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Solution of the Equation for Wave  Propagation 
in  Layered  Slabs  with  Complex Dielectric Constants 

Abstract: A numerical procedure for solving the eigenvalue  equation U” z [ V ( x )  - E]u, where V ( x )  is  complex,  is  described. 
The number of eigenvalues,  and  their approximate location, can be determined by contour integration  in  the  complex trial 
eigenvalue  plane.  Some  general features of the solutions,  and an example, are given. 

1. Introduction 

In this  paper we show how to count and find the solutions 
of the equations  for electromagnetic wave propagation 
along a dielectric slab whose complex dielectric constant 
is an  arbitrary bounded  function of one rectangular co- 
ordinate.  These  equations  must be solved to find a quanti- 
tative description of the modes which propagate in injec- 
tion lasers,’ devices in which population inversion and 
negative absorption coefficients are achieved in a thin 
layer near a p-n junction by injecting carriers  across the 
junction.  They  apply also to a variety of other structures. 
A very simple three-layer model is illustrated schematically 
in Fig. 1. 

We simplify the problem  by considering the dielectric 
to be of infinite extent in they  and z directions. If the wave 
propagates  in the z direction, then the electric and mag- 
netic fields can be independent of y. There  are two classes 
of such fields which satisfy Maxwell’s equations.’ For one 
class, the transverse electric or TE modes, the solution 
has the  form 

€#(x ,  z, t )  = .(x) exp (iKz - iw t ) ,  (1 -1) 

where E, is  the y-component of the electric field, K is the 
complex propagation constant,  and w is the angular fre- 
quency of the radiation. The x- and z-components of the 
electric field and  the y-component of the magnetic field 
vanish in this case. For  the  other class of solutions, the 
transverse magnetic (TM) modes, the roles of electric and 
magnetic field are interchanged. We consider  only the 
* The work of this author was supported by the U.S. Army Elec- 
tronics Command under Contract DA 36 039 AMC 02349(E). 

TE modes in  the body of this paper, since they  lead to a 
simpler differential equation, but briefly consider the TM 
modes  in Appendix 1. 

The time-averaged intensity of the wave [Eq. (1.1)] 
varies as exp (Cz), where G = -2 Im(K) is the gain con- 
stant. If the  real  and imaginary parts of K have  opposite 
signs, the mode is a growing mode and  the radiation is 
amplified on traversing the medium. 

If Eq. (1.1) is substituted in Maxwell’s  equations:  we 
find that u(x) must satisfy 

U ” ( X )  f [ ( C L ~ / C ~ ) K ( X )  - K 2 ] U ( X )  = 0, (1.2) 

where K ( X )  is the complex dielectric constant, which is 
related to the index of refraction n(x) and  the absorption 
coefficient a(x )  by 

.(X) = [.(x) + $icw”a(x)l2. (1 .3)  

For convenience we rewrite Eq. (1.2) in  the  form 

u”(x) = [ V(X) - E]u(x ) .  (1.4) 

LAYER 1 

iz 
Figure 1 Cross  section of a simple three-layer dielectric 
slab. The complex  dielectric constant takes on different 
values  in  each of the three layers. 405 
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This equation would be equivalent to the one-dimensional 
Schrodinger equation if the potential 

V(X) = - (W~/C’)K(X) = - [c”wn(x) + fia(x)12 (1.5) 

were real. In our case both V and the eigenvalue E = - K z  
are complex. 

We want to find  absolutely square integrable solutions 
of Eq. (1.4) which are continuous and  have continuous 
derivatives.  Because E and V are complex, the procedures 
required are somewhat  different from those  used in the 
real  case? Furthermore, the solutions u(x) will  also  be 
complex, and we cannot use node counting to label them. 
In the following  section we  give the numerical  procedure 
used to solve  Eq. (1.4) provided a reasonably  good trial 
eigenvalue  is  known. An alternative  procedure  is  described 
in  Appendix 2. In Section 3 we show  how to determine 
the number of solutions in a given  region  of the complex 
trial eigenvalue  plane and how to find  suitable trial eigen- 
values.  Some  general  properties of the solutions of Eq. 
(1.4) are summarized in Section 4. In Section 5 we con- 
sider a particular example to show  how the solutions 
evolve  as the imaginary part of the potential varies. 

2. Calculation of solutions 

The numerical method is essentially that described in 
Ref. 3 except that here all numbers are complex rather 
than real. It is  assumed that V(x) approaches constant 
values as x goes to + or - . We take a finite x interval 
(x1, xN) so large  in both directions that our results will 
approximate those for an infinite interval if  we assume 
V to be equal to Vl for x < xl, and V N  for x > xN. Then, 
imposing the condition that the solution be  bounded for 
all x gives the solution  outside the (x1, x N )  interval, 

and 

where we take the square root whose real part is positive. 
Regarded as a function of the complex  variable E, u(x, E), 
with x < x1 is an analytic function of E in the complex 
plane  except for points on the branch cuts 

Re E 2 Re V1, 

Im E = Im V I .  

For x > xN, the same situation holds  for the branch  cut 

Re  E 2 Re V N ,  

Im E = Im V,. 

406 For x < x1 or x > x,, u(x, E) is  sinusoidal  with constant 

amplitude for all E on the branch cut, Eq. (2.3) or (2.4), 
respectively. The analytic continuation of u(x, E )  in E 
past a branch cut is unbounded  in x for large 1x1, hence 
is not an  acceptable solution. 

To derive  difference equations in the quantities u; = 
u(x;, E )  and V; = V(x;), where x; = x1 + (i - l )h,  i = 0, 
1, * * , N + 1, we  use the approximation 

u:’ = ( Y e 1  - 2Yi + Yi+l) /h2,  (2.5) 

where 

. ~ i  3 [I  - h2( Vi - E)/12]~;. (2.6) 

At  points  where V is continuous, the error in this ap- 
proximation is -hhGu~”/240 (See  Ref. 3). Where V is dis- 
continuous, we replace it by its average, (Vl  + V,)/2, 
where “I” and 5’’ denote  values approached from the left 
and right,  respectively. The error is h3(uj3’ - ~ 1 ~ ’ ) / 6  at 
such  points.  Boundary conditions are obtained from 
Eqs. (2.1) and (2.2), giving 

yo = y1 exp [ - N  V,  - E ) + ] ,  
(2.7) 

Y N + ~  = Y N  exp [ - h ( v N  - E)*].  

From these, we  get the difference equations 

CiYl - Y z  = 0, 

- .Y-~  + Ciyi - yi+l = 0, i = 2, 3 ,  . .. , N - 1, 

- Y N - I  + c$YN = 0, (2 * 8) 

where 

Ci = 2 + hz( Vi - E)/[1 - h2( V ;  - E)/12], 

c:: = C, - exp ( - h 4 v 1  - E ) ,  (2.9) 

C$ = C, - exp ( - h 4 v N  - E ) .  

These are N linear equations in the y;’s which we  wish to 
solve for the values of E for which non-zero  eigenvectors 
{ yi ] exist. 

The iteration-variation method of Lowdin4  is  applied 
to the system  of equations (2.8). To obtain the iteration 
formulas,  consider the more  general  problem of finding 
the eigenvalues  of 

Mv = 0 (2.10) 

where M is a matrix  whose  elements are all analytic  func- 
tions of E in some  open  region R of the complex E-plane, 
and v is a nonzero vector.  Assuming the existence of a 
trial solution of the form v = (1, v,) which  satisfies all 
but the first of Eqs. (2.10), we can  write 

Mv = /Mil + MlrvT = f(E),  (2.11) 

\MTl + M,,v, = 0 .  (2.12) 

where MI, and Mrl are, respectively, the first  row and 
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column of M with the first element, MI, ,  deleted, and M , ,  
is the submatrix of M obtained by deleting the first row 
and column of M .  Thus, j (E)  is defined as the result of 
solving Eq. (2.12) for v,  and substituting the solution in 
Eq. (2.11). If we further restrict E to a region where 
det M , ,  # 0, 

/ ( E )  = M , ,  - M , , M ; ; M , , .  (2.13) 

The zeros of j (E)  give all eigenvalues except those for 
which u, = 0. In  order  to use the Newton-Raphson 
method' to find the zeros of f ( E ) ,  we derive a  formula for 
the derivative of f ( E ) .  Multiplying Eqs. (2.11) and (2.12) 
OR the left by vT = (1, vrT),  [T denotes transpose] we get 

f (E)  = v T M v .  (2.14) 

Using the fact that M is symmetric, we  get 

d f / d E  = v T ( d M / d E ) v  + 2 ( d v T / d E ) M v .  (2.15) 

The last term of Eq. (2.15)  is zero since the first element of 
( d v T / d E )  is zero and all elements of M v  are zero except 
the first. Hence, the Newton-Raphson correction to a trial 
eigenvalue E is 

(2.16) 

The basic procedure for finding the eigenvalues is as 
follows: With a trial eigenvalue E, an  arbitrary value is 
selected for y ,  and  the recurrence relation, Eq. (2.Q is 
applied  with increasing i, yielding y,, y 2 ,  - - - , y,. These 
are normalized by dividing each by y ,  and replacing the 
respective y's by the result. Similarly, starting with an 
arbitrary y,, Eq. (2.8) is applied with decreasing i and  the 
resulting series of values, y N ,  y N - , ,  - - , y,, is normalized 
by dividing by the value obtained  for y,. In this  manner, 
a  trial  solution is obtained which satisfies all difference 
equations except the rn th. Letting this rn th difference equa- 
tion assume the role of Eq. (2.11) and letting y ,  = u1 = l ,  
we have 

f ( E )  = -Y,-1 + C m Y ,  - Y,+ 1 .  (2.17) 

This is a measure of the mismatch in the difference y ,  - 
y,-l as given  by the inward and  outward integration. 
From Eq. (2.15), and  the definition of the matrix elements 
given in Eqs. (2.8) and (2.9), we get 

y i  exp [ -h(  vN - E)+] 
( VN - E)' -k 3. (2.18) 

We use Eqs. (2.17) and (2.18) in the correction formula of 
Eq. (2.16) to obtain  a correction to  the trial eigenvalue E. 

The present method is essentially the one used by 
Hartree' except that here the correction to  the trial eigen- 
value, obtained from Eqs. (2.16) through (2.18), may differ 
from Hartree's depending on how one  approximates the 
derivatives and  integral  in the latter. 

It  has been shown in the real case3 that  it is important 
to keep rn, the matching  point, away from nodes in the 
desired solution, and experience has indicated that select- 
ing rn near  a maximum of the solution gives a better rate 
of convergence and more accuracy. Therefore, the  pro- 
gram selects an  optimal m on each  iteration by integrating 
inward and outward to i = N/2. Then, m is set at  the 
point where the modulus of the solution is greatest and 
the inward or  outward integration is continued from 
i = N/2  to rn. During  the iterations on E, it is important 
for the program to check that it does not cross one of 
the branch cuts. This  can occur when the corrections have 
inadvertently started converging towards inadmissible 
solutions on  the analytic  continuation of j (E)  past the 
branch cut  or when the correction has overshot its  mark 
in attempting to converge to  an admissible solution lying 
near a branch cut. In either case, the correction is reduced 
in magnitude, but  not direction, and several further at- 
tempts at convergence are carried  out. 

3. Counting and locating solutions 

The procedures described in the previous section show 
how to find the solution to Eq. (1.4) when a  good  trial 
eigenvalue is known. Most of the solutions can be found 
by a systematic variation of trial eigenvalues, but  there 
is no guarantee that  all  the solutions will be found in this 
way. In fact, in the example to be given in Sec. 5, some of 
the solutions were missed until  the procedure to be de- 
scribed here was used. We find that it is easy to count the 
number of solutions in any specified region of the complex 
trial eigenvalue plane, and  to locate the position of each 
solution with arbitrary accuracy. 

Our method is based on  the theorem that  for a function 
F(E), analytic in an open region containing  a closed simple 
curve C except for a finite number of points inside C 
where it may have poles of finite order,  the difference 
between the number of zeros, N ,  and poles, P, inside C is 
given  by7 

d F ( E ) / d E  

where the integral is taken around C. For  the purpose of 
counting eigenvalues we modify our definition of F(E). 
We now rescale only the result of the inward  integration 
by a  factor chosen to make it match y ,  from the  outward 407 
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g(E) = 7,. (3.4) 

Note  that the  formula  for  the derivative, Eq. (2.18), no 
longer applies because y ,  is not kept  equal to one, but 
the present F(E) still  has  the sought-for eigenvalues as its 
zeros. 

The poles of F(E) coincide with the zeros of g(E), and 
their number is 

since g(E) has no poles. Adding Eqs. (3.1) and (3.5) gives 

Z = (2a)-’ $ d[arg F(E)g(E)] (3.6) 

for the number of zeros of F(E) within the  contour.  In  the 
calculation, a closed curve C is given and F(E) and g(E)  
are computed for values E,, E2, - * , of E around C. The 
change in phase of F(E) g(E)  for  any successive pairs of 
E’s is taken to  be between -a and fa, and  the intervals 
between  successive E‘s are adjusted during the calculation 
to keep the magnitude of the phase change smaller than a 
fixed quantity. In  our work,  this  upper limit was 0.8 
radians. After a complete circuit, Eq. (3.6) is calculated 
to yield 2, the number of zeros within C.  

In  the computer program  for counting solutions, pro- 
vision is made for a rectangular contour C, subdivided 
into a variable number of rectangular subcontours. Care 
must be taken that none of the regions or contours con- 
tains points  on the branch  cuts of Eq. (2.3) or (2.4). The 
number of solutions is evaluated in each of the internal 
rectangles. In this way it is possible both to count  the 
solutions and  to obtain an estimate of their location. More 
accurate estimates can be obtained by further subdivision 
of the rectangles which contain one or more solutions. 

4. General properties of the solutions 

In this section we summarize some properties of the solu- 
tions of Eq. (1.4). We shall assume that  the potential V(x) 
is bounded, and  that it  approaches  constant values V+ 
and V- as x approaches + 03 and - m , respectively. The 
trial  solutions of Eq. (1.4) are analytic functions of the 
trial eigenvalue E everywhere except on  the branch cuts 
of Eqs. (2.3) and (2.4). When V+ = V-, these branch cuts 

408 coincide. The branch  cuts give the continuous eigenvalues 

of our problem, i.e., those values of E for which the eigen- 
functions u(x) of Eq. (1.4) are bounded but are  not ab- 
solutely square integrable. 

Absolutely square integrable solutions of Eq. (1.4) exist 
only for a discrete set of eigenvalues; there may not be 
any such solutions. If  we assume that such a solution ui 
exists, with eigenvalue E;, then 

u:’*(x) = [ V*(X) - E:]U$(X) (4.1) 

is the complex conjugate of Eq. (1.4).  If  we multiply Eq. 
(1.4) by u:, multiply Eq. (4.1)  by u;, subtract the two 
products, and use Green’s theorem and  the fact that  the 
absolutely square-integrable solutions vanish as 1x1 4 w , 
we  find’ 

When the potential is real, this reproduces the familiar 
result that  the eigenvalues are real. It is also easy to show 
in a similar way that two solutions u; and ui belonging to 
different eigenvalues E; and Ei are orthogonal,’ 

[: ui(x)ui(x) dx = 0, Ei # Ei. (4.3) 

If Ei is an eigenvalue not  too close to other eigenvalues, 
and if it has only one associated solution ui(x), then we 
can give the first- and second-order perturbations &E, 
and &Ei of the eigenvalue, and the first-order perturba- 
tion 6,ui of the eigenfunction, which result from a small 
change 6 V in the potential. We find: 

&Ei = l, 6 V(x)u:(x) dx/ Ni, 
a0 

(4.4) 

&Ei = E’ (Ei - 
f 

Ei)” 

(4.6) 

where the primed sums are over all  the solutions except 
the ith, and 

Ni = [, u:(x) dx. 
00 

(4.7) 

In the interesting case in which V is real and 6 V is purely 
imaginary, the first-order changes in both the eigenvalue 
and  the eigenfunction are purely imaginary, and the 
second-order change in the eigenvalue is real. In this case 
the real parts of the eigenvalues of two neighboring, 
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strongly interacting  solutions approach each other  and 
can cross, a result quite different from the usual one  for 
real V and 6V. We fmd an example of this behavior in 
the following section. 

5. An example 

To illustrate the  nature of the solutions of the wave equa- 
tion (1.4), we consider a specific example which arose in 
connection with experimental observations of high-order 
transverse modes  in the radiation  patterns of injection 
lasers with a high-resistance layer.' The optical  model for 
our example has five layers, of which the two  outermost 
are infinitely thick. In all layers the index of refraction 
n and  the absorption coefficient a are constant. The index 
values and  the thicknesses of the layers are given in the 
first two rows of Table 1. We vary the absorption coeffi- 
cients in the layers to see how the solutions  depend on  the 
magnitude of the imaginary part of the potential. The 
absorption coefficients for  three cases are also given in 
Table 1. The potential itself is found  from  Eq. (1.5) once 
n and a are given in  each layer. These examples are of 
interest because the layers are many wavelengths thick, 
and  thus there are many solutions. In such cases the pro- 
cedures we have described are particularly useful. 

In  the simplest case, Case 1, the absorption coefficient 
in each region is taken to be zero. There are eleven solu- 
tions for this case, all  real, and they have 0, 1, . . - , 10 
nodes, respectively. For each  solution we calculate 

K = k - $jG = ( - E ) * .  (5.1) 

and we order  the solutions  according to the value of k ,  
as in  Table 2. Solution 1 has  the largest value of k,  and 
its eigenfunction u(x) has  no  nodes; solution 11 has  the 
smallest value of k, and  has ten nodes. Since the potential 
is real for Case 1, the eigenvalues are real. They are all 
negative, and G therefore vanishes for all  solutions of 
Case 1. 

Table 1 Optical  constants for the multilayer  model of  Sec- 
tion 5. The thickness,  index of refraction n, and absorption 
coefficient CY are given for each of the five layers. The 
potential V ( x )  is  given by Eq. (1.5) with h = 2 r  c w-' = 
8.33 X lod cm. 

Constants:  Layers: 

1 2  3  4  5 
Thickness [lo-' cm] : m 8.0 3.2 2.0 m 

Index of refraction n :  3.61 3.63 3.63 3.61 3.58 
Absorption 
coefficient (Y [cm-'1: 

Case 1 0 0 0 0 0 
Case 2 20 200 0 200 250 
Case 3 20 200 -1000 200 250 

In the physical problem that led to the optical  model 
of Table 1, the middle layer is an active layer in which 
radiation is generated, and in which the absorption co- 
efficient can be negative. The remaining four layers are 
absorbing layers. Case 2, the second case for which 
solutions are given, is  one  in which the absorption co- 
efficients in the four  absorbing layers have  attained  their 
full values, but  the absorption coefficient aaOt in  the 
active layer is still zero. In Case 3, the  absorption in 
the active layer attains  the value - 1000 cm". 

We fmd from Table 2 that  the introduction of the imagi- 
nary  part of the potential has  two main effects. First,  more 
solutions  appear than  are present when the  potential is 
real. Second, the  order of the k values for the solutions 
is not preserved. As the imaginary part of the potential 
varies linearly between Case 2 and Case 3, the  order of 
the k values for  solutions 2 and 3 changes. This  is  an 
example of the behavior suggested by Eq. (4.9, which 
shows that  an imaginary  perturbation to a real potential 
can cause the real parts of the eigenvalues of two strongly 
interacting  solutions to approach each  other. 

Table 2 Eigenvalues for the square-integrable  solutions of 
Eq. (1.4) with the potentials of Table 1. Values of G and 
k, which are related to the  eigenvalue E by E = (BG + i k ) 2 ,  
are given in cm-l. The values  in  any  row  vary  smoothly 
as the potentials  is  varied linearly from Case 1 to Case 2, 
and from Case 2 to Case 3, except for solutions 12, 13, and 
14. All results  w,ere  calculated  with h, the step size for x,  
equal to 5 x lo-' cm. 

Solution 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

1 1  
I2b.C 
1 3b 
14b.c 

Case I" : 

k 
273 792 
273 754 
273  691 
273 602 
273  488 

273  349 
273 186 
273 000 
272 792 
272 565 

272 332 
- 
- 
- 

Case 2 : 

k G 
273 785 -190 
273 728 -92 
273 715 -147 
273 605 -155 
273 486 -141 

273  351 - 1 3 3  
273  189 -144 
273 OOO -143 
272 792 -136 
272 566 -139 

272 329 -134 
272 090 -116 
271  927 -122 
271 693 -44 

Case 3 : 

k 
273 782 
273 692 
273 711 
273  593 
273 427 

273 350 
273 213 
272 953 
272 767 
272 625 

272 319 
272 071 
271 967 
271 730 

__ 
G 

- 196 
945 

- 182 
- 159 
- 125 

760 
- 82 
- 22 
425 
28 

30 
21 

- 22 
25 

a G = 0 for all the  solutions of Case 1.  
Solutions 12, 13, and 14 do not exist for Case 1. 
Solution 12 reaches the branch  cut  when  the  absorption 

coefficient  in  layer 3 reaches -436 cm-l as we vary  linearly 
from Case 2 to Case 3. This  solution is  missing  until aaEt reaches 
- 842 cm-',  where it re-emerges on the  other side of the  branch 
cut.  The  corresponding  values of aaot are -95 and -864 
cm-l for solution 14, which  also  hits  the  branch  cut. 409 
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One  final  effect, briefly  explained  in the notes to Table 2, 
is that some of the solutions, in our case  solutions 12 and 
14, have  eigenvalues  which  reach the branch cuts of  Sec- 
tion 2, and then no longer  exist, as the absorption in the 
active  layer  is  varied. In both cases, the solutions  eventu- 
ally  reappear on the other side of the branch  cut as the 
active  layer absorption is  varied further. Thus, the number 
of solutions of the wave equation  depends  sensitively on 

the potential function V(x), and a procedure to count 
and locate the solutions, as described  in  Section 3, is 
essential if all the solutions are to be obtained. 

Acknowledgment 

We are indebted to H. G. Cohen and to R. W.  Keyes for 
helpful  criticism and suggestions. 

Appendix 1. Transverse magnetic modes 

The second  class of solutions of  Maxwell’s equations for 
our problem  is a superposition of terms of the form 

x,(x, z, t )  = .(x) exp ( i K z  - iwt ) ,  ( A . 0  

where X, is the y-component of the magnetic  field, and 
the remaining  symbols  have the same  significance as in 
Eq. (1.1). In this case the equation that u(x) must  satisfy  is 

u”(x) - (.’/.).’(X) + [E - V(x)]u(x) = 0 ,  (A.2) 

where E and V(x)  have the same  meaning  as  in  Eq. (1.4). 
The first  derivative  can  be  eliminated if  we let 

.(X) = W(X)[K(X)I‘, (A.3) 

Appendix 2. Alternative solution for the multilayer 
case 

The procedures  described in Sec. 2 are applicable to the 
solution of Eq. (1.4) for any bounded function V(x). If, 
as in the example of  Sec. 5,  this function is piecewise con- 
stant, then an alternative analytical  procedure becomes 
possible. If the jth layer  extends from xi-l to x i ,  and if 
V(x)  = Vi in that layer, then we can  write as the solution 
of Eq. (1.4): 

.(x) = ai exp [( vi - ~ ) f x ]  

+ bi exp [ - ( V i  - E)’,], xi-1 5 x 5 xi. (B.l)  

In the two outermost layers  only the exponentially  de- 
creasing solution is allowed, and only  one  of the coeffi- 
cients is nonzero. We can  extend the solution inward from 
the right, and outward from the left by choosing the ai 
and bi so that both u(x) and u’(x) are continuous at the 
boundaries between  successive  layers. 

At  some  matching point x,, which  can  be  chosen arbi- 
trarily, the inward and outward solutions, uin(x) and 
uout(x), can be compared. If neither piece  of the solution 
vanishes at the matching  point, and if the function and its 
derivative do not join smoothly there, then the correction 

41 0 to the trial eigenvalue E is  given byg 
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and w(x) must  then  satisfy’ 

W”(X) + [ E  - V(X) + (K”/2K) - (3K”/4K2)]W(X) = 0. 
(A -4) 

Although (A.4) has the same  form as Eq. (1.4) and can 
be  solved in the same  way, it is highly  singular near a 
discontinuity in K(x). For that reason it is preferable to 
work  with the equation 

(U ’ IK ) ’  = [ V(X> - E][u(x)/K(x)], (A.5) 

which  is  equivalent to (A.2). From (A.5) we  see that U ’ / K  

is continuous at a discontinuity of K(x), which also  follows 
from the boundary  conditions for electric and magnetic 
fields at a discontinuity  in the dielectric constant. 

E* - E = ~ U ; ” ~ ( X ~ )  - u f n ( ~ , ) ] [ j ? ,  .‘(X) dx]”, 

(B.2) 

provided the solution  has been normalized so that 
uout(xm) = uin(xm) = 1. If either uOut or uin should vanish 
at x,,,, this correction  formula cannot be  used, and another 
matching point must  be  chosen. 

Using  one point of discontinuity as the matching point, 
R. A. Willoughby  has  employed  this  alternative  method  in 
the calculation of solutions for the symmetric  three-layer 
case. The absolute value  of the largest  eigenvalue so ob- 
tained agreed to three significant  figures  with the one 
calculated  here  using N = 20 integration  points.” The 
analytic  procedure  requires  less computation time if the 
number of discontinuities is relatively  small.  However, 
to permit full generality in the potential function V(x), 
it was  decided to program the finite  difference  method 
described  here. We are indebted to Dr. Willoughby 
for proposing this method of solution and for program- 
ming it for the symmetric  three-layer  case. 

The procedure  described  in  Sec. 3 for counting the 
number of solutions in a given  region  of the trial eigen- 
value  plane  is  easily  extended to this alternative  method 
of solution. 
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