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Solution of the Equation for Wave Propagation
in Layered Slabs with Complex Dielectric Constants

Abstract: A numerical procedure for solving the eigenvalue equation u” = [V (x) — E]u, where V(x) is complex, is described.
The number of eigenvalues, and their approximate location, can be determined by contour integration in the complex trial
eigenvalue plane. Some general features of the solutions, and an example, are given.

1. Introduction

In this paper we show how to count and find the solutions
of the equations for electromagnetic wave propagation
along a dielectric slab whose complex dielectric constant
is an arbitrary bounded function of one rectangular co-
ordinate. These equations must be solved to find a quanti-
tative description of the modes which propagate in injec-
tion lasers," devices in which population inversion and
negative absorption coefficients are achieved in a thin
layer near a p-n junction by injecting carriers across the
junction. They apply also to a variety of other structures.
A very simple three-layer model is illustrated schematically
in Fig. 1.

We simplify the problem by considering the dielectric
to be of infinite extent in the y and z directions. If the wave
propagates in the z direction, then the electric and mag-
netic fields can be independent of y. There are two classes
of such fields which satisfy Maxwell’s equations.” For one
class, the transverse electric or TE modes, the solution
has the form

&,(x,z,t) = u(x) exp (iKz — iwt), (1.1)

where &, is the y-component of the electric field, K is the
complex propagation constant, and w is the angular fre-
quency of the radiation. The x- and z-components of the
electric field and the y-component of the magnetic field
vanish in this case. For the other class of solutions, the
transverse magnetic (TM) modes, the roles of electric and
magnetic field are interchanged. We consider only the
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TE modes in the body of this paper, since they lead to a
simpler differential equation, but briefly consider the TM
modes in Appendix 1.

The time-averaged intensity of the wave [Eq. (1.1)]
varies as exp (Gz), where G = —2 Im(K) is the gain con-
stant. If the real and imaginary parts of K have opposite
signs, the mode is a growing mode and the radiation is
amplified on traversing the medium.

If Eq. (1.1) is substituted in Maxwell’s equations,” we
find that u(x) must satisfy

u''(x) + [(@°/K(x) — K'lu(x) = 0, (1.2)

where «(x) is the complex dielectric constant, which is
related to the index of refraction n(x) and the absorption
coefficient a(x) by

k(x) = [n(x) + Licw 'a(x))’. (1.3)
For convenience we rewrite Eq. (1.2) in the form
w'(x) = [V(x) — Elu(x). (1.4)
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Figure 1 Cross section of a simple three-layer dielectric
slab. The complex dielectric constant takes on different
values in each of the three layers.
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This equation would be equivalent to the one-dimensional
Schrodinger equation if the potential

V(x) = =@ /rx) = —[c"wn(x) + }ialx)]* (1.5)

were real. In our case both V and the eigenvalue E = —K°
are complex.

We want to find absolutely square integrable solutions
of Eq. (1.4) which are continuous and have continuous
derivatives. Because E and V are complex, the procedures
required are somewhat different from those used in the
real case.® Furthermore, the solutions u(x) will also be
complex, and we cannot use node counting to label them.
In the following section we give the numerical procedure
used to solve Eq. (1.4) provided a reasonably good trial
eigenvalue is known. An alternative procedure is described
in Appendix 2. In Section 3 we show how to determine
the number of solutions in a given region of the complex
trial eigenvalue plane and how to find suitable trial eigen-
values. Some general properties of the solutions of Eg.
(1.4) are summarized in Section 4. In Section 5 we con-
sider a particular example to show how the solutions
evolve as the imaginary part of the potential varies.

2. Calculation of solutions

The numerical method is essentially that described in
Ref. 3 except that here all numbers are complex rather
than real. It is assumed that ¥(x) approaches constant
values as x goes to + » or — « . We take a finite x interval
(x1, xy) so large in both directions that our results will
approximate those for an infinite interval if we assume
V to be equal to V; for x < x,, and Vy for x > xy. Then,
imposing the condition that the solution be bounded for
all x gives the solution outside the (x;, xy) interval,

u(x, E) = u, exp [(V, — E)}(x — x,)] for x < xi,
(2.1)

and

u(x, E) = uy exp [—(Vy — E)(x —xy)] for x > xy,
(2.2)

where we take the square root whose real part is positive.
Regarded as a function of the complex variable E, u(x, E),
with x < x; is an analytic function of E in the complex
plane except for points on the branch cuts

Re E > Re V,, (2.3)

Im E= Im V,.

For x > xy, the same situation holds for the branch cut
>

Re E > Re Vu, (2.4)

Im E = Im VN.

For x < x; or x > xy, u(x, E) is sinusoidal with constant
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amplitude for all E on the branch cut, Eq. (2.3) or (2.4),
respectively. The analytic continuation of u(x, E) in E
past a branch cut is unbounded in x for large |x|, hence
is not an acceptable solution.

To derive difference equations in the quantities u; =
u(x;, Eyand V; = V(x;), where x; = x, -+ (i — Dh, i = 0,
1, <+« , N1 1, we use the approximation

ul! ~ (y,»_l — 2y, + yiﬂ)/hz, (2‘5)
where
y: = [l — B(V, — E)/12]u,. (2.6)

At points where V is continuous, the error in this ap-
proximation is —/2°u{® /240 (See Ref. 3). Where V is dis-
continuous, we replace it by its average, (V; + ¥V.)/2,
where “I”” and “r” denote values approached from the left
and right, respectively. The error is A (u(® — u®)/6 at
such points. Boundary conditions are obtained from
Eqgs. (2.1) and (2.2), giving

Yo = y, exp [—A(V, — E)%],

2.7
yxe1 = yx exp [—h(Vy — E)'].
From these, we get the difference equations
Ciyn— =0,

—Viaa+Cyi — i1 =0, i=2,3,---, N— 1,

—yyo1 + Clyy = 0, (2.8)
where
C., =24+ K(V, — E)[1 — W¥(V. — E)/12],
C¥ = C, — exp (—h/ V. — E), (2.9)

Ct = Cy — exp (—hA/Vy — E).

These are N linear equations in the y;’s which we wish to
solve for the values of E for which non-zero eigenvectors
{9} exist.

The iteration-variation method of Lowdin® is applied
to the system of equations (2.8). To obtain the iteration
formulas, consider the more general problem of finding
the eigenvalues of

Mv = 0 (2.10)
where M is a matrix whose elements are all analytic func-
tions of E in some open region R of the complex E-plane,
and v is a nonzero vector. Assuming the existence of a

trial solution of the form v = (1, v,) which satisfies all
but the first of Egs. (2.10), we can write

My = Mo+ Mov, = f(E), @.11)
M., + M,.v, = 0. (2.12)

where M,, and M,, are, respectively, the first row and




column of M with the first element, M,,, deleted, and M,,
is the submatrix of M obtained by deleting the first row
and column of M. Thus, f(E) is defined as the result of
solving Eq. (2.12) for v, and substituting the solution in
Eq. (2.11). If we further restrict E to a region where
det M,, # 0,

f(E) = M11 - M1TM:iMT1. (213)

The zeros of f(E) give all eigenvalues except those for
which v; = 0. In order to use the Newton-Raphson
method® to find the zeros of f(E), we derive a formula for
the derivative of f(E). Multiplying Egs. (2.11) and (2.12)
on the left by vT = (1, v,), [T denotes transpose] we get

f(E) = v'Mv, (2.14)
Using the fact that M is symmetric, we get
df/dE = v'(dM/dE)v + 2(dv"/dE)Mv. (2.15)

The Jast term of Eq. (2.15) is zero since the first element of
(dv"/dE) is zero and all elements of Mv are zero except
the first. Hence, the Newton-Raphson correction to a trial
eigenvalue E is

—J(E) _ —vTMv .
df(E)/dE — "(dM/dE)v

E* — E = (2.16)

The basic procedure for finding the eigenvalues is as
follows: With a trial eigenvalue E, an arbitrary value is
selected for y, and the recurrence relation, Eq. (2.8), is
applied with increasing i, yielding y,, y,, **+ , ... These
are normalized by dividing each by y,, and replacing the
respective y’s by the result. Similarly, starting with an
arbitrary yy, Eq. (2.8) is applied with decreasing i and the
resulting series of values, ¥y, Yy—1, *** , ¥m, is normalized
by dividing by the value obtained for y,,. In this manner,
a trial solution is obtained which satisfies all difference
equations except the m*™. Letting this m** difference equa-
tion assume the role of Eq. (2.11) and letting y,, = v; = 1,
we have

f(E) = T Vm-1 + Cmym = Vom+1. (2.17)

This is a measure of the mismatch in the difference y,, —
Ym—1 as given by the inward and outward integration.
From Eq. (2.15), and the definition of the matrix elements
given in Egs. (2.8) and (2.9), we get

ateyar = = i 3 - 3| Aon =

vi exp [=h(Vy — E)ﬂ-

+ (Vs — EF

(2.18)

We use Egs. (2.17) and (2.18) in the correction formula of
Eq. (2.16) to obtain a correction to the trial eigenvalue E.

The present method is essentially the one used by
Hartree® except that here the correction to the trial eigen-
value, obtained from Egs. (2.16) through (2.18), may differ
from Hartree’s depending on how one approximates the
derivatives and integral in the latter.

It has been shown in the real case® that it is important
to keep m, the matching poini, away from nodes in the
desired solution, and experience has indicated that select-
ing m near a maximum of the solution gives a better rate
of convergence and more accuracy. Therefore, the pro-
gram selects an optimal m on each iteration by integrating
inward and outward to i = N/2. Then, m is set at the
point where the modulus of the solution is greatest and
the inward or outward integration is continued from
i = N/2 to m. During the iterations on E, it is important
for the program to check that it does not cross one of
the branch cuts. This can occur when the corrections have
inadvertently started converging towards inadmissible
solutions on the analytic continuation of f(E) past the
branch cut or when the correction has overshot its mark
in attempting to converge to an admissible solution lying
near a branch cut. In either case, the correction is reduced
in magnitude, but not direction, and several further at-
tempts at convergence are carried out.

3. Counting and locating solutions

The procedures described in the previous section show
how to find the solution to Eq. (1.4) when a good trial
eigenvalue is known. Most of the solutions can be found
by a systematic variation of trial eigenvalues, but there
is no guarantee that all the solutions will be found in this
way. In fact, in the example to be given in Sec. 5, some of
the solutions were missed until the procedure to be de-
scribed here was used. We find that it is easy to count the
number of solutions in any specified region of the complex
trial eigenvalue plane, and to locate the position of each
solution with arbitrary accuracy.

Our method is based on the theorem that for a function
F(E), analytic in an open region containing a closed simple
curve C except for a finite number of points inside C
where it may have poles of finite order, the difference
between the number of zeros, N, and poles, P, inside C is
given by’

1 [dFE)/dE . 1
zZ—P=5 T dE = o~ 55 d(arg F(E)),

3.1)

where the integral is taken around C. For the purpose of
counting eigenvalues we modify our definition of F(E).
We now rescale only the result of the inward integration
by a factor chosen to make it match y,, from the outward
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integration. Letting $y, Py_1, ***
of the inward integration, we let

, Vm designate the result

Vi = ¥Iu/Pm, i=momz+1,---, N, (3.2

FE) = =Yyt + 2V = Vue1 + B (Ve — E)ttn,
(3.3)

and define

8(E) = . (3.4)

Note that the formula for the derivative, Eq. (2.18), no
longer applies because y,, is not kept equal to one, but
the present F(E) still has the sought-for eigenvalues as its
Zeros.

The poles of F(E) coincide with the zeros of g(E), and
their number is

P =L § darg o(E)), (3.5)

since g(E) has no poles. Adding Egs. (3.1) and (3.5) gives

z = ()" § dlarg F(E)(E) (3.6)

for the number of zeros of F(E) within the contour. In the
calculation, a closed curve C is given and F(E) and g(E)
are computed for values E,, E,, +++ , of E around C. The
change in phase of F(E) g(E) for any successive pairs of
E’s is taken to be between — 7 and -, and the intervals
between successive E’s are adjusted during the calculation
to keep the magnitude of the phase change smaller than a
fixed quantity. In our work, this upper limit was 0.8
radians. After a complete circuit, Eq. (3.6) is calculated
to yield Z, the number of zeros within C.

In the computer program for counting solutions, pro-
vision is made for a rectangular contour C, subdivided
into a variable number of rectangular subcontours. Care
must be taken that none of the regions or contours con-
tains points on the branch cuts of Eq. (2.3) or (2.4). The
number of solutions is evaluated in each of the internal
rectangles. In this way it is possible both to count the
solutions and to obtain an estimate of their location. More
accurate estimates can be obtained by further subdivision
of the rectangles which contain one or more solutions.

4. General propetrties of the solutions

In this section we summarize some properties of the solu-
tions of Eq. (1.4). We shall assume that the potential ¥(x)
is bounded, and that it approaches constant values V',
and V_ as x approaches -}-« and — o, respectively. The
trial solutions of Eq. (1.4) are analytic functions of the
trial eigenvalue E everywhere except on the branch cuts
of Egs. (2.3) and (2.4). When V', = V_, these branch cuts
coincide. The branch cuts give the continuous eigenvalues
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of our problem, i.e., those values of E for which the eigen-
functions u(x) of Eq. (1.4) are bounded but are not ab-
solutely square integrable.

Absolutely square integrable solutions of Eq. (1.4) exist
only for a discrete set of eigenvalues; there may not be
any such solutions. If we assume that such a solution u;
exists, with eigenvalue E;, then

W) = [V — EXlut(x) “.1)

is the complex conjugate of Eq. (1.4). If we multiply Eq.
(1.4) by u*, multiply Eq. (4.1) by u;, subtract the two
products, and use Green’s theorem and the fact that the
absolutely square-integrable solutions vanish as |x| — «,
we find®

Im E, — [ / i [Im V(x)Jut(us(x) dx:|

X [ f_ : (0 us(%) de. (4.2)

When the potential is real, this reproduces the familiar
result that the eigenvalues are real. It is also easy to show
in a similar way that two solutions #; and #; belonging to
different eigenvalues E; and E; are orthogonal,®
00
f u;(x)u;(x) dx = 0, E; #% E;. (4.3)
If E; is an eigenvalue not too close to other eigenvalues,
and if it has only one associated solution u;(x), then we
can give the first- and second-order perturbations &, F,
and 6,E; of the eigenvalue, and the first-order perturba-
tion é,u; of the eigenfunction, which result from a small
change 6V in the potential. We find:

61E,'

It

/ °° S V()i(x) dx/ N, (4.4)

(B - BT

i

X (j: 3 Vu,(x)u;(x) dx)z/ N;N;, (4.5)

62Ei

It

Siui(x) = Z’ (E; — E;) 'u,(x) f_w 8 Vu,u; dx/ N;,
(4.6)

where the primed sums are over all the solutions except
the it and

N; = f ) Wi(x) dx. (4.7)

In the interesting case in which V is real and 6V is purely
imaginary, the first-order changes in both the eigenvalue
and the eigenfunction are purely imaginary, and the
second-order change in the eigenvalue is real. In this case
the real parts of the eigenvalues of two neighboring,




strongly interacting solutions approach each other and
can cross, a result quite different from the usual one for
real ¥ and 6V. We find an example of this behavior in
the following section.

5. An example

To illustrate the nature of the solutions of the wave equa-
tion (1.4), we consider a specific example which arose in
connection with experimental observations of high-order
transverse modes in the radiation patterns of injection
lasers with a high-resistance layer.® The optical model for
our example has five layers, of which the two outermost
are infinitely thick. In all layers the index of refraction
n and the absorption coefficient « are constant. The index
values and the thicknesses of the layers are given in the
first two rows of Table 1. We vary the absorption coeffi-
cients in the layers to see how the solutions depend on the
magnitude of the imaginary part of the potential. The
absorption coefficients for three cases are also given in
Table 1. The potential itself is found from Eq. (1.5) once
n and « are given in each layer. These examples are of
interest because the layers are many wavelengths thick,
and thus there are many solutions. In such cases the pro-
cedures we have described are particularly useful.

In the simplest case, Case 1, the absorption coefficient
in each region is taken to be zero. There are eleven solu-

tions for this case, all real, and they have 0, 1, --- , 10
nodes, respectively. For each solution we calculate
K = k — %iG = (—E). (5.1)

and we order the solutions according to the value of k,
as in Table 2. Solution 1 has the largest value of k, and
its eigenfunction u(x) has no nodes; solution 11 has the
smallest value of k, and has ten nodes. Since the potential
is real for Case 1, the eigenvalues are real. They are all
negative, and G therefore vanishes for all solutions of
Case 1.

Table 1 Optical constants for the multilayer model of Sec-
tion 5. The thickness, index of refraction n, and absorption
coefficient « are given for each of the five layers. The
potential V(x) is given by Eq. (1.5) with A\ = 27 ¢ o™
8.33 X 10° cm.

Constants: Layers:
1 2 3 4 5
Thickness [10~4cm]: 8.0 3.2 2.0 L3
Index of refraction n:  3.61 3.63 3.63 3.61 3.58
Absorption
coefficient « [cm™1]:
Case 1 0 0 0 0 0
Case 2 20 200 0 200 250
Case 3 20 200 —1000 200 250

In the physical problem that led to the optical model
of Table 1, the middle layer is an active layer in which
radiation is generated, and in which the absorption co-
efficient can be negative. The remaining four layers are
absorbing layers. Case 2, the second case for which
solutions are given, is one in which the absorption co-
efficients in the four absorbing layers have attained their
full values, but the absorption coefficient «,., in the
active layer is still zero. In Case 3, the absorption in
the active layer attains the value —1000 cm™.

We find from Table 2 that the introduction of the imagi-
nary part of the potential has two main effects. First, more
solutions appear than are present when the potential is
real. Second, the order of the k values for the solutions
is not preserved. As the imaginary part of the potential
varies linearly between Case 2 and Case 3, the order of
the k values for solutions 2 and 3 changes. This is an
example of the behavior suggested by Eq. (4.5), which
shows that an imaginary perturbation to a real potential
can cause the real parts of the eigenvalues of two strongly
interacting solutions to approach each other.

Table 2 Eigenvalues for the square-integrable solutions of
Eq. (1.4) with the potentials of Table 1. Values of G and
k, which are related to the eigenvalue E by E = (3G + ik)?,
are given in c¢cm™. The values in any row vary smoothly
as the potentials is varied linearly from Case 1 to Case 2,
and from Case 2 to Case 3, except for solutions 12, 13, and
14. All results were calculated with h, the step size for x,
equal to 5 x 10 cm.

Solution Case I2: Case 2: Case 3:
k k G k G
1 273 792 273 785 —190 273 782 —196
2 273 754 273 728 —-92 273 692 945
3 273 691 273 715 —147 273 711 —182
4 273 602 273 605 —155 273 593 —159
5 273 488 273 486 —141 273 427 —125
6 273 349 273 351 —133 273 350 760
7 273 186 273 189 —144 273 213  —82
8 273 000 273 000 -—143 272 953 =22
9 272 792 272 792 —136 272 767 425
10 272 565 272 566 —139 272 625 28
11 272 332 272 329 —134 272 319 30
12b.c - 272 090 —116 272 071 21
130 - 271 927 —122 271 967 —22
14b.c - 271 693 —44 271 730 25

a G = 0 for all the solutions of Case 1.

b Solutions 12, 13, and 14 do not exist for Case 1.

e Solution 12 reaches the branch cut when the absorption
coefficient a5+ in layer 3 reaches —~436 cm™! as we vary linearly
from Case 2 to Case 3. This solution is missing until a,ct reaches
—842 cm™, where it re-emerges on the other side of the branch
cut. The corresponding values of asct, are —95 and —864
cm~! for solution 14, which also hits the branch cut.
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One final effect, briefly explained in the notes to Table 2,
is that some of the solutions, in our case solutions 12 and
14, have eigenvalues which reach the branch cuts of Sec-
tion 2, and then no longer exist, as the absorption in the
active layer is varied. In both cases, the solutions eventu-
ally reappear on the other side of the branch cut as the
active layer absorption is varied further. Thus, the number
of solutions of the wave equation depends sensitively on

the potential function V(x), and a procedure to count
and locate the solutions, as described in Section 3, is
essential if all the solutions are to be obtained.
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Appendix 1. Transverse magnetic modes

The second class of solutions of Maxwell’s equations for
our problem is a superposition of terms of the form

3,(x,z, t) = u(x) exp (iKz — iwt), (A.1)

where 3C, is the y-component of the magnetic field, and
the remaining symbols have the same significance as in
Eq. (1.1). In this case the equation that u(x) must satisfy is

w’'(x) — (& /u'(x) + [E — V0)lulx) = 0,  (A.2)

where E and V(x) have the same meaning as in Eq. (1.4).
The first derivative can be eliminated if we let

u(x) = w1, (A.3)

and w(x) must then satisfy®

w'(x) + [E— V() + "/2) — (3x°/4°)w(x) = 0.

(A.4)

Although (A.4) has the same form as Eq. (1.4) and can

be solved in the same way, it is highly singular near a

discontinuity in «(x). For that reason it is preferable to
work with the equation

W /0) = [V(x) — E]u(x)/x(x)], (A.5)

which is equivalent to (A.2). From (A.5) we see that #'/«
is continuous at a discontinuity of x(x), which also follows
from the boundary conditions for electric and magnetic
fields at a discontinuity in the dielectric constant.

Appendix 2. Alternative solution for the multilayer
case

The procedures described in Sec. 2 are applicable to the
solution of Eq. (1.4) for any bounded function V(x). If,
as in the example of Sec. 5, this function is piecewise con-
stant, then an alternative analytical procedure becomes
possible. If the j* layer extends from x;_; to x;, and if
V(x) = V; in that layer, then we can write as the solution
of Eq. (1.4):

u(x) = a; exp [(V; — E)’x]

+ b exp [—(V; — E)xl, %, <x<x. (B)
In the two outermost layers only the exponentially de-
creasing solution is allowed, and only one of the coeffi-
cients is nonzero. We can extend the solution inward from
the right, and outward from the left by choosing the q;
and b; so that both u(x) and «'(x) are continuous at the
boundaries between successive layers.

At some matching point x,,, which can be chosen arbi-
trarily, the inward and outward solations, #;,(x) and
u,,(x), can be compared. If neither piece of the solution
vanishes at the matching point, and if the function and its
derivative do not join smoothly there, then the correction
to the trial eigenvalue E is given by®
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E* — E = [Wu(xn) — ubalxn)][fZe #'(x) ax]™,

(B.2)

provided the solution has been normalized so that
U, (Xn) = U;(x,,) = 1. If either u_,, or u;, should vanish
at x,,, this correction formula cannot be used, and another
matching point must be chosen.

Using one point of discontinuity as the matching point,
R. A. Willoughby has employed this alternative method in
the calculation of solutions for the symmetric three-layer
case. The absolute value of the largest eigenvalue so ob-
tained agreed to three significant figures with the one
calculated here using N = 20 integration points.' The
analytic procedure requires less computation time if the
number of discontinuities is relatively small. However,
to permit full generality in the potential function V(x),
it was decided to program the finite difference method
described here. We are indebted to Dr. Willoughby
for proposing this method of solution and for program-
ming it for the symmetric three-layer case.

The procedure described in Sec. 3 for counting the
number of solutions in a given region of the trial eigen-
value plane is easily extended to this alternative method
of solution.
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