Introduction

In an earlier theoretical study of the sensitometry of
positive-working diazotype films we showed that for mono-
chromatic illumination, the shape of the sensitometric
curve is fully determined by the initial actinic density of the
diazo compound and the initial dye density produced on
coupling the diazo to form an azo dye.' Without exception,
such sensitometric curves possess no linear portion and are
unsuitable for many applications.” It has recently been
shown that the sensitometric curve for diazotype films
can be linearized by the use of stratified sensitizing layers
if at least one suitably chosen layer contains an inert,
actinic light-absorbing substance.” As a preliminary step
in the development of a sensitometric theory for diazotype
composite layers, we have obtained a general solution
for the system of partial differential equations applicable
to the photolysis of a single such layer. Our results are
applicable to systems containing an arbitrary number of
light-sensitive materials, each of which may produce
actinic light-absorbing photoproducts. The light-sensitive
layer, semirigid and nonscattering, is presumed to con-
tain photo-inert, light-absorbing materials as well.

Notation and basic equations

The present treatment is restricted to monochromatic
actinic illumination. We shall assume that neither the net
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quantum efficiency of disappearance, ¢,, for each light-
sensitive substance nor the chemical nature of the photo-
products arising from each photoreactant changes with
exposure. We assume that the final photoproducts, though
they may absorb actinic light, are essentially photo-inert.
Beer’s law is presumed valid for all of the substances
throughout the layer. We further assume that any thermal
reactions going on proceed instantaneously, yielding final
product concentrations linearly related to the nominal
primary photoproduct concentrations at all exposures.
Actinic light absorption is presumed to remain isotropic
throughout the entire exposure.

e Notation

n(1) Number of molecules of the i*® photoreactant
encountered throughout the film thickness per
sq cm, e.g., the total number of molecules of
the i*® component remaining at time f.

x Reduced distance (I/L) of a particular ele-
mentary layer from the film surface receiving
the incident actinic light, where / is the actual
distance and L is the total thickness.

Ci(x, ) Concentration, 0n;(f)/dx, in molecules per sq cm
at time ¢ sec and fractional depth x.




I(x, ) Light intensity in photons per sq cm per sec at
point x and time ¢.

k; Absorption coefficient of the i*® light-sensitive
substance measured in base 10 density units per
molecule.

K; Absorption coefficient of the i*® absorbing photo-
product per molecule of i*h photoreactant de-
stroyed.

i Product of effective absorption coefficient of
light-stable absorbers by absorber concentration.

« ratio, base e to base 10 logarithms.

o Basic equations

For the system described the rate of change of light
intensity with depth is

M) oy, i) — iak Cilx, DI(x, 1)
dx =t
- i {[Ci(x, 0) — Cilx, D]aKI(x, 1)}, (1)

i=1

where the sequence of terms describes light attenuation
due to stable light absorbers, photoreactants, and photo-
products, respectively. The rate of change of concentration
of the i** material with time at the point x is

6C,»(x,L)

o = —akp,Ci(x, )I(x, 1). 2)

For the case of a single light-sensitive substance (m = 1),
light absorbers absent (v = 0), and no light absorption
by photoproducts (K; = 0), a closed form solution was
obtained a number of years ago by W. Wirtinger.* More
recently Kirkwood® obtained a solution form = 1, K, = 0.

Derivation of the general solution

We set
f‘ I(x, 1) dt = Ex, f), 3)

with I(x, f) given by

I(x, t) = dE(x, 1)/0t. 4)
By using (4), Eq. (2) can be integrated at once to yield
Ci(x, 1) = Ci(x, Q)™ *Fi#F@=D (5)

Hereafter, clarity permitting, we will write simply C; for
Ci(x, 1, Efor E(x, ), and omit summation limits. We will
denote C,(x, 0) by C°.
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Substitution of (4) in (1) gives
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The replacement of C; in (6) with the exponential expres-
sion of (5) yields
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We now note that
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Using (8), (9) and (10) we may now write (7) as
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Integration of (11) yields on the right-hand side a function
of x alone which we take as K(x). By differentiation of (5)
with respect to x we may readily establish that at t = 0,

¢1 (ozk b E 4 e~ ok E)} = 0. (11)
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dE(x, 0)

or 0 (12)
whence

Kx) = > % (_1;_ — 1). (13)

The differential equation resulting from the time integra-
tion of (11) can be written as

(14)

dx =

ki

K6+ TG (1 - i(—’)e‘”"““” ~ (an + X aKCYE
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If we now take the various components to have been
uniformly distributed throughout the layer at zero ex-
posure, (14) is immediately (numerically) integrable. Thus,

(15)

fE(z.t) dE
X =

B0 > {_C_w (ﬁ — 1)(1 - e'“kmE)} — Elau + 2 aK,C)

b \k;

In practical computation, we choose an arbitrary value of
the exposure at the incident light side, that is, a value of
the lower limit E(D, #), and we integrate to that particular
upper limit that produces a value of unity for the defi-
nite integral. Each E(0, ) is associated with a particular
upper limit E(1, 9 in this way. By (15), E(1, ©) is the
exposure which the extreme back side of the layer has
received, e.g., the exposure at x = 1. In many cases we
may take E(0, 1) = It although the equations are not
limited to a uniform incident intensity. The value of the
definite integral produced by an arbitrary value of the
upper limit (J3('}) < 1) gives the exposure received by
the layer at the fractional depth x. Such values of E(x, )
may be substituted in (5) and a concentration profile
constructed for the layer as a function of the incident
exposure parameter E(0, f). For sensitometric purposes,
however, such concentration profiles are of no great
interest. We need instead, the total number of molecules
of the i** species present in the layer as a function of
E(, 1), e.g., we wish to evaluate

f "G, ) dx = ni(EO, D). (16)

We may do this for every species by combining (14) and
(5) to produce

E(1,t) qu—akidh'E dE
§

We set
—akCox = In Ty, (19)

where T, is the initial actinic transmission of the layer.
Integration and the insertion of limits gives

E. = —In[l + Toe™ — 1)] (20)
ok
for the total exposure emerging from the back side of the

layer.

In our earlier work' we showed that the transmission
of a layer containing a single photobleaching material was
given by

=7 L : (21)
— —akplot
( Te l)e 4+ 1
The exposure transmitted by such a film is evidently
¢ ! I, at
E, = f IOTdt=f - o (22)
0 0
. 1) —akélot
<T0 e +1
Integration and insertion of limits gives
E, = —In[1 + Toe™"* — 1) (23)
ok
: (17

ni(B0, 1) = |

®;

where the limits are to be determined, as outlined above,
with the aid of (15).

Closed form comparisons

We may check (15) against a closed form result if we
place u = 0, K; = 0, and m = 1. For this case, (15)
reduces to

x = j;E‘ dE (18)

ot —Cy (1 _ e—ak¢E)
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0
E(0,1) Z {_9_ (Ifl _ 1>(1 _ e—ﬂlki¢|‘E)} —

E(Om + X aK,-c?)

in agreement with the result, (20), obtained from (15).
With the now-verified result for E, we may check (17)
via a closed form expression. We have

E: — akpE
—de dE
nE) = [ _dE (24)
It 1 —e
Integration, insertion of limits and simplification yields
e—akn — " 1 — T, ( 2 5)
= —oak¢lot
(To 1)3 +1

in agreement with (21).




We may show that Eq. (15) reduces to Kirkwood’s
integral by setting K; = 0, m = 1, and taking kC, = 8
to obtain

E(z,t)
px= [ dE )

E0,1y —1 — akoE
;;(1 ~ e ") — (au/B)E

Equation (5) gives E = —(1/ak¢)y, which on substitution
in (26) yields

1 [ dy
X = =~ — .
g @ fv 1 —e" — (u/B)y

Results

Extension of Egs. (1) and (2) to the case of polychromatic
illumination is straightforward although the resulting sys-
tem of equations must be solved numerically.® Using a
program devised by L. A. Skinner, polychromatic illumi-
nation sensitometric curves for a variety of complex diazo
film systems have been calculated on the IBM 7094, and
these checked against the corresponding experimental
systems with excellent agreement in all cases.” The
assumptions as to the constancy of quantum efficiency
with exposure and the applicability of Beer’s law are
evidently correct for the materials studied.

Appendix

We transcribe here Professor Kirkwood’s solution:
ar

= wl — kCI

ac

5 = —9kCI

I = I, exp {~px — k[ c(X', 1) dx’}
0
ol
I + ul =
a ’ plz'—2) ’ ’ —pz
B;{InC+kfe C(x,t)dx}=—¢k10e
0

In CE Tk f FEOIC, f) — O, 0)] dx’
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Sty B — D=0
X

Vo = —¢klpt at x =0

v dy
—_— T = 8.
fw 1 — ¢ — (u/B)y B
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