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Thermal  Problems of the Injection Laser 

Abstract: Heat is  produced during the operation of an injection laser. The thermal conduction  problems  associated  with  the 
flow of the heat  away from the junction  region  have  been  solved  and the temperature increase of the junction  has  been  calcu- 
lated for several  simple  model  cases. The results  have  been  applied to the calculation of thermal limitations on the perform- 
ance of gallium  arsenide  lasers. 

Introduction 

Certain  applications of lasers require  operation at high 
power levels. One  limitation on  the power level at which 
a solid state laser may be operated is thermal. Generally, 
not all of the pumping power delivered to  the laser is 
emitted as  light; a large  fraction of it is converted into 
heat. The heat raises the temperature of the laser. If the 
temperature rise is sufficiently great the character of 
the electronic processes in  the crystal will be altered to the 
extent that satisfactory laser operation is not possible. 
The present paper attempts  to estimate the limitations 
which these thermal effects place on  the capabilities of 
p-n junction lasers. 

The obvious way to avoid the problem of heating of the 
junction laser is to place the junction in contact  with a 
thermal  bath. The practicality of this  solution is, however, 
limited by the difficulty of transferring  heat to, for example, 
a liquid bath. To illustrate, consider the case of a GaAs 
junction laser operated at 77"K, the temperature of 
boiling liquid nitrogen. The  rate  at which heat is produced 
at  the  junction is approximately  equal to  the threshold 
current density, about 3000 ampere/cm' for a typical 
laser, times the energy gap, 1.5 volts for  GaAs, giving a 
product of the order of 4500 W/cmz. The maximum 
rate at  which heat  can be transferred to liquid nitrogen 
by nucleate boiling is, however, only 10 W/cm'. The 
laser is cooled by attaching the junction to a large  heat 
sink that reduces the power density at which heat is 
transferred to the liquid  nitrogen by a factor of at  least 
several hundred  and, preferably, of several thousand. 
The dimensions of the heat sink must  be  orders of magni- 
tude larger than  the dimensions of the junction. The 
thermal  problem involved is, then, essentially that of 
the flow  of heat from the  junction into a large  body 
of solid material which constitutes the heat sink. The 

temperature of the heat sink at very large distances from 
the  junction is equal  to  the temperature of the  thermal 
bath.  This  kind of resistance, that which is encountered 
by the flow  of a current from a bounded  contact  area 
into a semi-infinite medium, is known  as spreading 
resistance. 

This  paper presents solutions to certain idealized heat 
flow problems which are intended to approximate the 
flow  of heat from a junction  into  an adjoining  body of 
solid material. The problems are idealized in  order  to 
make them soluble by considering simplified geometrical 
shapes and by assuming that  the material  parameters 
(the thermal conductivity and  the specific heat) in  the 
equation of heat  conduction are independent of temper- 
ature. These assumptions are necessary to preserve the 
homogeneous nature of the  equation of heat  conduction. 

Part 1 presents solutions to time  dependent  heat flow 
problems which relate to pulsed operation of the injection 
laser. Part 2 describes the solution of the steady state 
problems of heat  conduction which pertain to continuous 
operation of the laser. The first problem  has been treated 
by Smith and Lasher' and  the second by Mayburg', both 
of whom, however, adopted approximations and points 
of view somewhat different from  those presented here. 
In  Part 3, the results of Parts 1 and 2 are applied to gallium 
arsenide lasers. Certain  mathematical details are presented 
in Appendices A and B, and a resume of notation is given 
in Appendix C. 

In  the model injection lasers to be  treated, heat is 
produced at a junction plane S at a rate j V  per unit  area, 
where j is the electrical current density and V is the 
voltage drop in the  junction, very nearly the gap voltage. 
Heat may also be produced by the  joule  or resistive heating 
caused by the current in its passage through  the material 303 
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Figure 1 The form of the  dependence of temperature on 
distance from the source  during  heat flow into a one  dimen- 
sional  heat  sink.  Note that little thermal energy  has  pene- 
trated beyond x = (Dt)''a. 

surrounding  the  junction. The model is pessimistic (from 
the point of  view  of high-power laser operation) in neg- 
lecting the loss of energy as light. 

The model is characterized by certain  parameters  as 
follows: j ,  is the threshold  current density. No lasing 
takes place if the current density j is less than i t .  If j is 
greater than j , ,  the current density (j - i t )  contributes 
to stimulated emission. Now, j ,  depends on  the temper- 
ature  at  the junction in a form which, to  an adequate 
degree of approximation,  can be written 

j ,  = j o  exp (AT/T,) .  (1) 

Here j o  is the threshold  current at  the  bath temperature T 
which the laser assumes in  the absence of heat sources, 
T + AT is the  temperature of the  junction, and T, is a 
characteristic parameter of the laser material. 

The thermal conductivity of the material which carries 
heat  from the junction is denoted by K. The  material may 
be the laser material itself or it may be some metal to 
which the laser has been attached. In  the former case K 

is temperature  dependent, frequently being proportional 
to  the reciprocal of the temperature, but in the latter case 
it is essentially temperature independent. Here the latter 
case will  be assumed as a realistic one which has  the 
advantage of avoiding the analytical complexities as- 
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K appears in the equation of heat  conduction in its ratio 
to  the specific heat per unit volume C. The quantity 
D = K / C  has the dimensions of a diffusion constant and 
is called the thermal diffusivity. C is strongly temperature 
dependent in certain  temperature regions. Our treatment 
is approximate in  that C is assumed to be a constant for 
a given laser and  bath temperature. 

The last material parameter that characterizes the 
laser is the electrical conductivity, cr, of the  material 
which carries current to the laser junction. Although cr is 
structure sensitive it is about lo3 (Ohm-cm)" for many 
heavily doped semiconductors, and is nearly independent 
of temperature. Neglect of the temperature dependence 
of cr is a quite reasonable approximation. In metals cr and 
K are related by the Wiedemann-Franz Law, 

but in semiconductors (K/CT) is much greater than  the 
value given  by Eq. (2). 

1. Pulsed operation of the  injection  laser 

Consider first a one-dimensional case in which heat is 
being produced at a rate j V  on a plane, the yz plane, say, 
and flows away into a solid extending to infinity in  the 
+x direction. The plane of heat  production represents 
the junction plane. 

Suppose that  the laser is initially at a uniform temper- 
ature T with no current flowing. The current is turned on 
at time t = 0. The temperature of the laser then begins to 
rise, and  at a point x and time t is T + AT (x, t )  with 

AT(x,  t )  = ( j V / ~ ) ( 4 D t ) l "  ierfc [ ~ / ( 4 D t ) " ~ ] .  (3) 

The function ierfc has been tabulated" and is shown in 
Fig. 1. The point illustrated by Fig. 1 is that practically 
none of the heat energy has penetrated beyond x = 
2 (Dt)*. The semi-infinite approximation is good if the 
extent of the medium in  the +x direction is many times 
(Dt)'. 

At the  junction x = 0, the temperature rise is 

AT = ( j   V/~)(4Dt/?r)" ' .   (4)  

The temperature of the junction increases in accord with 
Eq. (4) until the current is turned off at some time tl. 
The threshold  current increases according to Eq. (1). 
If the current is not turned off before the threshold 
current density reaches the actual  current density j ,  the 
production of stimulated emission will  cease at  another 
time to when this occurs. 

We  now investigate the question: What is the maximum 
amount of stimulated light energy that can be produced 
by an electrical pulse? The  amount of stimulated light 
energy per unit  area is proportional, in  the present model, 



to the integral of the excess of current over threshold 
current 

it being assumed that tl 5 to. The factor of proportionality 
is the efficiency, a dimensionless number less than unity. 
The time dependence of j t  in E q .  (5) is obtained from 
Eqs. (1) and (4) and is 

j t  = j o  exp - 

It is advantageous to normalize  current densities to  the 
material  parameter j n .  Thus we define 

j 9  = j J h ,  (7) 

and 

j *  = J / h .  (8) 

The remaining material  parameters  then appear in the 
combination 

which has  the dimensions of time. Thus  it is also con- 
venient to normalize the time scale to f N  by defining 
t* = t / t N .  Then E q .  (5) can be rewritten 

W = j o  VtN Lj* - exp ( j*  dt*)] df* .  
t l '  

(10) 

An example of the time  variation of the integrand in 
Eq. (10) is shown  in Fig. 2. 

We can now find that value of j*  which maximizes W 
for a given pulse length, t;. The solution of this max- 
imization  problem is described in Appendix A and 
presented in Fig. 3, in which the value of j*  that max- 
imizes W and  the resulting value of W (referred to jQvtN) 
are plotted as functions of the pulse length, tT. The 
larger the pulse length, the smaller the j *  and  the greater 
the energy, up to a point. When, however, t: = 0.0394, 
then t? = t*,; that is, the threshold  current  has reached 
the maximizing current itself at  the  end of the pulse, and 
lasing stops even if the  current is not  turned off. Then 
W = 0.255 j oVt ,  and j *  = 13.6. This  represents an 
absolute  maximum limit on  the energy of a single pulse. 
It is not possible to increase W by further lengthening 
the pulse. To be very  specific, the maximum pulse energy 
above threshold which can be  obtained per unit  area 
according to the present model is 

The stimulated  light output is  less than WmaX by an 

efficiency factor, the fraction of the electrical energy 
above  threshold which appears  as stimulated light. 

Note in Fig. 3 the relative insensitivity of the  total 
energy to  the pulse duration. Thus,  for example, if it is 
required that tl should  be only one-tenth of to, the value 
corresponding to maximum energy, W is still 70'21, of its 
value at  the maximum. The current density required to 

Figure 2 An example of the dependence of j *  - j t  *, the 
integrand of Eq. ( 5 ) ,  on time. 

Figure 3 The values of j * ,  the current density  which  maxi- 
mizes the stimulated  pulse  power for a given  pulse duration 
and (below) the  resulting  maximum  value of W as a func- 
tion of the pulse duration, fl*. 



achieve maximum energy in time tl increases, however, 
by a factor of about five. 

The large current densities which achieve the maximum 
value of W according to Fig. 3 for small pulse duration 
lead to a practical  problem concerning series electrical 
resistance. The power dissipated in series resistance is 
proportional to  the square of the current density, and, 
thus becomes an increasingly serious  objection to the 
quantitative validity of the present model as pulse lengths 
are decreased. The heat  generated  in series resistance is 
independent of position  in the model of the present section. 
Thus none of this  heat flows, and  the joule  heat merely 
raises the temperature of the material  in which it is 
produced. The temperature rise in the adiabatic case 
during a time t is 

AT = j2t/uC. ( 1  2) 

Here u is the electrical conductivity of the material. 
The AT of Eq. (12) must  be added  to  that of E q .  (4). 
Thus, instead of the dependency in Eq. (5) ,  the threshold 
current density depends on time, as follows: 

j : ;=  -exp:(j* @ + Xj*2t*) .  (1 3) 

Here the reduced variables introduced  in Eqs. (7) to (10) 
have been used. X is a normalized measure of the electrical 
resistivity 

Note  that j :  depends on j *  and t* in  the combination 
j *z  t* in Eqs. (10) and (13). 

Again we want to maximize the integral of Eq. ( 5 )  
and again the details are given in Appendix A. The 
resulting values of j *  and W are shown in Fig. 4 as func- 
tions of tT and X. The values for X = 0 are, of course, 
the same as those of Fig. 3. 

Now we consider the effects  of letting  heat flow away 
from a finite junction  into a three-dimensional semi- 
infinite heat sink. In  order  to construct a problem  with 
spherical symmetry, which facilitates analytical  treatment, 
we have regarded the junction as a hemispherical heat 
source of radius a. It is found  in this case that  the temper- 
ature rise of the  junction  at a time t after the current is 
turned on is 

The dependence of threshold  current on time now is 

( 1  5 )  

306 Again, it is desirable to find that value of j which max- 
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Figure 4 The quantities given  in Fig. 3 when electrical re- 
sistance  is taken into account for various values of the 
electrical  resistivity parameter, A. The curves for A = 0 are 
identical  with  those of Fig. 3. 

imizes an integral  like Eq. (5). The problem is, however, 
too complex to be solved analytically in a useful way. 
There  are  two interesting  limiting cases. One is that  in 
which (&/a2) << 1. Then Eq. (15) becomes 

which is identical to Eq. (6). Thus, if Dtl/a2 << 1, the 
calculations and results for  the one-dimensional case are 
applicable. Writing tl = tTtN and using Eq. (9) for tN 
gives 

[(io v ~ ) / ( K T J I ~  >> t: (17) 

as  the condition which the material  parameters must 
satisfy in order  for  the one-dimensional result to be 
applicable. 

The physical significance of this case is clear. As seen 
in Fig. 1, (of)% is the distance to which heat penetrates 
in time t ,  and  the condition that Dt/a2 is small merely 
means that  the penetration  distance is small  compared to 



the linear size of the laser. It is apparent that the one- 
dimensional and three-dimensional cases should  then  lead 
to  the same result and  that this equivalence holds in the 
small Dt/uz limit for shapes other than  the hemispherical 
one which we have assumed. 

Eq. (15) can  also be treated easily in the opposite 
limiting case, that in which Dt/u2 becomes very large. 
In contrast to  the one-dimensional case, the junction 
temperature and the  threshold  current density do  not 
increase without  bound in the three-dimensional case 
when t approaches infinity; rather, they asymptotically 
approach  the values 

AT = jVu /K ,  (1 8) 

j f  = j o  exp ( j   V U / K T ~ ) .  (1 9) 

The laser will continue to operate indefinitely, or con- 
tinuously, if i t ,  the threshold  current density of Eq. (19), 
is less than j ,  the current density. The condition that a 
laser can be operated continuously is thus  that there is a 
value of j which  satisfies the  equation 

j = j o  exp ( j   V U / K T ~ ) .  (20) 

There is such a value of j if 

(jo V U > / ( K T J  < l/e. (21) 

The present treatment of the question of continuous 
operation is inadequate in that  it assumes a hemispherical 
junction, and  the question will be investigated in more 
detail in Part 2. First, however, it is interesting to compare 
the regimes  of the parameters which characterize the 
material and structure defined  by the inequalities (17) 
and (21). Note  that the  parameters enter both conditions 
in the same combination. Depending on the value of t t ,  
there may be intermediate values of (joVu/KT,) for which 
neither approximation is valid. It has been seen, however, 
in connection with Fig. 3 and  the discussion of the one- 
dimensional case, that  the interesting values of t: are 
usually no greater than 0.04 and  are frequently much 
smaller. Thus it will often be the case that both con- 
ditions (17) and (21) are satisfied and  the two regimes 
overlap. In other words, in many cases the problem of 
short pulse operation of a given laser can be treated in 
the one-dimensional approximation, and  the potential of 
the same laser for continuous  operation  can be evaluated 
with the three-dimensional theory. There may be, however, 
intermediate cases which we have not been able to treat 
satisfactorily. 

2. Continuous  operation 

Equation (18)  of Part 1 illustrates that when heat flows 
from the injection laser into  a three-dimensional heat sink 
the  temperature of the laser approaches a constant value at 
long times after  the  current  has been turned  on.  This 

result does not depend on the particular source geometry 
used (hemispherical), but holds  for  any finite source 
driving heat into a three-dimensional sink. The situation 
in the eventual steady state is described by the concept 
of thermal resistance, according to which the  temperature 
rise due to flow  of heat iV is 

AT = P i   V .  (22) 

Here P is the thermal resistance, i is the current  through 
the laser (or  the  current density, j ,  times the  area) and 
iV is the rate  at which heat is produced. It can be seen, 
for example, from Eq. (18) that P = 1/2TUK for the 
hemispherical junction configuration used as a model in 
Part 1. Here in Part 2 we use this concept of thermal 
resistance to discuss the thermal problems involved in 
continuous  operation of an injection laser. 

An injection laser will  lase only if the  current passed 
through  it exceeds some threshold  current, if, which is a 
function of the temperature of the laser. If an attempt is 
made to operate the laser continuously by increasing the 
current i through  it to  the threshold value, the laser is 
heated by the current, causing i t  to rise. The threshold i f  
is, therefore, a function of the current i through  the 
intermediary of the laser temperature. The laser will 
operate continuously if the  current i catches up with and 
exceeds the threshold. 

The situation is illustrated qualitatively in Fig. 5 ,  in 
which i f  is plotted as a  function of i. The function i t  = i 
is also  plotted. In the case for curve A the equation 
i = i f ( i )  has  a  solution and  the laser will operate con- 
tinuously. In  the case of B, there is no solution;  the 
current never catches up with the threshold current. This 
problem will  be recognized as  that treated by Mayburg.' 
Here we want to go into considerably more detail than 
that given by Mayburg. 

The power dissipated in the laser is about iV, where V 
is the energy gap of the semiconductor divided by the 
electronic charge. The effects of series resistance are 
again neglected in the initial treatment. The dependence 
of the threshold  current  on  temperature may  be expressed 
as (see Eq. (1)) 

i f  = io exp ( A T / T l ) .  (23) 

AT has already been  given  in Eq. (22): 

AT = P i V .  (24) 

Here io is the threshold at temperature T. Using (23) 
and (24), the equation i = i t ( i )  becomes 

i = exp ( P i   V / T , ) ,  (25)  

which we may rewrite in the form 

( i / i o )  = exp [ ( i / i o ) ( P i o  V/T1)]. (26) 307 
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Figure 5 Examples of the way in  which  the  threshold cur- 
rent depends on the current through the intermediary of the 
temperature in the steady state. The laser  represented by 
curve A operates  continuously at currents greater than that 
where  curve A intersects the line i r  i. On the other hand, 
the current never  catches up with the threshold current in 
the laser represented by curve B, and the laser  will  not op- 
erate continuously. Curve C is a borderline case, and  illus- 
trates that the continuous threshold  cannot be greater than 
i,. which  is e times io. 

Whether or  not this equation  has a real solution depends 
on  the value of the dimensionless parameter (PioV/T). 
It has a  solution if 

Pio V/Tl < l/e. (27) 

Equation (27) is the condition that  the injection laser 
can  be  operated  continuously. 

It is  of interest to examine the case C of Fig. 5, which 
corresponds to equality  in Eq. (27). The current i, is 
the maximum  value to which the threshold may rise 
due to heating by the current and yet  permit lasing to 
occur. il is related to io by il = ioe. The temperature  has 
increased by an  amount Tl at  current il. 

Now, in  order to give more meaning to Eq. (27), P 
will be  interpreted as a spreading resistance. Thus it can 
be  written  in the  form 

P = 1 / 2 ~ d .  (28) 

308 Here d is a  parameter  with the dimensions of length and 

a value of the same order of magnitude as the linear 
dimensions of the laser and K is the  thermal conductivity 
of the base through which the  heat is dissipated. It is 
also convenient to refer the threshold  current, io, to 
current density by writing 

io = j o w L ,  (29) 

where w is the width of the laser and L is its length. 
Combining Eqs. (27),  (28), and (29) gives a  condition on 
threshold  current density 

ioL 5 (2d/w)(KT1/ v). (30) 

It has been found  that joL tends to be a constant for a 
given series of lasers, that is, for lasers made  from a 
particular  material and diffusion run.4 The  constant joL 
is to be compared  with the  quantity (KTJV) multiplied 
by a dimensionless factor of order of magnitude unity. 
joL and KTJV are of similar magnitude  in  some cases 
of practical interest, and it is consequently worthwhile 
to investigate the exact value of the spreading resistance 
in more detail. 

The spreading resistance of a rectangular  shape is not 
known to us. As an approximation, it seems sufficiently 
accurate to use the spreading resistance of an ellipse with 
the same width-to-length ratio  and  the same  area as  the 
rectangle. In terms of d, 

Here K is the elliptic integral  function whose properties 
are described, for example, in  Jahnke-Emde.5 Thus 
Eq. (30), the condition for continuous  operation,  can 
be written 

The numerical factors apart  from e-' have been lumped 
into  another number y, which is a function of (w/L), 
the width-to-length ratio : 

y = 2 4 ;  K ( 1  - $)I -1 ; (3 3) 

the function y is shown  in Fig. 6. 
Now we investigate the role of dissipation in series 

electrical resistance in the problem of continuous  opera- 
tion, using a result derived in Appendix B. The temper- 
ature increase of the  junction caused by the heat  produced 
in the series resistance can  be expressed as 

AT(series r ,  = P Z i 2 ~ / 2 a  

by combining Eqs. (B4),  (B5), and (B10). The  total 
temperature increase is found by adding the contributions 
of Eqs. (24) and (34). The  equation i = il(i), the analogue 
of E q .  (26), now is 

(34) 



The electrical conductivity appears  again only in the 
reduced form X encountered  in  the pulsed case and 
defined by Eq. (14). Eq. (27)  is now replaced by 

1. (36) 

The dependence of PioV/Tl on X is shown in Fig. 7. 
When X = 0 the condition for continuous  operation is 
given  by Eqs. (32) and (33) but, if X # 0, the (e") on 
the right hand side of Eq. (32) must be replaced by a 
value given  by Eq. (36) and Fig. 7. 

3. Application to GaAs 

The  most  important example of the injection laser is 
the gallium arsenide  laser; here in Part 3 the relatively 
formal results of the preceding parts are applied to it. 
The properties of the gallium arsenide laser are given in 
Table 1. The columns at  farthest left and right list several 
temperatures at which the  GaAs laser might be operated. 
Column I gives the threshold  current density at  the 
various  temperatures. The threshold  current density is, 
of course, not a  constant, but varies with the material 
and fabrication process of the  laser;  the values given are 
typical low values, not  the lowest ever attained,  but  those 
which can  be achieved fairly consistently for large lasers. 
Column I1 gives the thermal conductivity, K ,  of GaAs. 
K is somewhat structure sensitive at  the lower temperatures 
of the table; the values given refer to  the heavily doped 
GaAs used in  injection lasers. K has  a maximum near 
20°K.  Column I11 gives C, the specific heat per unit 
volume, and  the  ratio K/C, the thermal diffusivity, is 
given in  Column IV. Column  V shows the values of tN 
calculated from  Eq. (9) using, in  addition to j o ,  K ,  and 
C which are given in the table, V = 1.5 Volt and TI = 
55OC. Column VI gives joVtN. Column VI1  gives to, which 
is equal  to 0.0394 The quantity to is the length of the 
pulse which gives maximum stimulated pulse energy. 
Column VI11 gives the values of current density at which 
the laser must  be  operated to maximize the stimulated 
pulse energy. These values are 13.6 j , ,  as discussed in 
connection with Eq. (10) and Fig. 3. 

The integral of Eq. (5) has the value 0.255 joVt, for 
the maximizing pulse which is characterized by the 
parameters of Columns I and 11. The maximum light 
energy which can  be  obtained  from  a GaAs laser is 
found by multiplying 0.255 joVtN by an area and  an 
efficiency factor. Large lasers tend to have low efficiency, 

and  the way in which the compromise between area and 
efficiency must  be made will not be entered into here, 
as we are primarily concerned with thermal problems. 
It has, however, been considered by Lasher and Smith.' 

The  amount of stimulated light energy which can be 
obtained in pulses shorter  than to can  be  obtained from 
Fig. 3. As an example, consider a 3 psec pulse in a laser 
at 77°K. Since f N  is 1500  psec, t: is 0.002. The energy 
output per unit  area is 0.14 joVtN instead of  0.255 joVtN. 

> 3 j I l l 1  I I I I I l l  
0.05 0 1  02 0.3 0.4 ( 

W i  L 
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Figure 6 Values of the parameter y of Eqs. (32) and ( 3 3 ) .  

Figure 7 The reduction in the maximum permissible value 
of PLVIT, in  the  condition for continuous  operation due  to 
the effectsof electrical resistance. 
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Table 1 Properties of the  gallium  arsenide  injection  laser. 

I I1  I11 IV  V VI VI1  VI11 IX x XI 

T jo K C D fN j0vtN to i (Dto)) X (See Ohmic T 
[OK] [A/cmX] [W/cm  deg] [J/cma deg]  [cm2/sec] [psec] [i/cmz] Lsec] [A/cmZ] [cm] note*) Degradation [OK] 

4.2  250 3  2.1X10-4 1.43X104 100  0.04 4 3500  0.25  0.06  0.72 4.2 
20 3 50 10 0.021 47 1800 1 70 5000 0.057 .2 0.44 20 
55 700 5 0.37 13.6 4000 4 160 10,000 0.05 .1 0.60 55 
77 1000 2 0.70 3.0 1500 2 60 13,500 0.013 .04 0.82 77 

300 60,000 0.5 1.70 0.30 0.24 0.02 0.01 800,000 5X1W .01 1.00 300 

* Assuming  the  electrical  conductivity, U, is lo3 ohm-' cm-1. 

The energy  is  relatively  insensitive to tT ; a pulse 20 times 
shorter than to yields  half as much  energy. It is  also 
found from Fig. 3 that the current must  be  increased 
from 13.6 j o  to 95 j o  to obtain the maximum  energy 

The pulse  energy  passes through a maximum  in the 
range 40 to 80°K. The reason  is that both K and C are 
large  here.  At very  low temperatures, although K remains 
large  down to the helium  boiling point, C becomes small 
and very little energy  is  needed to raise the temperature 
of the solid.  Our  calculations are too pessimistic  here, 
as they  assume a temperature independent C, whereas, 
in fact, C increases  rapidly  with  increasing  temperature. 
At  high  temperatures C tends to become constant but K 

decreases as the reciprocal of the temperature. Further- 
more, the threshold current becomes large at high  temper- 
atures so that extremely short pulses  must  be  used. 

Column IX of Table I gives  values  of @to)', the thermal 
diffusion  length, or distance to which heat penetrates 
during a maximum  energy  pulse.  These  figures are useful 
in determining  whether the semi-infinite  model and the 
one-dimensional  model are valid in particular cases. 

Thus far series  resistance  has been  neglected  in the 
discussion of the limits on pulsed operation of the GaAs 
laser. The parameter X, the dimensionless  reduced  resis- 
tivity  defined  by  Eq.  (14),  is  given  in  Column X. The 
extra heating which  comes from ohmic  losses  can  be 
evaluated  from the theory of Eqs. (12) to (14), Fig. 4, 
and Appendix A. It reduces the energy  capability of the 
GaAs laser. The fraction by  which the energy  capability 
of the laser  must be multiplied  under  conditions which 
maximize the pulse  energy is given in Column XI of 
Table 1. The loss of energy  capability of the GaAs laser 
due to ohmic  heating amounts to a little more than a 
factor of two in the worst  case.  With shorter pulses, in 
which the current is  higher, the ohmic  effect  may  be  larger. 

Turning  now to continuous operation, relevant  numbers 
are assembled in Table 2. The same  temperatures used 

310 in Table 1 are again  listed at the left. As mentioned 
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Table 2 Parameters  pertaining to continuous  operation of 
the  GaAs  laser. 

4.2 10 110 
20 14  370 
55 28 180 
77 40 75 

300 2000  20 

previously, it has been found that joL, the threshold 
current density  times the length of the laser, is approxi- 
mately constant in small  lasers, which are most suitable 
for continuous operation? Values  of joL are given in 
Column I. Values  of ( K T ~ / V ) ,  the quantity with  which 
joL has to be  compared  according to Eq. (30), are given 
in Column 11. It is  seen that joL is  indeed  small  compared 
to (KT,/V) at temperatures less than 55°K and, therefore, 
that continuous operation of GaAs injection  lasers below 
this temperature should  be  easy, a result which  is  con- 
firmed by experience. 

In  the case of operation in a bath of boiling  liquid 
nitrogen, at a temperature of 77"K, joL and ( K T ~ / V )  are 
not greatly  different. The question of the feasibility of 
continuous operation here  reduces to one of detail. 
To explore this detail Fig. 8 has  been  constructed from 
Eqs.  (32) and (33) and the experimental  measurements 
of Pikuhn, Rupprecht, and Blum." The content of this 
Figure  is that joL must  lie  below the solid  lines  drawn  from 
various  values of w for continuous operation to be  pos- 
sible. The dotted line  shows joL as measured by Pilkuhn 
et al. It appears that the experimental  results  lie well 
below the limit  set  by Eq. (32) for small  lasers, so that 



Figure 8 Application of Eq. (32) to  the  problem of con- 
tinuous  operation of the  gallium  arsenide  injection  laser at 
77°K. The  laser  will  operate  continuously if j& lies  below 
the  value  given  by  the  solid  lines for  the  particular  width  in 
question.  The  values of j& found by Pilkuhn,  Rupprecht, 
and Blum are shown  by the  dotted  line. 

continuous operation  should  be easy  if a proper  heat 
sink is provided. 

The situation is quite different at 300"K, probably 
the most  interesting temperature; here joL is two orders 
of magnitude  larger than ( K T ~ / V ) .  In principle, of course, 
one  might hope to make  up even this large  difference 
with the factory of Eqs. (32) and (33) and Fig. 6. In fact, 
it turns out that the length-to-width ratio required to 
make y sufficiently large  is 500, which  seems to be outside 
the scope of present day injection  laser  technology. 

The effect  of  series ohmic  resistance on continuous 
operation of the GaAs injection  laser  can  be  evaluated 
from Fig. 7, which  shows the numbers by  which the e" 
of Eqs. (32) and (33) must  be  replaced  when  series  re- 
sistance  is taken into account. The values of the reduced 
resistivity, X, have  already been  given in Table 1. The 
effect  of series  resistance  is  always small; even in the 
worst  case, around 55"K, the numerical factor e" is 
changed  only by 10%. 

Practical  lasers  have  much more complicated structures 
than the idealizations of Parts 1 and 2. Perhaps the most 
important difference  is that the junction is not really 
attached directly to the heat sink. A certain amount of 
series thermal resistance  intervenes  between the junction 
and the spreading  resistance of the heat  sink.  This  series 
thermal resistance  is the kind of resistance  considered in 
the calculation of Mayburg.2 A comparison of the series 
thermal resistance  with the spreading  resistance  described 
by Eq. (28) and the subsequent  theory  shows that the 

series  resistance  will  be  small  compared to the spreading 
resistance if the height of the junction above the heat 
sink is  small  compared to w, the width of the laser. It is 
not too difficult,  however, to extend the application of 
Eq. (27) to cases  in  which P is the sum  of  series and 
spreading  resistance. 

Another complication which arises  in  practice  is that 
heat  may  be  allowed to flow  away from the junction in 
both directions, so that there are two thermal conduc- 
tances in parallel. If these  two  parallel paths are identical, 
they introduce no additional complication  in the analytic 
treatment, and can be  described by modifying the one- 
sided  theory  in an obvious way. Usually,  however, at 
least the series thermal resistance will  be  different on 
the two  sides. If one of these  is  much  larger than the 
other, the one-sided  theory  may  become  applicable. 

Exact treatment of problems  involving  parallel and 
series  combinations of thermal resistance are possible by 
the methods  introduced in this paper, although the 
formulas involved  will  frequently  become  considerably 
more  complicated. 

Conclusions 

The present  paper  solves the thermal problems  associated 
with short pulse and steady state operation of an idealized 
model of an injection  laser. The physical  process  which 
limits the light that can  be  produced by the injection  laser 
is the heating  produced by the passage of current which, 
since the threshold current depends on temperature 
(Eq. (l)), raises the threshold.  Stimulated  emission  is 
produced  only by the current in  excess  of the threshold 
current, however. The race between the current and the 
threshold current, which, through the temperature, 
depends on the current, was illustrated in Fig. 5 ;  if the 
current catches  up  with the threshold current, stimulated 
emission  begins  (Curve A of Fig. 5 )  and, as the current is 
increased, the current in  excess  of the threshold  produces 
stimulated  emission. The stimulated  emission  passes 
through a maximum as the current continues to increase 
and eventually the threshold current again exceeds the 
current and stimulated  emission  stops. 

The condition that  the laser operate continuously was 
given in terms of characteristic  parameters of the laser 
structure in Eqs. (21) and (27)-(30). These  conditions are 
easy to satisfy  with  common  gallium  arsenide  lasers at 
temperatures  somewhat below 77°K. They are very 
difficult to satisfy at temperatures  above 77°K. The 
junction temperature may  be as much as Tl (usually  in 
the range 40"-80" in GaAs)  higher than the ambient 
temperature at the point at which  lasing  begins  (Curve C 
of Fig. 5). 

Even if the laser  does not operate continuously  (Curve 
B of Fig. 5) ,  useful  stimulated  light  may  be  obtained  in 
short pulses. If a current density  greater than jo is  suddenly 31 1 
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switched through the laser, stimulated light will  be pro- 
duced until  the  heat produced raises the  threshold cur- 
rent up  to the value of the applied current.  There is a 
value for  the applied current which  maximizes the  amount 
of stimulated light obtained in a pulse. If the applied cur- 
rent is near the  threshold  current the excess current which 
produces stimulation emission is small, and, furthermore, 
only a small amount of heating can destroy the lasing 
action. If the applied current becomes  very large the stimu- 
lated light output again becomes small because the time 
needed for  the  heat to destroy the lasing action is nearly 
proportional to  the inverse square power of the current 
(Eq. (6)). The problem of finding the  current which  maxi- 
mizes the  amount of simulated light in a pulse is solved in 
Part 1 and Appendix A. It  turns  out  that the  optimum cur- 
rent density is 13.6 j o  and  the stimulated light output is 
0.25 joVtw times an efficiency factor and an  area.  Here tN 
is a characteristic time of the laser defined in Eq. (9). 

The theory was extended to take  into account the 
heating caused by the passage of the current  through 
the electrical resistance of the laser material. The heating 
in series electrical resistance has  little effect on the con- 
tinuously operating GaAs laser, but may seriously degrade 
performance at  the high currents used in pulsed lasers. 

Appendix A: Maximum of the  stimulated 
power integral 

This Appendix considers the problem of finding that 
value of current which maximizes the stimulated power 
integral W, defined  by Eq. ( 5 )  and Eq. (10) or Eq. (13). 
Eq. ( 5 )  is 

W = j o  VtN 1 ( j *  - j : )   d t * ,  (A 1) 

in terms of the variables defined in Eqs. (7) to (11). The 
maximization problem involves solving: 

0 = ( jo  VtN)- l  d W / d j *  

t I *  

= ( j*  - j ? ( t? ) ) (d t : /d j* )  

+ lfl* (1 - a j? /a j* )  d t * .  ('4.2) 

If the pulse length is  fixed, t:  is a  constant, and the first 
term on  the right  hand side of Eq. (A2) is zero. Recall 
that j ?  is a function of j*'t* in Eqs. (10) and (13).  Thus 

d j : /a j*  = 2( t* / j* ) (a j : /a t* ) .  (A3) 

Substituting Eq. (A3) into Eq. (A2) and performing an 
integration by parts reduces Eq. (A2) to 

j *  = 2 j : ( t : )  - 4 1''' j :  , ,*I,  
an implicit equation  for j *  because j :  depends on j * ,  as 

312 in Eq. (6).  When j*  has  the value given by Eq. (A4), W is 

[ t l  (A4) 
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W = jo   Vt , tT[(3/2) j*  - j ? ( t ? ) ] .  (A51 
The results given by Eqs. (A4) and (A5) only have 

meaning when j : ( t? )  is less than j * ,  that is, the threshold 
current at  the end of the pulse is still less than the  current. 
Starting with small values of t i ,  W as given  by Eq. (A5) 
is an increasing function oft: until t? is such that jq ( t : )  = 
j * .  Then the current which maximizes W is such that 
the laser turns off due to heating just  at  the end of the 
pulse. The value of t: at which this occurs is t:. Thus 
t% is the value of t: for which both Eq. (A4) and 

j : ( tT)  = j *  (A61 

are satisfied. W cannot be increased by making tT longer 
than t*,. 

Because of Eq. (A6) the first term on the  right hand 
side of Eq. (A2) vanishes also if, instead of  fixing t: ,  it is 
allowed to be determined by the time at which the laser 
turns itself off due  to heating. Thus the value of W cor- 
responding to t z  is the maximum pulse energy which 
can be obtained  under  any conditions. 

If the integral in Eq. (A4) is evaluated using Eq. ( l o ) ,  
E q .  (A4) becomes 

j* [2 - 4(j*2t:)-1'2 + 4(j**t:)-l]  

X exp ( j * 2 t i ) 1 / 2  - 4(j*'t:)-l .  (A7) 

If, instead, Eq. (13) is used to evaluate the integral, m. 
(A4) becomes 

1 

Here I(z) is the 

Z(z) = e-" s,' ezl dx .  

Equations (A7) and (AS)  were used to construct Figs. 3 
and 4. 

Appendix B. The thermal effect of 
series  resistance 

In this Appendix we wish to find the temperature rise at 
a surface due to  the ohmic heat  produced by a  current as 
it flows away from the surface through a spreading 
resistance. Consider that space is divided into two semi- 
infinite parts by a surface Q, the  right hand  part being 
the medium under consideration. Q has  two  parts, a 
bounded part S through which electrical current is injected 
into the medium, and  the infinite remaining part S, 



which is electrically and thermally insulating. The electrical 
spreading resistance is found by solving the following 
equations which define the electric potential, 4: 

First, Laplace's equation, 

V2+ = 0; (BO 

Second, the condition that S is an equipotential, 

4 = 4, on S; (B2) 

Third,  the condition that  no current flows across S,, 

n.V+ = 0 on S2. (B3) 

In Eq. (B3) n is a vector normal  to  the surface Q, and 
4 vanishes at infinity. 

The solution of the electrical potential  problem  permits 
the definition of an electrical spreading resistance, R, as 
follows : 

R = 41/i = 41/ uV4 dS. ( B4) 

An entirely analogous thermal problem, in which T 
replaces 4 and K replaces u, can be solved. A thermal 
spreading resistance is thus obtained which has  the value 

P = (./K)R. (B5) 

Turning now to the  actual  thermal problem, the di- 
vergence of the  heat current, J, is equal to the  rate of 
production of electrical heat 

V *  J = (r(V4)'. (B6) 

Writing J = - K V T  and (V4))" = V . (4V4) = ~V)"(~)")>, 
E q .  (B6) becomes 

-KV'T  = +TV~(~') .  ( B7) 

The desired solution of E q .  (B7) is 

T = ( ~ / 2 ~ ) ( 2 4 1 4  - 4'). (B8) 

The T of E q .  (B8) satisfies Eq. (B7) and  the following 
boundary  condition : 

AT = 0 (J  = 0) on S. 

This  condition insures that  the heat flows away through 
the medium, the heat  sink, and  not  the junction 

n - V T =  O(n .  J =  O)onS,, 

as required by the statement that S, is thermally insulating. 

T = 0 at infinity. 

This is a definition of the zero of the temperature scale. 
With  this definition, T is the increase in temperature 
over the bath temperature. 

It is seen from E q .  (8) that  the temperature increase 
at  the  junction, where 4 = q51, is 

AT = ( u / ~ K ) & .  (B9) 

By recalling Eq. (B5), Eq. (B9) can be written 

AT = $P(+f/R). 

However, + ? / R  is the electrical power dissipated. The 
temperature increase is that which would be  produced by 
the flow of half of the electrical power through  the  thermal 
spreading resistance. 

Appendix C: A tabulation of notation 

Radius of hemispherical contact 
to heat sink 
Specific heat per unit volume 
Thermal diffusivity, K/C 
Electrical current 
Threshold  current of a laser at 
the  bath temperature, T 
Threshold  current of a laser at 
actual  junction temperature 
A current defined by Fig. 5 
Electrical current density 
Threshold  current density at  bath 
temperature 
Threshold  current density at  
actual junction  temperature 
Reduced  current density, j / j o  
Reduced  threshold  current den- 
sity, j t h  
Elliptic integral 
Length of a laser 
Electrical resistance 
The junction  surface 
Time 
Time at which lasing stops  due 
to heating of the laser 
Duration of current pulse 
A natural time which occurs in 
thermal problems of the injection 
laser and is defined by Eq. (9) 
t / t N  

f O / f N  

t l / t N  

Bath  temperature 
A parameter which characterizes 
the temperature dependence of 
threshold current,  as in Eq. (1) 
The  amount by which the tem- 
perature of the junction exceeds 
the  bath temperature 313 
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V Voltage 
w Width of a laser 
W Integrated electrical power above 

threshold, see Eq. (5) 
W,,, The maximum value which W can 

have, Eq. (1 1) 
y Numerical factor in the criterion 

for continuous  operation, E q .  (33) 
K Thermal  conductivity 
X Normalized electrical resistivity, 

P Thermal resistance 
u Electrical conductivity 

Eq. (14) 
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