294

R. L. Mattson*
J. E. Dammann

A Technique for Determining and Coding
Subclasses in Pattern Recognition Problems

Abstract: The problem of organizing and partitioning large amounts of data into classes such that all data in one class will
have similar properties is well known in pattern recognition research. The first step in the process, a cluster finding technique,
involves grouping a large amount of data into clusters which must be detected and encoded so that automatic pattern recogni-
tion can take place. This paper describes a method for detecting and coding clusters. The principal advantages of this tech-
nique are that clusters need not be known a priori and no matrix inversion is required.

Introduction

The purpose of this paper is to provide a technique for
pattern classification problems by which a set of patterns
is partitioned into a useful group of subsets, so that
classification can be made with a network of linear
threshold elements. The method assumes that clusters
within the space are not known a priori.

A linear threshold element (LTE) is a device which has
n inputs (x;, * -+ , x,) and a single output, f (see Fig. 1).
Each x; is a real number and the value of § is either 0 or 1.
The value of f is determined by forming a weighted sum
of the input quantities and comparing this sum S to a
threshold T. If the sum is greater than or equal to the
threshold, f = 1; if the sum is less than the threshold,
f = 0. The value of f is expressed mathematically in

Egs. (1):

S =3 xwi (1a)
i=1

f=1 ifs>T; (1b)

f=0 ifS§S<T. (10)

Many pattern classification systems use linear threshold
elements to perform linear discriminations on the pat-
terns of interest. In such an approach, n properties of
patterns are measured and each property is assigned a
real number, x.. The n values (x,, --- , x,) are used as a
descriptor of the pattern. The pattern is classified into
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one of two classes by forming a weighted sum, S, of the
values (x;, * - - , x,) and comparing this sum to a threshold
value, T. If S > T the pattern is classified into class 1; if
S < T the pattern is classified into class 0. Figure 2
shows an example for n = 2.

If patterns belong to more than two classes, two or
more LTE’s may be used in parallel to produce a binary
code word for each class. For example, with four classes
two threshold elements could be used for classification. If
the outputs of both LTE’s are 0, the code word 00 results
and represents one of the four possible classes. The other
combinations of outputs of the two LTE’s, 01, 10, and 11
could be used to represent the other three classes of pat-
terns. In Fig. 3 four patterns are shown as points in the
Euclidean space with axes x; and x,. If each point (pattern)
belongs to a different class of patterns, the two threshold
elements shown in Fig. 3 divide the patterns into four
classes and assign the codes 00, 01, 10, and 11 to classes
A, B, C, and D respectively. Linear threshold element

Figure 1 The symbolic representation of a linear threshold
element (LTE).
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Figure 2 Euclidean space with axes x; and x..

number 1 (LTE-1) classifies patterns A and B as 0, and
patterns C and D as 1. LTE-2 classifies A and C as 0 and
Band Das 1.

The code assigned to each of the classes is very im-
portant. If the codes 01, 10, 11, and 00 were assigned to
the classes A, B, C, and D respectively, more than two
LTE’s would be required to classify the patterns. It is

Figure 4 An impossible condition for a single separating
line.
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Figure 3 Four patterns classified into four classes with two
linear threshold elements.

impossible for a single LTE to classify A and D as 0 and
B and C as 1—two LTE’s must be used (see Fig. 4).

In many pattern classification problems the existence
of subclasses within a major class causes difficulty. For
example, if the letters B and b are to be separated from
the numbers 6 and 8, B and » would have to be put
into one major class, “letters,” and 6 and 8 into another

Figure 5 The Euclidean space for the “letter”-“not letter”
problem.
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major class, ““not letters.” Suppose that the properties to
be used in this classification are x, = the number of loops
in the character; x, = 0 if the lower loop is large, and
x; = 1 if the lower loop is small. With these (x;, x,)
quantities the four patterns belonging to the major classes
“letters” and “not letters” would lie in Euclidean space
shown in Fig. 5.

The existence of subclasses B and b within major class
“letters” and subclasses 6 and 8 within major class “not
letters” makes this problem unsolvable with a single LTE.
However, if the subclasses are detected and given the
proper binary code words, then this classification problem
can be solved with two LTEs.

Early work in clustering techniques assumed that the
clusters were known a priori. Fisher' in 1938 made con-
tributions in this area. Other authors, particularly Bonner®;
Hyvarinen®; Rogers and Tanimoto®; Firschein and
Fischler’; Glazer®; Stark, Okajima, and Whipple';
Jakowitz, Shuey, and White®; and Ball and Hall’ have
considered the problem of unknown clusters. The method
discussed in this paper differs from each of these ap-
proaches in that it does not require an a priori distance
criterion to determine clusters of data points and does
take into consideration the restrictions imposed by
requiring a network of threshold elements to perform
the desired classification. The present technique provides
an approach to the decomposition of sample spaces and
consequent coding of detected subsets using the trans-
formation detailed in the next section. (Rao'® discusses a
technique for obtaining a transformation of this type
based on a somewhat different rationale. Also, see Cooper
and Cooper.'")

A technique for determining clusters of
patterns in an n-dimensional measurement space

& Mathematical preliminaries

The mathematical description of the threshold element is
given in Egs. (1). Each pattern (xy;, Xz, *** , Xuz) Pro-
duces a sum S, when substituted into Eq. (1a). Different
patterns will typically produce different sums S. The
distributions of S-values along an S-line can serve as
an indication of how well the LTE will perform as a
classifier. For example, if the distribution of S-values
from major class “-4” and major class “0” appears
as shown in Fig. 6a, then the LTE which produced this
distribution would probably do a good job of classi-
fication. If, however, the distribution of values on the
S-line appeared as shown in Fig. 6b, the threshold element
that produced this distribution would probably do a poor
job of classification.

In many pattern recognition problems it is possible to
describe mathematically the type of distribution that is
desired along the S-line and then to calculate that set of
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Figure 6 Two types of S-lines: (a) S-line for good separation;
(b) S-line for poor separation.

weights which produces a distribution that is as close as
possible to the desired distribution. For example, if two
widely separated clusters of points, such as are shown in
Fig. 7, are to be separated from each other by an LTE, a
set of weights is desired which produces an S-line such as
shown in Fig. 6a. What is desired, then, is to find a set of
values w; such that all points (x,, ‘- , x,) in one cluster
have values S = ZLI x;w; which are different from the
values of S = Z',f:l x;w; produced by points (x;, - - - , x,)
in the second cluster.!” If such a set of values w; can be
found, the two separate clusters in (xy, * + - , x,)-space can
be detected by looking at the one-dimensional S-line and
noting the two clusters of S-values.

Let there be p patterns in a set and denote the i*" com-
ponent of the k*" pattern as x;;. The value of S produced
by the k*" pattern is

Sk = Z XixWi (2)
i=1

The average value of S produced by p patterns is

1 - <

D
S lzsk=—22x“€wi
P =1

D k=1 i=1

n ¥4 n
= Z Wil ink = inwi: (3)
i=1 D k=1 i=1

where %; is the average value of the i*" component of the
pattern vector (xy, *** , Xn)-

[

Figure 7 Two clusters.
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If two well separated, clustered subsets exist in the
(x1, -+ , x,)-space, the moment of inertia of the total
set will be large around some axis due to the separation
of the clusters. Similarly, the moment of inertia of the
S-line distribution

M= é‘_}, (s, — 3)° 4

will be large if two separated clusters of points exist in
the space and the proper value of w,’s has been used to
make the value of S different for each cluster.

Unfortunately the quantity M can become large without
bound by allowing the absolute value of the weights (w,)
to become large without bound. If, however, the ratio

\ = [z (5, — s>/z w?] ()

is maximized, M will be large subject to the constraint
that the sum of the squared values of w; is small. Thus,
what is desired is that set of weights which makes the
value of A as large as possible. This requirement can be
simplified by noting that

M = w[Alw], (6)

™
ﬁw
It

wlilw], M

where w is a row vector (wy, + - - , w,), W]l is a column vector

—

(wy, -+, wy), [I]is the identity matrix, and [4] is a matrix
with elements

a;; = ; (xix — ) xe — %), (8)

with x;, the i*" component of the k" pattern, and %, the
average value of the it* component. It should be noted
that [4] is proportional to the sample covariance matrix.
The quantity to be maximized" is then
wlAlw]

" i ®

Since [A4] is a symmetric matrix, differentiating X with
respect to each w; yields the set of equations,

(AT — [4Dw] = 0, (10)

which can equal zero for non-zero w; only if the deter-
minant

|4 —\I| = 0. (11)

The above determinant is a polynomial in A equal to zero.
Values of X\ which are roots of this polynomial are eigen-
values of the matrix [4]. An eigenvector of the matrix
[4] is a vector such that

[Alw] = Aw]. (12)

Thus, if w] is an eigenvector of [4], then

wldwl — wAwl A\ 3w
wiiwl  willwl 2w

=\ (13)

The eigenvector corresponding to the largest possible
eigenvalue of the matrix [4] is the set of weights which
will maximize M while minimizing Y , w?. (The direction
of the eigenvector associated with the largest eigenvalue
is in the direction of the major axis of the hyperellipsoid
w[AJw] = C. This is the direction of maximum dispersion.)

This set of weights will yield a variable S such that two
subclasses are displayed as two clusters of S values if it
is possible to do so.

To determine the eigenvector corresponding to the
largest eigenvalue several methods are known'*. One
possible method uses a result in matrix theory which
states that any vector in the space spanned by the eigen-
vectors of [A] can be written as a linear sum of the eigen-
vectors of the matrix {4]. Thus, if E,, E,, --- , E, are
the eigenvectors of a matrix [4], a vector V]'> in the
space spanned by these eigenvectors can be written as

V=aE + &E, + - + 4,E,. (14)
Multiplying V by [4]* results in
[4TV] = aN'E, + aME, + -+ 4 aME,. (15)

If A, is the largest eigenvalue of the matrix [A], and & is
large enough

[ATV] ~ a\E,. (16)

This result indicates a method for approximating the
eigenvector corresponding to the largest eigenvalue of a
matrix [4]. The matrix [4] is squared. This result is
squared again. That result is squared again, and this
process repeated k times. After k squaring operations,
the matrix [A]zk has been formed. Multiplying a vector V]
(in the space spanned by the eigenvectors of [4]) by this
matrix yields an approximation of the desired set of
weight values.

wl = [41"'V] ~ a\]'E,]. (17)

& Example of using the moment of inertia to determine
clusters of points in measurement space

The following example is given to illustrate the technique
of determining two clusters in (x;, x,, X3, Xi)-space and
to illustrate the determination of the eigenvector corre-
sponding to the largest eigenvalue. Assume that six pat-
terns X = (x;, X, X3, x4) from a major class have the
following pattern vectors:
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(0, 0,0, 0, (0,0,0,1, (1,0, 1, 1)
(0,1,0,0, (1,1,1,1), (1, 1,0, 1).

For these patterns, %, = 3/6, &, = 3/6, %3 = 2/6,
%5 = 4/6. Also,

an =4, =% apn=%, a. =%
ap =%, as=1, a,=1
s = 0 ay =0
a = +3
9366
PRI
6048

To determine the eigenvector that corresponds to the
largest eigenvalue of the matrix [4], the technique of
raising the matrix [4] to a high power will be used. For
this example, the vector V] is selected to be the “all one”
vector, V] = (1, 1, 1, 1). A sequence of W] vectors is
obtained from Eq. (17) by selecting k = 0, 1, 2, and 3.
The values of the W] vector and the values of S are nor-
malized so that the smallest value of S is zero, and the
largest value of S is four. The sequence of vectors W] is
given below, and the sequence of S-lines is given in Fig. 8.

W, = V = (1.0, 1.0, 1.0, 1.0)
W, = [4]'V = (1.3, 0.7, 1.0, 1.0)
W, = [4'V = (1.4, 0.5, 1.0, 1.0)
W, [41'V = (1.4,0.4,1.0, 1.0)
W, = [4]°V = (1.5, 0.3, 1.1, 1.1).

Il

In Fig. 8 each point represents a value of .S determined
by multiplying a pattern by a vector W. Note the move-
ment of the values of S as k is increased. See also the
increase in separation of the two clusters of points.

Figure 8 S-line distributions for increasing values of k.
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o Example of using the moment of inertia to determine
clusters of points and to code the points

The following example is given to illustrate the technique
of determining clusters in a two-dimensional measurement
space and to illustrate how binary codes may be assigned
to these clusters.

Consider the input space shown in Fig. 9. Here each
axis represents an analog quantity x; or x, and ©’s in-
dicate the location of points in two major classes, A and B.
Class A has two subclasses, A; and A,. If separation of
the classes A and B by a straight line is all that is required,
the line shown in Fig. 1 achieves the separation. However,
it could be that the dotted line would be a better separating
surface. The technique of maximizing the ratio of
M/Z w? = \ will now be applied to the input space
shown in Fig. 9.

Using all data points in classes A and B, the eigen-
vector corresponding to the largest eigenvalue yields a
distribution of points on an S-line as shown in Fig. 10a.

The best separation occurs between subclasses A; and
A,, and class B falls between these two subclasses. Thus,
a single LTE, LTE-2, would adequately separate sub-
class A, from subclass A,, but class B might be classified
as either class A, or class A,. To separate class B from
subclasses A; and A,, additional linear threshold elements
are required.

To separate class B patterns from subclass A, patterns,
patterns from these two groups are used (patterns from
subclass A, are ignored) to maximize the A ratio. The LTE
(LTE-b) which maximizes this ratio produces the S-line
shown in Fig. 10b and the separating line shown in Fig. 10c.

To separate class B patterns from subclass A, patterns,
patterns from these two groups are used (patterns from

Figure 9 Measurement space for Example 2.
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Figure 10 S-lines and separating lines for Example 2: (a)
S-line determined by maximizing A for all patterns; (b)
S-line determined by maximizing A for patterns in groups
A: and B; (c¢) Separating line corresponding to the S-line of
Fig. 10b; (d) S-line determined by maximizing for patterns
in groups A: and B; (e) Separating line corresponding to the
S-line of Fig. 10d.

subclass A, are ignored) to maximize the A ratio. The LTE
(LTE-c), which maximizes this ratio produces the S-line
shown in Fig. 10d and the separating line shown in Fig.
10e. The sequence of S-lines and separating lines obtained
in this process are reproduced in Figs. 11a and 11b.

The three linear threshold elements LTE-a, LTE-b, and
LTE-c separate the three groups of patterns. LTE-a sepa-
rates subclasses A; and A,, but is of little value in classify-
ing class B patterns. This fact is given in column a of
Table 1. Likewise LTE-b and LTE-c¢ are useful in sepa-
rating class B from classes A, and A, respectively.
Columns b and ¢ of Table 1 show this fact.

Table 1 Coding of the classes

Linear threshold element

Group a b c
A 1 1 —
B — 0 1
A, 0 — 0

PASS 1

PASS 2 /\ [\
| S,

A, B g a B 1

Xy— 1

(b)

Xz >

Figure 11 Sequence of S-line and separating lines for ex-
ample 2: (a) Sequence of S-lines for Example 2; (b) Sep-
arating lines for Example 2.

e Example of analyzing and coding an unknown, multi-
clustered space

Consider the input space'® shown in Fig. 12. This space
has nine types of patterns, each being Gaussian-distributed
with equal variances in the measurements x; and x,.

In the analysis of this problem it will be assumed that
the clusters are not known. If the space shown in Fig. 12
is considered to be analogous to a multi-dimensional
digital space it will be understood that the clustering
would not necessarily be obvious. The object of the
analysis is to discover the clusters and to provide the
weights and thresholds of an economical number of LTE’s
which will separate the clusters with good accuracy.

The first step in the analysis is to use all patterns avail-
able from the space to maximize the ratio A\. The S-line
produced by this first pass is shown at the top of Fig. 13.

As a result of Pass 1, one set of points is seen to be
separated from the rest of the points by an unpopulated
segment of the S-line. This cluster may be one class or
several bunched together by the particular view of the
space afforded by this S-line. However, since it is markedly
distinguished from the other points, a threshold is set
for the middle value of the separation as indicated by the
short bar shown in that part of the S-line in Fig. 13.
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Figure 12 Nine two-dimensional Gaussian distributions with
equal variances, Example 3.

PASS 1

{§ i~f§ : PASS 2
3 62 4 9

586
o ‘ i
‘:1& _4 :’2 PASS 4

Q; Q Q i Q ] PASS 5

/o / \
; : ; ! PASS &
_% _LéL_%_ _%

Figure 13 S-line distributions for Example 3.

There is another point on the S-line where a distinction

could be made. This point is on the left side of the “a”

S-line where the distribution drops to nearly zero. How-

ever, since this area is so narrow no distinction is made

at this point. Distinctions made for zero threshold (marked

“a’) and the threshold to separate the first cluster (marked
300 “a’”) are shown in Fig. 14a.
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Figure 14 Separating lines for Example 3.

Table 2 Output code for Example 3

Linear threshold element

Classes a b c d e f g h
1 01 1 x X X X
2 0 0 x 1 x 0 X X
3 01 0 x X X X X
4 00 x 1 x 1 X X
5 00 x 0 0 x 0 x
6 0 0 x 0 0 x 1 x
7 0o 0 x 0 1 x x 0
8 00 x 0 1 x x 1
9 1 x X X X X X X

Pass 2 is then run in two parts. All the patterns to
the left of the threshold point are used together to maximize
A and determine a set of weights, and all the patterns to
the right are similarly used. These runs result in the dis-
tribution shown on the second line in Fig. 13. The cuts
through the space are shown in Fig. 14b. Since the cluster
to the right of the threshold did not subdivide it is con-




X,

Figure 15 Input space.

sidered to be one cluster. For the left hand set of points a
distinct separating area is again discovered and a threshold
is set for this level. The two parts of this S-line are analyzed
in pass three. The analysis continues until no cluster
which subdivides is left. The results are shown in the
remainder of Figs. 13 and 14.

The outcome of the analysis is that weights and thresh-
olds are attained for a set of eight LTE’s which will
separate the clusters as shown in Table 2. This result
would have been valuable even if it had been known that
the space contained nine classes and if labeled sample
points could have been obtained.

In cases where no definite separating area appears on
the S-line a method of subdivision which involves selecting
overlapping areas of the S-line is advantageous. In this
way a class that is divided by separating the S-line at the
point where the class falls may be retained intact in
another branch of the analysis tree.

Conclusions

The proposed method of cluster analysis is obviously not
applicable in every case. Configurations of clusters which
do not yield readily to the method can be imagined.
For instance, the input space shown in Fig. 15 gives
unsatisfactory results as the analysis in Fig. 16 shows.
In general, one would expect the method to achieve the
best results when applied to input spaces where the
inter-cluster dispersion is greater than the intra-cluster
dispersion. The input space of Fig. 15 is not of this type.

A difficulty in applying the method is the determination

Figure 16 Analysis of the input space of Fig. 15 (a) pass
1; (b) pass 2; (c¢) pass 3; (d) pass 4.

of the point where the S-line should be separated when
unpopulated stretches do not occur on it. This condition
may mean that the data are not well clustered, which is
a point of information in itself. Otherwise this choice
must depend on the familiarity of the experimenter with
the method and the input space of his problem. It is
possible to devise a simple procedure which would search
for unpopulated stretches of the S-line and continue the
analysis automatically. Such a procedure might produce
desirable results in cases where the data are well clustered.
However, until further experience is acquired through
the application of the procedure to practical pattern
recognition problems, the method is viewed simply as
a potential aid in finding and coding clusters for the
designer of LTE systems.

The authors have achieved preliminary results applying
the method to a 180-dimensional digital space with
vectors generated by natural patterns. In this experiment,
which will be reported, the eight clusters of the space
were formed by measuring the spectra of eight spoken
vowels. The eight clusters were successfully detected and
coded with the premise that the space was initially un-
known and multi-clustered.
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