R. W. Keyes

Thermal Problems of the Injection Laser

Abstract: Heat is produced during the operation of an injection laser. The thermal conduction problems associated with the
flow of the heat away from the junction region have been solved and the temperature increase of the junction has been calcu-
lated for several simple model cases. The results have been applied to the calculation of thermal limitations on the perform-

ance of gallium arsenide lasers.

Introduction

Certain applications of lasers require operation at high
power levels. One limitation on the power level at which
a solid state laser may be operated is thermal. Generally,
not all of the pumping power delivered to the laser is
emitted as light; a large fraction of it is converted into
heat. The heat raises the temperature of the laser. If the
temperature rise is sufficiently great the character of
the electronic processes in the crystal will be altered to the
extent that satisfactory laser operation is not possible.
The present paper attempts to estimate the limitations
which these thermal effects place on the capabilities of
p-n junction lasers.

The obvious way to avoid the problem of heating of the
junction laser is to place the junction in contact with a
thermal bath. The practicality of this solution is, however,
limited by the difficulty of transferring heat to, for example,
a liquid bath. To illustrate, consider the case of a GaAs
junction laser operated at 77°K, the temperature of
boiling liquid nitrogen. The rate at which heat is produced
at the junction is approximately equal to the threshold
current density, about 3000 ampere/cm® for a typical
laser, times the energy gap, 1.5 volts for GaAs, giving a
product of the order of 4500 W/cm’. The maximum
rate at which heat can be transferred to liquid nitrogen
by nucleate boiling is, however, only 10 W/cm®. The
laser is cooled by attaching the junction to a large heat
sink that reduces the power density at which heat is
transferred to the liquid nitrogen by a factor of at least
several hundred and, preferably, of several thousand.
The dimensions of the heat sink must be orders of magni-
tude larger than the dimensions of the junction. The
thermal problem involved is, then, essentially that of
the flow of heat from the junction into a large body
of solid material which constitutes the heat sink. The

temperature of the heat sink at very large distances from
the junction is equal to the temperature of the thermal
bath. This kind of resistance, that which is encountered
by the flow of a current from a bounded contact area
into a semi-infinite medium, is known as spreading
resistance.

This paper presents solutions to certain idealized heat
flow problems which are intended to approximate the
flow of heat from a junction into an adjoining body of
solid material. The problems are idealized in order to
make them soluble by considering simplified geometrical
shapes and by assuming that the material parameters
(the thermal conductivity and the specific heat) in the
equation of heat conduction are independent of temper-
ature. These assumptions are necessary to preserve the
homogeneous nature of the equation of heat conduction.

Part 1 presents solutions to time dependent heat flow
problems which relate to pulsed operation of the injection
laser. Part 2 describes the solution of the steady state
problems of heat conduction which pertain to continuous
operation of the laser. The first problem has been treated
by Smith and Lasher' and the second by Mayburg®, both
of whom, however, adopted approximations and points
of view somewhat different from those presented here.
In Part 3, the results of Parts 1 and 2 are applied to gallium
arsenide lasers. Certain mathematical details are presented
in Appendices A and B, and a resume of notation is given
in Appendix C.

In the model injection lasers to be treated, heat is
produced at a junction plane S at a rate jJ per unit area,
where j is the electrical current density and V is the
voltage drop in the junction, very nearly the gap voltage.
Heat may also be produced by the joule or resistive heating
caused by the current in its passage through the material
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Figure 1 The form of the dependence of temperature on
distance from the source during heat flow into a one dimen-
sional heat sink. Note that little thermal energy has pene-
trated beyond x = (D#)*.

surrounding the junction. The model is pessimistic (from
the point of view of high-power laser operation) in neg-
lecting the loss of energy as light.

The model is characterized by certain parameters as
follows: j, is the threshold current density. No lasing
takes place if the current density j is less than j,. If j is
greater than j,, the current density (; — Jj,) contributes
to stimulated emission. Now, j, depends on the temper-
ature at the junction in a form which, to an adequate
degree of approximation, can be written

Ji = joexp (AT/T). @)

Here j, is the threshold current at the bath temperature 7
which the laser assumes in the absence of heat sources,
T + AT is the temperature of the junction, and T, is a
characteristic parameter of the laser material.

The thermal conductivity of the material which carries
heat from the junction is denoted by . The material may
be the laser material itself or it may be some metal to
which the laser has been attached. In the former case k
is temperature dependent, frequently being proportional
to the reciprocal of the temperature, but in the latter case
it is essentially temperature independent. Here the latter
case will be assumed as a realistic one which has the
advantage of avoiding the analytical complexities as-
sociated with the treatment of a temperature dependent «.
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x appears in the equation of heat conduction in its ratio
to the specific heat per unit volume C. The gquantity
D = «/C has the dimensions of a diffusion constant and
is called the thermal diffusivity. C is strongly temperature
dependent in certain temperature regions. Our treatment
is approximate in that C is assumed to be a constant for
a given laser and bath temperature.

The last material parameter that characterizes the
laser is the electrical conductivity, o, of the material
which carries current to the laser junction. Although ¢ is
structure sensitive it is about 10° (Ohm-cm)™* for many
heavily doped semiconductors, and is nearly independent
of temperature. Neglect of the temperature dependence
of & is a quite reasonable approximation. In metals o and
x are related by the Wiedemann-Franz Law,

K ' (k 2
- = —=\=]T, 2
T 3 q) @
but in semiconductors (x/¢) is much greater than the

value given by Eq. (2).

1. Pulsed operation of the injection laser

Consider first a one-dimensional case in which heat is
being produced at a rate jV on a plane, the yz plane, say,
and flows away into a solid extending to infinity in the
+x direction. The plane of heat production represents
the junction plane.

Suppose that the laser is initially at a uniform temper-
ature T with no current flowing. The current is turned on
at time t = 0. The temperature of the laser then begins to
rise, and at a point x and time ¢t is T + AT (x, f) with

AT(x, ) = (jV/x)(4D)"? ierfc [x/(4D)"?]. (3)

The function ierfc has been tabulated® and is shown in
Fig. 1. The point illustrated by Fig. 1 is that practically
none of the heat energy has penetrated beyond x =
2 (Dt)%. The semi-infinite approximation is good if the
extent of the medium in the +x direction is many times
(D).

At the junction x = 0, the temperature rise is

AT = (jV/x)(4Dt/m)"2. 4

The temperature of the junction increases in accord with
Eq. (4) until the current is turned off at some time ¢,.
The threshold current increases according to Eq. (1).
If the current is not turned off before the threshold
current density reaches the actual current density j, the
production of stimulated emission will cease at another
time #, when this occurs.

We now investigate the question: What is the maximum
amount of stimulated light energy that can be produced
by an electrical pulse? The amount of stimulated light
energy per unit area is proportional, in the present model,




to the integral of the excess of current over threshold
current

W= Vfoh G — i) dr, )

it being assumed that #; < f,. The factor of proportionality
is the efficiency, a dimensionless number less than unity.
The time dependence of j, in Eq. (5) is obtained from
Egs. (1) and (4) and is

o z(w)w
Je=doexp’ o\ . (6)

It is advantageous to normalize current densities to the
material parameter j,. Thus we define

7 = ji/ e @)
and
i* = jlo- )

The remaining material parameters then appear in the
combination

LS (K_Tl)z _
4D \j, V.
which has the dimensions of time. Thus it is also con-

venient to normalize the time scale to ty by defining
t* = t/ty. Then Eq. (5) can be rewritten

w«C Ti
4jsv*

= fy, 9)

0t _
W= Vi f [* — exp (/7] dr*. (10)
0

An example of the time variation of the integrand in
Eq. (10) is shown in Fig. 2.

We can now find that value of j* which maximizes W
for a given pulse length, r*. The solution of this max-
imization problem is described in Appendix A and
presented in Fig. 3, in which the value of j* that max-
imizes W and the resulting value of W (referred to j,Vty)
are plotted as functions of the pulse length, r*. The
larger the pulse length, the smaller the j* and the greater
the energy, up to a point. When, however, % = 0.0394,
then r* = r%; that is, the threshold current has reached
the maximizing current itself at the end of the pulse, and
lasing stops even if the current is not turned off. Then
W = 0.255 j)Vity and j* = 13.6. This represents an
absolute maximum limit on the energy of a single pulse.
It is not possible to increase W by further lengthening
the pulse. To be very specific, the maximum pulse energy
above threshold which can be obtained per unit area
according to the present model is

mCT; (11)

Wine = (0.255) =
(0.255) ==

The stimulated light output is less than W,.. by an

efficiency factor, the fraction of the electrical energy
above threshold which appears as stimulated light.
Note in Fig. 3 the relative insensitivity of the total
energy to the pulse duration. Thus, for example, if it is
required that £, should be only one-tenth of #,, the value
corresponding to maximum energy, W is still 709, of its
value at the maximum. The current density required to

0 0.2 0.4
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Figure 2 An example of the dependence of j* — ji*, the
integrand of Eq. (5), on time.

Figure 3 The values of j*, the current density which maxi-
mizes the stimulated pulse power for a given pulse duration
and (below) the resulting maximum value of W as a func-
tion of the pulse duration, #,*.
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achieve maximum energy in time ¢, increases, however,
by a factor of about five.

The large current densities which achieve the maximum
value of W according to Fig. 3 for small pulse duration
lead to a practical problem concerning series electrical
resistance. The power dissipated in series resistance is
proportional to the square of the current density, and,
thus becomes an increasingly serious objection to the
quantitative validity of the present model as pulse lengths
are decreased. The heat generated in series resistance is
independent of position in the model of the present section.
Thus none of this heat flows, and the joule heat merely
raises the temperature of the material in which it is
produced. The temperature rise in the adiabatic case
during a time ¢ is

AT = jt/aC. (12)

Here ¢ is the electrical conductivity of the material.
The AT of Eq. (12) must be added to that of Eq. (4).
Thus, instead of the dependency in Eq. (5), the threshold
current density depends on time, as follows:

= _expL(FA/1* A, (13)

Here the reduced variables introduced in Egs. (7) to (10)
have been used. \ is a normalized measure of the electrical
resistivity

A= ‘% <%§>. (14)

Note that j* depends on j* and * in the combination
7 r* in Eqgs. (10) and (13).

Again we want to maximize the integral of Eq. (5)
and again the details are given in Appendix A. The
resulting values of j* and W are shown in Fig. 4 as func-
tions of #* and \. The values for A = 0 are, of course,
the same as those of Fig. 3.

Now we consider the effects of letting heat flow away
from a finite junction into a three-dimensional semi-
infinite heat sink. In order to construct a problem with
spherical symmetry, which facilitates analytical treatment,
we have regarded the junction as a hemispherical heat
source of radius a. It is found in this case that the temper-
ature rise of the junction at a time ¢ after the current is
turned on is

AT = llx/ﬁ [1 — " crfe (Dt/a*)'").

The dependence of threshold current on time now is

jo = Jj, exp {\:1 Va:\[l — " erfe (Dt/az)wj}.
kT,
(15)

Again, it is desirable to find that value of j which max-
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Figure 4 The quantities given in Fig. 3 when electrical re-
sistance is taken into account for various values of the

electrical resistivity parameter, A. The curves for A = 0 are
identical with those of Fig. 3.

imizes an integral like Eq. (5). The problem is, however,
too complex to be solved analytically in a useful way.
There are two interesting limiting cases. One is that in
which (Dt/a®) << 1. Then Eq. (15) becomes

. . iV (4De\'?
Jo = jo = exp [:chI (T) , (16)

which is identical to Eq. (6). Thus, if Dt,/a® << 1, the
calculations and results for the one-dimensional case are
applicable. Writing ¢, = ¢¥#y and using Eq. (9) for ty
gives

o Va)/(kT)T* > ¢4 (17

as the condition which the material parameters must
satisfy in order for the one-dimensional result to be
applicable.

The physical significance of this case is clear. As seen
in Fig. 1, (Dt)% is the distance to which heat penetrates
in time f, and the condition that Dt/d’ is small merely
means that the penetration distance is small compared to




the linear size of the laser. It is apparent that the one-
dimensional and three-dimensional cases should then lead
to the same result and that this equivalence holds in the
small Dt/ & limit for shapes other than the hemispherical
one which we have assumed.

Eq. (15) can also be treated easily in the opposite
limiting case, that in which Dt/a’ becomes very large.
In contrast to the one-dimensional case, the junction
temperature and the threshold current density do not
increase without bound in the three-dimensional case
when ¢ approaches infinity; rather, they asymptotically
approach the values

AT = jVa/k, (18)
Jo = Jo €Xp (J Va/KTl)- (19)

The laser will continue to operate indefinitely, or con-
tinuously, if j,, the threshold current density of Eq. (19),
is less than j, the current density. The condition that a
laser can be operated continuously is thus that there is a
value of j which satisfies the equation

j = joexp (jVa/kTy). (20)
There is such a value of j if
(o Va)/(xTy) < 1/e. (21)

The present treatment of the question of continuous
operation is inadequate in that it assumes a hemispherical
junction, and the question will be investigated in more
detail in Part 2. First, however, it is interesting to compare
the regimes of the parameters which characterize the
material and structure defined by the inequalities (17)
and (21). Note that the parameters enter both conditions
in the same combination. Depending on the value of r¥%,
there may be intermediate values of (jo¥a/«T;) for which
neither approximation is valid. It has been seen, however,
in connection with Fig. 3 and the discussion of the one-
dimensional case, that the interesting values of ¢% are
usually no greater than 0.04 and are frequently much
smaller. Thus it will often be the case that both con-
ditions (17) and (21) are satisfied and the two regimes
overlap. In other words, in many cases the problem of
short pulse operation of a given laser can be treated in
the one-dimensional approximation, and the potential of
the same laser for continuous operation can be evaluated
with the three-dimensional theory. There may be, however,
intermediate cases which we have not been able to treat
satisfactorily.

2. Continuous operation

Equation (18) of Part 1 illustrates that when heat flows
from the injection laser into a three-dimensional heat sink
the temperature of the laser approaches a constant value at
long times after the current has been turned on. This

result does not depend on the particular source geometry
used (hemispherical), but holds for any finite source
driving heat into a three-dimensional sink. The situation
in the eventual steady state is described by the concept
of thermal resistance, according to which the temperature
rise due to flow of heat iV is

AT = PiV. (22)

Here P is the thermal resistance, { is the current through
the laser (or the current density, j, times the area) and
iV is the rate at which heat is produced. It can be seen,
for example, from Eq. (18) that P = 1/2rax for the
hemispherical junction configuration used as a model in
Part 1. Here in Part 2 we use this concept of thermal
resistance to discuss the thermal problems involved in
continuous operation of an injection laser.

An injection laser will lase only if the current passed
through it exceeds some threshold current, i,, which is a
function of the temperature of the laser. If an attempt is
made to operate the laser continuously by increasing the
current i through it to the threshold value, the laser is
heated by the current, causing i, to rise. The threshold i,
is, therefore, a function of the current i/ through the
intermediary of the laser temperature. The laser will
operate continuously if the current { catches up with and
exceeds the threshold.

The situation is illustrated qualitatively in Fig. 5, in
which i, is plotted as a function of i. The function i, = i
is also plotted. In the case for curve A the equation
i = i,(i) has a solution and the laser will operate con-
tinuously. In the case of B, there is no solution; the
current never catches up with the threshold current. This
problem will be recognized as that treated by Mayburg.”
Here we want to go into considerably more detail than
that given by Mayburg.

The power dissipated in the laser is about iV, where V
is the energy gap of the semiconductor divided by the
electronic charge. The effects of series resistance are
again neglected in the initial treatment. The dependence
of the threshold current on temperature may be expressed
as (see Eq. (1))

i, = iy exp (AT/T). (23)
AT has already been given in Eq. (22):
AT = PiV. (24)

Here i, is the threshold at temperature 7. Using (23)
and (24), the equation i = i,(i) becomes

i = exp (PiV/Ty), (25)
which we may rewrite in the form

(i/io) = exp [(i/io)(Pia V/Ty)]. (26)
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Figure 5 Examples of the way in which the threshold cur-
rent depends on the current through the intermediary of the
temperature in the steady state. The laser represented by
curve A operates continuously at currents greater than that
where curve A intersects the line i{; = /. On the other hand,
the current never catches up with the threshold current in
the laser represented by curve B, and the laser will not op-
erate continuously. Curve C is a borderline case, and illus-
trates that the continuous threshold cannot be greater than
i1, which is e times f.

Whether or not this equation has a real solution depends
on the value of the dimensionless parameter (Pi,V/T).
It has a solution if

PiyV/T, < 1/e. (27

Equation (27) is the condition that the injection laser
can be operated continuously.

It is of interest to examine the case C of Fig. 5, which
corresponds to equality in Eq. (27). The current i is
the maximum value to which the threshold may rise
due to heating by the current and yet permit lasing to
occur. i, is related to i, by iy = ie. The temperature has
increased by an amount 7 at current i,.

Now, in order to give more meaning to Eq. (27), P
will be interpreted as a spreading resistance. Thus it can
be written in the form

P = 1/2d. (28)

Here d is a parameter with the dimensions of length and

R. W. KEYES

a value of the same order of magnitude as the linear
dimensions of the laser and « is the thermal conductivity
of the base through which the heat is dissipated. It is
also convenient to refer the threshold current, i, to
current density by writing

io = jowL, (29)

where w is the width of the laser and L is its length.
Combining Eqs. (27), (28), and (29) gives a condition on
threshold current density

hL < (2d/we)(kTo/ V). (30)

It has been found that j,L tends to be a constant for a
given series of lasers, that is, for lasers made from a
particular material and diffusion run.* The constant j,L
is to be compared with the quantity («7;/¥) multiplied
by a dimensionless factor of order of magnitude unity.
JoL and «Ty/V are of similar magnitude in some cases
of practical interest, and it is consequently worthwhile
to investigate the exact value of the spreading resistance
in more detail.

The spreading resistance of a rectangular shape is not
known to us. As an approximation, it seems sufficiently
accurate to use the spreading resistance of an ellipse with
the same width-to-length ratio and the same area as the
rectangle. In terms of d,

1 1 w”

7= g K\l = 3] (31)
Here KX is the elliptic integral function whose properties
are described, for example, in Jahnke-Emde.® Thus

Eq. (30), the condition for continuous operation, can
be written

JoL < ve 'k T/ V). (32)

The numerical factors apart from ¢ ' have been lumped
into another number <y, which is a function of (w/L),
the width-to-length ratio:

2 -1
vy = 2#1/2[{- K(l — %)j' ; (33)

the function v is shown in Fig. 6.

Now we investigate the role of dissipation in series
electrical resistance in the problem of continuous opera-
tion, using a result derived in Appendix B. The temper-
ature increase of the junction caused by the heat produced
in the series resistance can be expressed as

AT yoriosry = Pi%/20 (34)

by combining Eqs. (B4), (B5), and (B10). The total
temperature increase is found by adding the contributions
of Egs. (24) and (34). The equation i = i,(i), the analogue
of Eq. (26), now is




i i PigV 1 <i >2<Pi0 V>2 kT J
- == — + — ——— — 35
i, = X L‘O T, 2 \j, T, /] oV® (35)

The electrical conductivity appears again only in the
reduced form )\ encountered in the pulsed case and
defined by Eq. (14). Eq. (27) is now replaced by

(PioV/T)™" > (1 + /1 + 16\/x)

1 1
X exp \:2 + L viT 16)\/77:|. (36)
The dependence of Pi,V/T, on \ is shown in Fig. 7.
When X = 0 the condition for continuous operation is
given by Egs. (32) and (33) but, if X % 0, the (¢™") on
the right hand side of Eq. (32) must be replaced by a
value given by Eq. (36) and Fig. 7.

3. Application to GaAs

The most important example of the injection laser is
the gallium arsenide laser; here in Part 3 the relatively
formal results of the preceding parts are applied to it.
The properties of the gallium arsenide laser are given in
Table 1. The columns at farthest left and right list several
temperatures at which the GaAs laser might be operated.
Column I gives the threshold current density at the
various temperatures. The threshold current density is,
of course, not a constant, but varies with the material
and fabrication process of the laser; the values given are
typical low values, not the lowest ever attained, but those
which can be achieved fairly consistently for large lasers.
Column II gives the thermal conductivity, kx, of GaAs.
x is somewhat structure sensitive at the lower temperatures
of the table; the values given refer to the heavily doped
GaAs used in injection lasers. x has a maximum near
20°K. Column III gives C, the specific heat per unit
volume, and the ratio x/C, the thermal diffusivity, is
given in Column IV. Column V shows the values of ¢y
calculated from Eq. (9) using, in addition to j,, x, and
C which are given in the table, ¥ = 1.5 Volt and 77 =
55°C. Column VI gives j,Vty. Column VII gives #,, which
is equal to 0.0394 fy. The quantity #, is the length of the
pulse which gives maximum stimulated pulse energy.
Column VIII gives the values of current density at which
the laser must be operated to maximize the stimulated
pulse energy. These values are 13.6 j,, as discussed in
connection with Eq. (10) and Fig. 3.

The integral of Eq. (5) has the value 0.255 j,Vty for
the maximizing pulse which is characterized by the
parameters of Columns I and II. The maximum light
energy which can be obtained from a GaAs laser is
found by multiplying 0.255 j,Vty by an area and an
efficiency factor. Large lasers tend to have low efficiency,

and the way in which the compromise between area and
efficiency must be made will not be entered into here,
as we are primarily concerned with thermal problems.
It has, however, been considered by Lasher and Smijth.'

The amount of stimulated light energy which can be
obtained in pulses shorter than 7, can be obtained from
Fig. 3. As an example, consider a 3 usec pulse in a laser
at 77°K. Since ty is 1500 usec, r* is 0.002. The energy
output per unit area is 0.14 joViy instead of 0.255 joVta.

w/l

Figure 6 Values of the parameter v of Egs. (32) and (33).

Figure 7 The reduction in the maximum permissible value
of Pi,V /T, in the condition for continuous operation due to
the effects of electrical resistance.
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Table 1 Properties of the gallium arsenide injection laser.

1 II III v v

\'2¢ VII VIIIL IX X XI

T

Jo « C D ty
[°’K] [A/cm? [W/cm deg]

[J/cm? deg] [cm?/sec] [usec]

[j/em? [usec]

jo VtN ty ] (Dto)* A (See Ohmic T
[A /cm?] [cm] note*) Degradation [°K]

4.2 250 3 2.1X10~¢  1.43X10* 100
20 350 10 0.021 47 1800
55 700 5 0.37 13.6 4000
77 1000 2 0.70 3.0 1500

300 60,000 0.5 1.70 0.30 0.24

0.04 4 3500 0.25 0.06 0.72 4.2
1 70 5000 0.057 2 0.4 20
4 160 10,000 0.05 1 0.60 35
2 60 13,500 0.013 .04 0.82 77
0.02 0.01 800,000 5X1075 .01 1.00 300

* Assuming the electrical conductivity, ¢, is 102 chm™! cm™1.

The energy is relatively insensitive to #*; a pulse 20 times
shorter than 7, yields half as much energy. It is also
found from Fig. 3 that the current must be increased
from 13.6 j, to 95 j, to obtain the maximum energy
The pulse energy passes through a maximum in the
range 40 to 80°K. The reason is that both x and C are
large here. At very low temperatures, although « remains
large down to the helium boiling point, C becomes small
and very little energy is needed to raise the temperature
of the solid. Our calculations are too pessimistic here,
as they assume a temperature independent C, whereas,
in fact, C increases rapidly with increasing temperature.
At high temperatures C tends to become constant but «
decreases as the reciprocal of the temperature. Further-
more, the threshold current becomes large at high temper-
atures so that extremely short pulses must be used.
Column IX of Table I gives values of (Dto)*, the thermal
diffusion length, or distance to which heat penetrates
during a maximum energy pulse. These figures are useful
in determining whether the semi-infinite model and the
one-dimensional model are valid in particular cases.
Thus far series resistance has been neglected in the
discussion of the limits on pulsed operation of the GaAs
laser. The parameter A\, the dimensionless reduced resis-
tivity defined by Eq. (14), is given in Column X. The
extra heating which comes from ohmic losses can be
evaluated from the theory of Egs. (12) to (14), Fig. 4,
and Appendix A. It reduces the energy capability of the
GaAs laser. The fraction by which the energy capability
of the laser must be multiplied under conditions which
maximize the pulse energy is given in Column XI of
Table 1. The loss of energy capability of the GaAs laser
due to ohmic heating amounts to a little more than a
factor of two in the worst case. With shorter pulses, in
which the current is higher, the ohmic effect may be larger.
Turning now to continuous operation, relevant numbers
are assembled in Table 2. The same temperatures used
in Table 1 are again listed at the left. As mentioned

KEYES

Table 2 Parameters pertaining to continuous operation of
the GaAs laser.

I 1I
T ioL KTl/V
[°K] [A /cm] [amp /cm]
4.2 10 110
20 14 370
55 28 180
77 40 75
300 2000 20

previously, it has been found that j,L, the threshold
current density times the length of the laser, is approxi-
mately constant in small lasers, which are most suitable
for continuous operation.* Values of j,L are given in
Column I. Values of (xT;/V), the quantity with which
JoL has to be compared according to Eq. (30), are given
in Column II. It is seen that j,L is indeed small compared
to (xTy/ V) at temperatures less than 55°K and, therefore,
that continuous operation of GaAs injection lasers below
this temperature should be easy, a result which is con-
firmed by experience.

In the case of operation in a bath of boiling liquid
nitrogen, at a temperature of 77°K, j,L and («T/V) are
not greatly different. The question of the feasibility of
continuous operation here reduces to one of detail.
To explore this detail Fig. 8 has been constructed from
Eqgs. (32) and (33) and the experimental measurements
of Pilkuhn, Rupprecht, and Blum.* The content of this
Figure is that j,L must lie below the solid lines drawn from
various values of w for continuous operation to be pos-
sible. The dotted line shows j,L as measured by Pilkuhn
et al. It appears that the experimental results lie well
below the limit set by Eq. (32) for small lasers, so that




i LA/CM)

L(10% in)

Figure 8 Application of Eq. (32) to the problem of con-
tinuous operation of the gallium arsenide injection laser at
77°K. The laser will operate continuously if jL lies below
the value given by the solid lines for the particular width in
question. The values of joL found by Pilkuhn, Rupprecht,
and Blum are shown by the dotted line.

continuous operation should be easy if a proper heat
sink is provided.

The situation is quite different at 300°K, probably
the most interesting temperature; here j,L is two orders
of magnitude larger than («T;/¥). In principle, of course,
one might hope to make up even this large difference
with the factor v of Egs. (32) and (33) and Fig. 6. In fact,
it turns out that the length-to-width ratio required to
make < sufficiently large is 500, which seems to be outside
the scope of present day injection laser technology.

The effect of series ohmic resistance on continuous
operation of the GaAs injection laser can be evaluated
from Fig. 7, which shows the numbers by which the ¢ *
of Egs. (32) and (33) must be replaced when series re-
sistance is taken into account. The values of the reduced
resistivity, A, have already been given in Table 1. The
effect of series resistance is always small; even in the
worst case, around 55°K, the numerical factor ¢ is
changed only by 109,.

Practical lasers have much more complicated structures
than the idealizations of Parts 1 and 2. Perhaps the most
important difference is that the junction is not really
attached directly to the heat sink. A certain amount of
series thermal resistance intervenes between the junction
and the spreading resistance of the heat sink. This series
thermal resistance is the kind of resistance considered in
the calculation of Mayburg.” A comparison of the series
thermal resistance with the spreading resistance described
by Eq. (28) and the subsequent theory shows that the

series resistance will be small compared to the spreading
resistance if the height of the junction above the heat
sink is small compared to w, the width of the laser. It is
not too difficult, however, to extend the application of
Eq. (27) to cases in which P is the sum of series and
spreading resistance.

Another complication which arises in practice is that
heat may be allowed to flow away from the junction in
both directions, so that there are two thermal conduc-
tances in parallel. If these two parallel paths are identical,
they introduce no additional complication in the analytic
treatment, and can be described by modifying the one-
sided theory in an obvious way. Usually, however, at
least the series thermal resistance will be different on
the two sides. If one of these is much larger than the
other, the one-sided theory may become applicable.

Exact treatment of problems involving parallel and
series combinations of thermal resistance are possible by
the methods introduced in this paper, although the
formulas involved will frequently become considerably
more complicated.

Conclusions

The present paper solves the thermal problems associated
with short pulse and steady state operation of an idealized
model of an injection laser. The physical process which
limits the light that can be produced by the injection laser
is the heating produced by the passage of current which,
since the threshold current depends on temperature
(Eq. (1)), raises the threshold. Stimulated emission is
produced only by the current in excess of the threshold
current, however. The race between the current and the
threshold current, which, through the temperature,
depends on the current, was illustrated in Fig. 5; if the
current catches up with the threshold current, stimulated
emission begins (Curve A of Fig. 5) and, as the current is
increased, the current in excess of the threshold produces
stimulated emission. The stimulated emission passes
through a maximum as the current continues to increase
and eventually the threshold current again exceeds the
current and stimulated emission stops.

The condition that the laser operate continuously was
given in terms of characteristic parameters of the laser
structure in Eqgs. (21) and (27)—(30). These conditions are
easy to satisfy with common gallium arsenide lasers at
temperatures somewhat below 77°K. They are very
difficult to satisfy at temperatures above 77°K. The
junction temperature may be as much as T; (usually in
the range 40°-80° in GaAs) higher than the ambient
temperature at the point at which lasing begins (Curve C
of Fig. 5).

Even if the laser does not operate continuously (Curve
B of Fig. 5), useful stimulated light may be obtained in
short pulses. If a current density greater than j, is suddenly
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switched through the laser, stimulated light will be pro-
duced until the heat produced raises the threshold cur-
rent up to the value of the applied current. There is a
value for the applied current which maximizes the amount
of stimulated light obtained in a pulse. If the applied cur-
rent is near the threshold current the excess current which
produces stimulation emission is small, and, furthermore,
only a small amount of heating can destroy the lasing
action. If the applied current becomes very large the stimu-
lated light output again becomes small because the time
needed for the heat to destroy the lasing action is nearly
proportional to the inverse square power of the current
(Eq. (6)). The problem of finding the current which maxi-
mizes the amount of simulated light in a pulse is solved in
Part 1 and Appendix A. It turns out that the optimum cur-
rent density is 13.6 j, and the stimulated light output is
0.25 j,Vty times an efficiency factor and an area. Here ty
is a characteristic time of the laser defined in Eq. (9).
The theory was extended to take into account the
heating caused by the passage of the current through
the electrical resistance of the laser material. The heating
in series electrical resistance has little effect on the con-
tinuously operating GaAs laser, but may seriously degrade
performance at the high currents used in pulsed lasers.

Appendix A: Maximum of the stimulated

power integral

This Appendix considers the problem of finding that
value of current which maximizes the stimulated power
integral W, defined by Eq. (5) and Eq. (10) or Eq. (13).
Eq. (5) is

G* — j4) dr*, (A1)

t

W=jthNf

0

in terms of the variables defined in Eqs. (7) to (11). The
maximization problem involves solving:

0 = (o Vty) " dW/dj*

= (* — AN/ di¥)
+ [ 1 - as/ar . (A2)

If the pulse length is fixed, #* is a constant, and the first
term on the right hand side of Eq. (A2) is zero. Recall
that j* is a function of j*°r* in Eqgs. (10) and (13). Thus

aj%/0j* = 2(*/i*)(0j%/ot*). (A3)

Substituting Eq. (A3) into Eq. (A2) and performing an
integration by parts reduces Eq. (A2) to

1 t*
ey - L[ e, (a4
1Yo

an implicit equation for j* because j* depends on j*, as
in Eq. (6). When j* has the value given by Eq. (A4), W is

R. W. KEYES

W = joVixti[(3/2)i* — jA(%)]. (AS5)

The results given by Egs. (A4) and (AS5) only have
meaning when j*¥(z%) is less than j*, that is, the threshold
current at the end of the pulse is still less than the current.
Starting with small values of %, W as given by Eq. (A5)
is an increasing function of #% until #% is such that j%(#¥) =
j*. Then the current which maximizes W is such that
the laser turns off due to heating just at the end of the
pulse. The value of 1% at which this occurs is %. Thus
t% is the value of % for which both Eq. (A4) and

A = j* (A6)

are satisfied. W cannot be increased by making * longer
than %,

Because of Eq. (A6) the first term on the right hand
side of Eq. (A2) vanishes also if, instead of fixing %, it is
allowed to be determined by the time at which the laser
turns itself off due to heating. Thus the value of W cor-
responding to r% is the maximum pulse energy which
can be obtained under any conditions.

If the integral in Eq. (A4) is evaluated using Eq. (10),
Eq. (A4) becomes

o= [2 = AT 4G
X exp (j¥7%)"? — 4(*° %) (A7)

If, instead, Eq. (13) is used to evaluate the integral, Eq.
(A4) becomes

, 1 1
* = 2[1 N + N

1 ,
X 1<2_)\T/§ + Xl/z(]*zt"f)w)]

X exp [(*°1%)"" 4 N*¥r]
2 2 1
+ i~ e ) @9
Here I(z) is the function®®

z

Iz) = e~ fo € dx. (A9)

Equations (A7) and (A8) were used to construct Figs. 3
and 4.

Appendix B. The thermal effect of
series resistance

In this Appendix we wish to find the temperature rise at
a surface due to the ohmic heat produced by a current as
it flows away from the surface through a spreading
resistance. Consider that space is divided into two semi-
infinite parts by a surface Q, the right hand part being
the medium under consideration. Q has two parts, a
bounded part S through which electrical current is injected
into the medium, and the infinite remaining part S,




which is electrically and thermally insulating. The electrical
spreading resistance is found by solving the following
equations which define the electric potential, ¢:

First, Laplace’s equation,

V¢ = 0; (B1)
Second, the condition that .S is an equipotential,

¢ =¢, on S; (BZ)
Third, the condition that no current flows across S,,

n-V¢ =0 on S, (B3)

In Eq. (B3) n is a vector normal to the surface Q, and
¢ vanishes at infinity.

The solution of the electrical potential problem permits
the definition of an electrical spreading resistance, R, as
follows:

R =¢/i = ¢1//; oV ds. (B4)

An entirely analogous thermal problem, in which T
replaces ¢ and « replaces o, can be solved. A thermal
spreading resistance is thus obtained which has the value

P = (¢/K)R. (BS)

Turning now to the actual thermal problem, the di-
vergence of the heat current, J, is equal to the rate of
production of electrical heat

V-J = o(Ve). (B6)

Writing J = —«V T and (V) = V - V) = V(¢
Eq. (B6) becomes

— VT = 16V%(¢Y). (B7)
The desired solution of Eq. (B7) is
T = (/202496 — ¢°). (BY)

The T of Eq. (B8) satisfies Eq. (B7) and the following
boundary condition:

AT =0 = 0)on S.

This condition insures that the heat flows away through
the medium, the heat sink, and not the junction

n-V7i=0@-J=0onS,,
as required by the statement that S, is thermally insulating.
T = 0 at infinity.

This is a definition of the zero of the temperature scale.
With this definition, T is the increase in temperature
over the bath temperature.

It is seen from Eq. (8) that the temperature increase
at the junction, where ¢ = ¢, is

AT = (¢/26)¢:. (B9)
By recalling Eq. (B5), Eq. (B9) can be written
AT = }P(¢1/R). (B10)

However, ¢>/R is the electrical power dissipated. The
temperature increase is that which would be produced by
the flow of half of the electrical power through the thermal
spreading resistance.

Appendix C: A tabulation of notation

Radius of hemispherical contact
to heat sink

C Specific heat per unit volume

D Thermal diffusivity, «/C

i Electrical current

I

io Threshold current of a laser at
the bath temperature, T
i, Threshold current of a laser at

actual junction temperature
i A current defined by Fig. 5

J Electrical current density
Jo Threshold current density at bath
temperature

Ji Threshold current density at

actual junction temperature

Reduced current density, j/j,

Reduced threshold current den-

sity, j./J

Elliptic integral

Length of a laser

Electrical resistance

The junction surface

Time

Time at which lasing stops due

to heating of the laser

t Duration of current pulse

Iy A natural time which occurs in
thermal problems of the injection
laser and is defined by Eq. (9)

S S
ES

I I B =

=~
=

r* t/ty
5 tofty
*% t/ty

T Bath temperature

T, A parameter which characterizes
the temperature dependence of
threshold current, as in Eq. (1)

AT The amount by which the tem-
perature of the junction exceeds
the bath temperature
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Voltage

Width of a laser

Integrated electrical power above
threshold, see Eq. (5)

The maximum value which W can
have, Eq. (11)

Numerical factor in the criterion
for continuous operation, Eq. (33)
Thermal conductivity
Normalized electrical resistivity,
Eq. (14

Thermal resistance

Electrical conductivity
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