Short Communication

H. J. Zweig

Two-Dimensional Laser Deflection Using

Fourier Optics

Although several methods of rapid light deflection have
been proposed by Bergmann and others," the problem of
two-dimensional deflection is still not completely solved.
The purpose of this communication is to examine the
feasibility of a method of diffracting the collimated mono-
chromatic light of a laser by means of the diffraction
spectrum of crossed objects having variable frequency,
periodic amplitude or phase. By such means it is possible
to move an intense light spot over a two-dimensional
field. A possible application of this principal would be
in read-only computer stores.

Description of the scheme

One realization of this two-dimensional light deflection
scheme is shown in Fig. 1. A laser, L, is used to produce
collimated monochromatic light that is incident on a pair
of cells x and y containing a liquid such as water. These
cells control the x and y axes, respectively.

Plane compression waves at ultrasonic frequencies are
made to traverse these cells in directions that are mutually
perpendicular and are perpendicular to the direction of
light propagation. These cells then act as a pair of crossed
diffraction gratings, and a lens is used to produce the
Fraunhofer diffraction spectrum in the plane P.

The light distribution in the plane P depends on the
frequencies of the ultrasonic waves propagated through
cells x and y and on the velocity of the sound waves in
the liquid, but the general appearance will be as in Fig. 2.

Points of light along the x and y axes are due to the
diffraction orders of the individual gratings produced in
the two cells. Off-axis light points are due to the moiré
effect, i.e., the interaction of the grating effects. The in-
tensity distribution of any light points, assuming the lens
to be perfect, is given by J3(4,)J3(4,), where i denotes
the diffraction order in the x direction, j the diffraction
order in the y direction, and 4, and A, are related to the
amplitudes of the compression waves in the liquid. The
quantity J is the usual symbol for the Bessel functions
of the first kind. The (x, y) positions of a moiré light point
due to the interaction of, say, first-order diffraction spectra

are directly proportional to the frequencies »,, », of the
ultrasonic waves. By controlling the amplitudes 4, and 4,
it is possible to make the energy in, say, the first order
JH(A)J3(A,), large compared with the energy in any
other off-axis moiré order and by varying the ultrasonic
frequencies v, and v, the four points (indicated by closed
circles, o, in Fig. 2), can be moved so that each will sweep
over a quadrant of the plane P.
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Figure 1 One configuration of the two-dimensional light de-
flection scheme.

Figure 2 General appearance of light distribution in the
plane P.
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It turns out that considerable light energy can be
achieved for J2(A.)J;(4,) while allowing an almost
equal amount of energy to appear in the second orders
JHANA,), TAANA,) and J(A.)J5(4,). In that
case, one should restrict the frequency ranges (v, v,) to
be greater than one-half of the maximum frequency,
(corresponding to the maximum angular deviation of the
first diffraction order) and in this case each of the light
points due to first- and second-order diffraction will
sweep out uniquely the respective areas indicated in Fig. 3.

Thus, if the plane P were a storage plane containing
clear and opaque spots as bits, it would be possible to
address and read out simultaneously a word of 16 bits
by utilizing the first and second moiré orders in the
four quadrants of the P plane. It will be shown below
that access time of the order of 10 us to each of approxi-
mately 10° words of 16 bits each should be achievable. It
should be noted that in this situation most of the light is
distributed among 16 light points so that each spot con-
tains approximately 59, of the energy in the laser beam,
neglecting losses due to absorption in the optical system.

Limitations and trade-offs

o Deflection, resolution and access time

The data presented here are based on the material con-
tained in Born and Wolf.” These authors state that ultra-
sonic waves up to angular frequency of 3 X 10° sec™’
have been achieved. They give the velocity of sound in
water as v = 1.2 X 10° cm/sec so that the wavelength
of the travelling-wave phase grating produced in the cells
can be small as A = 2.5 X 10~* cm or 2.5 microns. This
means that the angular deflection, «, achievable with
light of wavelength A = 0.5 micron (green light) is ap-
proximately

for the first-order spectrum. For red light (A = 0.7 u)
the angular deflection is limited to about 20°.

If the beam incident on the cells is w = 1 cm wide the
number of points which can be resolved in either direction
is

where f is the focal length of the lens.

By requiring the angular deflection to be greater than
(1/2)a (see Fig. 3) and allowing two linear resolution
elements per bit, we still have left a total of 10° bits for
each of the moiré orders.

Since the velocity of the ultrasonic wave in water is
1.2 X 10° em/sec it will take approximately 8 us for a
complete change of frequency distribution across a 1-cm
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Figure 3 Areas swept out in plane P by light points due to
first- and second-order diffraction.

diameter beam. Consequently the random access time for
any bit position is about the same as the access time for
an adjacent bit position for a tape. By changing the beam
diameter to 1 mm the time to change frequency (and hence,
spot positioning) can be reduced to less than 1 ys. But in
that case the linear resolution is reduced by a factor of 10,
so that storage capacity is reduced by a factor of 100.
Conversely, storage density could be increased at the
expense of access time by using a wider beam diameter.
For some applications, as in character generation for
printing, it may only be necessary to have a 10 X 10 field
of spots and in this case access time can be cut to 0.1 us
so that complete characters can be generated at the rate
of 10° per second.

o Energy limitations and trade-offs

The energy of any light spot in the Fraunhofer plane is
given by BJi(4,)J(A,), where i and j denote the diffrac-
tion order, respectively, in the x and y direction and B is the
intensity of the incident light. We shall take 4, = 4, = 4
and relate the amplitude of the ultrasonic waves to the rele-
vant optical parameters. For collimated light, normally in-
cident on the ultrasonic waves, we have 4 = (dre,)/ ()\\/ e_o),
where ¢, is the dielectric constant of the undisturbed liquid
through which the ultrasonic waves travel. The maximum
increment in the dielectric constant ¢, is due to the ultra-
sonic compression waves, and d is the cell thickness, i.e., the
path length of the light beam during its interaction with
the ultrasonic wave.

Born and Wolf give a value of ¢, in the order of 107*
so that using a refractive index of n = \/ ; = 1.5 and
a cell diameter d = 1.0 cm, we obtain

_T e, __ 314 107"
T Aye 05X 107715
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Table 1 Bessel functions for several values of A.

A Jo Ji Jy Js

1.0 0.765 0.440 0.115 0.005
1.5 512 .558 .232 .061
2.0 .224 577 .33 .129
2.5 .002 .497 .400 .143
3.0 —~.260 .339 .486 .309

Needless to say, A can be varied by means of variations
in either ¢, or 4. The values of the Bessel functions of
interest for various values of 4 are shown in Table 1.

From Table 1 we can see that by operating at 4 = 1.5
we obtain an intensity of Jj(1.5) = 0.097, or almost
109, of the incident energy in each of the four first-order
moiré spots. By working in the neighborhood of 4 = 2.5
essentially all of the light points on the x and y axes are
extinguished since J, X/ 0 and approximately 59 of the
light can be directed to appear in each of 16 spots repre-
sented by the terms J3J; with i = 1, 2; j = 1, 2. The latter
condition could be used for reading information in parallel
out of a large memory, while the former condition could be
used for dynamic display, in which the energy, rather than
the information rate, must be maximized.

At high ultrasonic frequencies the attenuation of the
ultrasonic energy in water can become the limiting factor
in determining resolution. For example, at 1.5 X 10° cps
the distance for a 1/e attenuation is only about 0.2 cm
for a resolution of about 200 lines per field. By using a
solid medium such as quartz, the attenuation is reduced
by almost two orders of magnitude; however, in this case
the beam must be widened by a factor of three to maintain
the same resolution since the velocity of sound in quartz
is that much larger (which affects A).

Some experimental results that point toward the feasi-
bility of this deflection scheme have appeared recently in
connection with one-dimensional light deflection.®"*
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Appendix: Derivation of light distribution

in the Fraunhofer plane

Let x, y be coordinate values in the plane of the ultrasonic
waves, and §, 7 be coordinates in the Fraunhofer plane.
Let a monochromatic plane wave of unit amplitude be
incident normally on the plane of the ultrasonic waves.
The effect of the ultrasonic compression wave is that of
modifying the phase ¢(x, y) of the light distribution in
such a manner that if ¢(x, y) = constant then after passing

through the ultrasonic disturbance we have ¢(x, y) =
o(x) + &) = 4, sin v,x + A, sin »,y. (We can neglect
time variations since in the end we are concerned only
with intensities.) In the Fraunhofer plane, we have the
amplitude distribution U(, %) given by:

1\? ) )
U(E’ 77) — <E> ff euﬁ(z,y)em(fﬁny) dx dy

— feiAzsianzeiEx dxfeiAysinVyyeiﬂy dy.

Since
74 sin a — Z Jk(A)eika
k=—
and since
1 * tkaz itz
— dx = _
P _we e X 8(& — ka)
2%; 5 e ™ dy = §(n — IB)
and

8¢ — ka)d(n — IB) = 8(t — ke, n — 1)
we obtain for U(£, 1) the expression:
Utt, 7 = Jo(4.) JO(A,,)B(E, n)
+ Jo(4.) Jl(Av)' o, m £ )
+ Ji(A4.) Jo(4,)8(¢ £ v., m)
+ Jl(Az)Jl(Au)'B(E £ v, n £ Vv) + -
Consequently, the light is concentrated at the points
¢ = kv, n = Ik
=0, +1,£2, -+ I =0, &1, £2, -~
and the intensity at these points is given by
|UE ) = | Ulkv,, )|

I =0,41,+£2---

= Ji(4.)Ji(4,). 0 1 2 ..
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