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Abstract: The  problem of organizing  and  partitioning  large  amounts of data  into  classes  such that all  data  in  one  class  will 
have  similar  properties  is  well  known  in  pattern  recognition  research.  The  first  step  in  the  process, a cluster  finding  technique, 
involves  grouping a large  amount of data  into  clusters  which  must  be  detected and encoded so that  automatic  pattern  recogni- 
tion  can  take  place.  This  paper  describes a method for detecting and coding  clusters.  The  principal  advantages of this tech- 
nique  are that clusters  need  not  be  known a priori and  no  matrix  inversion  is  required. 

Introduction 

The purpose of this paper  is to provide a technique  for 
pattern classification  problems by  which a set of patterns 
is partitioned into a useful group of subsets, so that 
classification  can  be  made  with a network of linear 
threshold elements. The method  assumes that clusters 
within the space are not known a priori. 

A linear threshold  element  (LTE) is a device  which has 
n inputs (x1, e , x,) and a single output, f (see  Fig. 1). 
Each xi is a real  number and the value of f is either 0 or 1. 
The value  of f is determined by forming a weighted  sum 
of the input quantities and comparing this sum S to a 
threshold T. If the sum is greater than or equal to the 
threshold, f = 1 ; if the sum is  less than the threshold, 
f = 0. The value of f is expressed  mathematically in 
Eqs. (1): 

one of two  classes by forming a weighted  sum, S, of the 
values (x1, . - , x,) and comparing  this sum to a threshold 
value, T. If S 2 T the pattern is  classified into class 1 ; if 
S < T the pattern is  classified into class 0. Figure 2 
shows an example for n = 2. 

If patterns belong to more than two  classes,  two or 
more LTE's  may  be  used in parallel to produce a binary 
code  word for each  class. For example,  with four classes 
two  threshold  elements  could  be used for classification. If 
the outputs of both LTE's are 0, the code  word 00 results 
and represents one of the four possible  classes. The other 
combinations  of outputs of the two  LTE's, 01, 10, and 11 
could  be used to represent the other three classes of pat- 
terns. In Fig. 3 four patterns are shown as points in the 
Euclidean  space  with  axes x1 and x2. If each point (pattern) 
belongs to a different  class  of patterns, the two  threshold 
elements  shown in Fig. 3 divide the patterns into four 
classes and assign the codes 00, 01,  10, and 11 to classes 
A, B, C, and D respectively. Linear threshold element 

f =  1 i f S 2 T ;  

f = 0 i f S  < T. 

Many pattern classification  systems  use  linear  threshold 
elements to perform  linear  discriminations on the pat- 
terns of interest. In such an approach, n properties of 
patterns are measured and each property is assigned a 
real  number, xi. The n values (x1, - . , xn) are used  as a 
descriptor of the pattern. The pattern is  classified into 

Figure 1 The  symbolic  representation of a linear  threshoId 
element (LTE) . 
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Figure 2 Euclidean  space  with  axes .xl and x2. 

number 1 (LTE-1) classifies patterns A and B as 0, and 
patterns C and D as 1. LTE-2 classifies A and C as 0 and 
Band D as 1. 

The code assigned to each of the classes is very im- 
portant. If the codes 01, 10,  11, and 00 were assigned to 
the classes A, B, C ,  and D respectively, more  than two 
LTE's would be required to classify the patterns. It is 

Figure 4 An impossible  condition for a single  separating 
line. 
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Figure 3 Four patterns classified  into four classes  with two 
linear threshold  elements. 

impossible for a single LTE  to classify A and D as 0 and 
B and C as 1-two LTE's  must  be used (see Fig. 4). 

In  many  pattern classification problems the existence 
of subclasses within a major class causes difficulty. For 
example, if the letters B and b are to be  separated from 
the numbers 6 and 8, B and b would have to be put 
into  one  major class, "letters," and 6 and 8 into  another 

Figure 5 The Euclidean  space for the "letter"-"not  letter 
problem. 
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major class, “not letters.” Suppose that the properties to 
be used in this classification are x1 = the number of loops 
in the  character; x2 = 0 if the lower loop is large, and 
xz = 1 if the lower loop is small. With these (x1,  x*) 
quantities  the  four  patterns belonging to  the  major classes 
“letters” and  “not letters” would lie in Euclidean space 
shown in Fig. 5. 

The existence of subclasses B and b within major class 
“letters” and subclasses 6 and 8 within major class “not 
letters” makes this  problem unsolvable with a single LTE. 
However, if the subclasses are detected and given the 
proper binary code words, then  this classification problem 
can be solved with two LTE‘s. 

Early work in clustering techniques assumed that  the 
clusters were known a priori. Fisher’ in 1938 made con- 
tributions in this  area.  Other  authors, particularly Bonner’; 
Hyvarinen3;  Rogers and  Tanimoto4; Firschein and 
Fischler5; Glazer6; Stark, Okajima, and Whipple7; 
Jakowitz, Shuey, and White’; and Ball and Hall’ have 
considered the problem of unknown clusters. The method 
discussed in this  paper differs from each of these ap- 
proaches in  that  it does not require an a priori distance 
criterion to determine clusters of data points and does 
take  into consideration  the restrictions imposed by 
requiring a network of threshold elements to perform 
the desired classification. The present technique provides 
an  approach to the decomposition of sample spaces and 
consequent coding of detected subsets using the  trans- 
formation detailed in the next section. (Rae" discusses a 
technique for obtaining a transformation of this type 
based on a somewhat different rationale. Also, see Cooper 
and Cooper.ll) 

A technique for determining clusters of 
patterns in an n-dimensional  measurement space 

Mathematical  preliminaries 

The mathematical description of the threshold element is 
given in Eqs. (1). Each pattern (xlk, x Z k ,  . . , x,~) pro- 
duces a sum Sk when substituted into Eq. (la). Different 
patterns will typically produce different sums S .  The 
distributions of S-values along an S-line can serve as 
an indication of how well the  LTE will perform as a 
classifier. For example, if the distribution of S-values 
from  major class “+” and major class “0” appears 
as shown in Fig. 6a, then the  LTE which produced this 
distribution would probably do a good job of classi- 
fication. If, however, the distribution of values on the 
Mine appeared as shown in Fig. 6b, the threshold element 
that produced this distribution would probably do a poor 
job of classification. 

In many pattern recognition problems it is possible to 
describe mathematically the type of distribution that is 

296 desired along the S-line and then to calculate that set of 
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(a) ( b )  
Figure 6 Two types  of S-lines:  (a)  S-line for good separation; 
(b) S-line for poor  separation. 

weights which produces a distribution that is as close as 
possible to  the desired distribution. For example, if two 
widely separated clusters of points, such as  are shown in 
Fig. 7, are to be separated from each other by an LTE, a 
set of weights is desired which produces an S-line such as 
shown in Fig. 6a. What is desired, then, is to find a set of 
values wi such that all  points (xl, . , x,) in one cluster 
have values S = xiwi which are different from  the 
values of S = cy=, xiwi produced by points (xl, . . . , x,) 
in  the second cluster.” If such a set of values wi can be 
found, the two  separate clusters in (xl, . , x,)-space can 
be detected by looking at  the one-dimensional S-line and 
noting the two clusters of S-values. 

Let  there be p patterns in a set and denote  the ith com- 
ponent of the kth pattern  as  xik.  The value of S produced 
by the kth pattern is 

n 

Sk = X i k W i  . (2) 
i=l 

The average value of S produced by p patterns is 
1 ’  1 ’  
P k = l  P k = l  i= l  
n . D  ” 

= wi - Xik = RiWi, 
I 

i=l  P k = l  i = l  - 
where Xi is the average value of the ith componencof  the 
pattern vector (xl, . , x“). 

Figure 7 Two clusters. 
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If two well separated, clustered subsets exist in the 

set will be large around some axis due to  the separation 
of the clusters. Similarly, the moment of inertia of the 
S-line  distribution 

(Xl, . .*  , x,)-space, the  moment of inertia of the  total 

D 

M = (S, - S)z 
k = l  

will be  large if two separated clusters of points exist in 
the space and the proper  value of wi's has been used to 
make the value of S different for each cluster. 

Unfortunately the quantity M can become large without 
bound by allowing the  absolute value of the weights (w i )  
to become large  without  bound. If, however, the  ratio 

k = l  i = l  

is maximized, M will be large subject to  the constraint 
that  the sum of the squared values of wi is small. Thus, 
what is desired is that set of weights which makes the 
value of X as large as possible. This  requirement  can  be 
simplified by noting that 

M = w[A]w], 
Y 

2 w: = w[Z]wl, 
1=1 v 

where w is a  row vector (wl, . . . , wJ, w] is a  column vector 

(wl, . . , wn), [A is the identity  matrix, and [A] is a matrix 
with elements 

Y 

with xik the ith component of the kth pattern,  and Zi the 
average value of the ith component. It should be noted 
that [A] is proportional  to  the sample covariance matrix. 

The  quantity to be rna~imized'~ is then 

Since [A] is a symmetric matrix, differentiating X with 
respect to each wi yields the set of equations, 

(X[ZI - [Al)wl = 0 ,  

which can equal zero for non-zero wi only if the deter- 
minant 

I A - XZI  = 0. 

The above  determinant is a polynomial in X equal to zero. 
Values of X which are  roots of this  polynomial are eigen- 
values of the matrix [A]. An eigenvector of the matrix 
[A] is a vector such that 

[Alw] = Awl. 

Thus, if w] is an eigenvector of [A], then 

wU[Alwl EX wl X ws 

Y w[ZIwl ~ t Z I W 1  w, 
p=""" - 2 - X. (1 3) 

The eigenvector corresponding to the largest possible 
eigenvalue of the  matrix [A] is the set of weights which 
will maximize M while minimizing w:. (The direction 
of the eigenvector associated with the largest eigenvalue 
is in the direction of the major axis of the hyperellipsoid 
w[A]w] = C. This is the direction of maximum dispersion.) 

This  set of weights will yield a variable S such that  two 
subclasses are displayed as two clusters of S values if it 
is possible to  do so. 

To determine the eigenvector corresponding to the 
largest eigenvalue several methods are One 
possible method uses a result in matrix theory which 
states that any vector in the space  spanned by the eigen- 
vectors of [A] can  be  written as a linear  sum of the eigen- 
vectors of the matrix [A]. Thus, if El, E,, . . . , E, are 
the eigenvectors of a  matrix [A] ,  a vector V f 5  in the 
space spanned by these eigenvectors can  be  written  as 

Y 

V = alEl + a,E, + . . . + a,E,. (14) 

Multiplying V by [AIk results in 

[ AI'V] = alXfEl + a&E, + . . + a,X:E,. (15) 

If X1 is the largest eigenvalue of the matrix [AI, and k is 
large enough 

This result indicates a  method for approximating the 
eigenvector corresponding to the largest eigenvalue of a 
matrix [A]. The matrix [A] is squared.  This  result is 
squared  again. That result is squared  again, and this 
process repeated k times. After k squaring  operations, 
the matrix [Af has been formed. Multiplying a vector v] 
(in the space spanned by the eigenvectors of [A]) by this 
matrix yields an approximation of the desired set of 
weight values. 

[w] = [A]"V] - alX~'EII. (17) 

Example of using the moment of inertia to determine 
clusters of points in measurement space 

The following example is given to illustrate the technique 
of determining  two clusters in (x1, x,, x3, x,)-space and 
to illustrate the determination of the eigenvector corre- 
sponding to  the largest eigenvalue. Assume that six pat- 
terns X = (x1, xp,  x3,  x4)  from a major class have the 
following pattern vectors: 297 

DETERMINING  AND CODING SUBCLASSES 



( 0 ,   0 ,   0 ,  01, (0 ,   0 ,  0, 11, (1, 0, 1, 1) 

(0 ,  1 ,  0 ,  O), ( 1 ,  1,  1, l), (1, 1, 0, 1). 

For these patterns, xl = 3/6, zz = 3/6, x3 = 2/6,  
Xiq = 4/6. Also, 

all = 2, aZ2 = +, a33 = T, a44 = x- 
a,, = $, aI3 = I, aI4 = 1 

aZ3 = 0 = 0 

1 2  1 2  

a34 = +% 
r9  6 61 

[AI = 1 3 9 0 0  
6 0 8 4  
L6 0 4 81 

To determine the eigenvector that corresponds to  the 
largest  eigenvalue of the matrix [A] ,  the technique of 
raising the matrix [A] to a high  power  will  be  used. For 
this  example, the vector v] is  selected to be the “all one” 
vector, v] = (1, 1, 1, 1). A sequence of vectors  is 
obtained from Ekq. (17) by selecting k = 0, 1, 2, and 3. 
The values of the w] vector and the values of S are nor- 
malized so that the smallest  value of S is zero, and the 
largest  value of S is four. The sequence of vectors w] is 
given  below, and the sequence of S-lines is  given in Fig. 8. 

w-, = v = (1.0, 1.0, 1.0, 1.0) 

Wo = [AI’V = (1.3, 0.7, 1.0,  1.0) 

W, = [A]’V = (1.4, 0.5, 1.0, 1.0) 

W, = [AI4V = (1.4,  0.4,  1.0, 1.0) 

W 3  = [A]’V = (1.5, 0.3,  1.1, 1.1). 

In Fig. 8 each point represents a value of S determined 
by multiplying a pattern by a vector W. Note the move- 
ment of the values of S as k is increased. See also the 
increase in separation of the two  clusters of points. 

Figure 8 S-line  distributions  for  increasing  values of k.  
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Example of using the moment of inertia to determine 
clusters of points and to code the points 

The following  example  is given to illustrate the technique 
of determining  clusters in a two-dimensional  measurement 
space and to illustrate how  binary  codes  may be  assigned 
to these  clusters. 

Consider the input space  shown in Fig. 9. Here  each 
axis  represents an analog quantity x, or x, and 0’s in- 
dicate the location of points in two major classes, A and B. 
Class A has  two  subclasses, A, and A2. If separation of 
the classes A and B by a straight line  is all that is  required, 
the line  shown  in  Fig. 1 achieves the separation. However, 
it  could be that the dotted line  would  be a better separating 
surface. The technique of maximizing the ratio of 
M/C w: = X will  now  be applied to the input space 
shown in Fig. 9. 

Using all data points  in  classes A and B, the eigen- 
vector  corresponding to the largest  eigenvalue  yields a 
distribution of points  on an S-line as shown  in  Fig. loa. 

The best separation occurs between  subclasses A, and 
A,, and class B falls  between  these  two  subclasses. Thus, 
a single  LTE,  LTE-2,  would  adequately separate sub- 
class  Al from subclass A,, but class B might  be  classified 
as either class A, or class A,. To separate class B from 
subclasses AI and A,, additional linear threshold elements 
are required. 

To separate class B patterns from subclass A, patterns, 
patterns from these  two  groups are used (patterns from 
subclass A, are ignored) to maximize the X ratio. The LTE 
(LTE-b)  which  maximizes this ratio produces the S-line 
shown in Fig. 10b and the separating line  shown  in  Fig. 1Oc. 

To separate class B patterns from subclass A, patterns, 
patterns from these  two  groups are used (patterns from 

Figure 9 Measurement  space for Example 2. 
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Figure 10 S-lines  and separating lines for Example 2: (a) 
S-line  determined by maximizing X for all patterns; (b) 
S-line  determined by maximizing X for patterns in  groups 
AI  and B; (c)  Separating  line  corresponding to the  S-line of 
Fig. lob; (d) S-line  determined by maximizing for patterns 
in  groups Az and B; (e) Separating line corresponding to the 
S-line of Fig.  10d. 

Figure 11 Sequence of S-line  and separating lines for ex- 
ample 2: (a )  Sequence of S-lines for Example 2; (b) Sep- 
arating lines for Example 2. 

subclass A, are ignored) to maximize the X ratio. The  LTE 
(LTE-c), which maximizes this ratio produces the S-line 
shown in Fig. 10d and  the separating line shown  in Fig. 
10e. The sequence of S-lines and separating lines obtained 
in  this process are reproduced  in Figs. 1 l a  and l l b .  

The three  linear  threshold elements LTE-a, LTE-b, and 
LTE-c  separate the three groups of patterns.  LTE-a  sepa- 
rates subclasses A, and A2, but is of little value in classify- 
ing class B patterns.  This  fact is given in column a of 
Table 1. Likewise LTE-b and LTE-c are useful in sepa- 
rating class B from classes Al and A, respectively. 
Columns  b and c of Table 1 show this fact. 

Table 1 Coding of the  classes 

Linear  threshold element 
Group a b c  

A1 
B 

1 1 -  
- 0 1  

A2 0 -  0 

Example of analyzing and coding an unknown, multi- 
clustered space 

Consider the  input spaceI6 shown  in Fig. 12. This space 
has nine types of patterns, each being Gaussian-distributed 
with equal variances in the measurements xl  and x*. 

In  the analysis of this  problem it  will be assumed that 
the clusters are  not known. If the space shown in Fig. 12 
is considered to be  analogous to a multi-dimensional 
digital space it will be understood that  the clustering 
would not necessarily be obvious. The object of the 
analysis is to discover the clusters and  to provide the 
weights and thresholds of an economical number of LTE's 
which will separate the clusters with good accuracy. 

The first step  in the analysis is to use all patterns avail- 
able  from  the space to maximize the  ratio X. The S-line 
produced by this first pass is shown at  the  top of Fig. 13. 

As a result of Pass 1, one set of points is seen to be 
separated from  the rest of the points by an unpopulated 
segment of the S-line. This cluster may be one class or 
several bunched  together  by the particular view of the 
space afforded by this S-line. However, since it is markedly 
distinguished from  the  other points,  a  threshold is set 
for  the middle value of the separation as indicated by the 
short  bar shown in that  part of the  Mine in Fig. 13. 299 
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Figure 12 Nine two-dimensional  Gaussian  distributions with 
equal  variances, Example 3.  

a 
I 

b / \ 

PASS 1 

1 
PASS 2 

PASS 3 

Figure 13 S-line distributions for Example 3. 

\ / 

(e )  
Figure 14 Separating lines for Example 3. 

Table 2 Output code for Example 3 

Linear threshold element 
Classes a b c d e f g h 

0 1  1 x  x x  x x  
0 0  x 1  x 0  x x  
0 1  o x  x x  x x  

0 0  x 1  x 1  x x  
0 0  x 0  o x  o x  
0 0  x 0  o x  1 x  

0 0  x 0  1 x  x 0  
0 0  x 0  1 x  x 1  
1 x  x x  x x  x x  

There is another point on  the S-line  where a distinction Pass 2 is then  run in two parts. All the patterns to 
could  be  made.  This point is on the left  side of the "a" the left of the threshold point are used together to maximize 
S-line where the distribution drops to nearly  zero.  How- X and determine a set of weights, and all the patterns to 
ever,  since this area is so narrow no distinction is made the right are similarly  used.  These runs result  in the dis- 
at this point. Distinctions made for zero threshold (marked tribution shown on the second  line in Fig. 13. The cuts 
"a") and the threshold to separate the first  cluster  (marked through the space are shown  in  Fig.  14b.  Since the cluster 

300 a ) are shown  in  Fig.  14a. to the right of the threshold did not subdivide it is con- " ,,, 

R. L. MATTSON AND J. E. DAMMANN 



1- 

Figure 15 Input space. 

sidered to be  one cluster. For  the left hand set of points a 
distinct  separating  area is again discovered and a  threshold 
is set for this level. The two parts of this  S-line are analyzed 
in pass three. The analysis continues  until no cluster 
which subdivides is left. The results are shown  in the 
remainder of Figs. 13 and 14. 

The outcome of the analysis is that weights and thresh- 
olds are  attained  for a set of eight LTE‘s which will 
separate  the clusters as shown  in  Table 2. This result 
would have been valuable even if it  had been known that 
the space contained  nine classes and if labeled sample 
points  could have been obtained. 

In cases where no definite separating  area appears  on 
the S-line a method of subdivision which involves selecting 
overlapping areas of the S-line is advantageous. In this 
way a class that is divided by separating the S-line at  the 
point where the class falls may be retained  intact  in 
another  branch of the analysis tree. 

Conclusions 

The proposed method of cluster analysis is obviously not 
applicable in every case. Configurations of clusters which 
do  not yield readily to  the method  can  be imagined. 
For instance, the  input space  shown in Fig. 15 gives 
unsatisfactory results as the analysis in Fig. 16 shows. 
In general, one would expect the method to achieve the 
best results when applied to input spaces where the 
inter-cluster dispersion is greater than  the intra-cluster 
dispersion. The  input space of Fig. 15 is not of this type. 

A difficulty in applying the method is the determination 

MUMMMMMM 
I \  I \  I \  / \  

A B  A B  A B  A B  A B  A B  A B  A B  

(4  

Figure 16 Analysis of the input  space of Fig. 15 (a) Pass 
I :  (b) pass 2; (c) pass 3; (d)  pass 4. 

of the  point where the S-line should be separated when 
unpopulated  stretches do  not occur on it. This  condition 
may mean that  the  data  are  not well clustered, which is 
a point of information  in itself. Otherwise this choice 
must  depend on  the familiarity of the experimenter with 
the  method  and  the  input space of his problem. It is 
possible to devise a simple procedure which would search 
for unpopulated  stretches of the S-line and continue the 
analysis automatically. Such a procedure  might  produce 
desirable results in cases where the  data  are well clustered. 
However, until further experience is acquired through 
the application of the procedure to practical pattern 
recognition problems, the  method is viewed simply as 
a potential  aid in finding and coding clusters for  the 
designer of LTE systems. 

The  authors have achieved preliminary results applying 
the method  to a 180-dimensional digital space with 
vectors generated by natural patterns. In this experiment, 
which will be reported, the eight clusters of the space 
were formed by measuring the spectra of eight spoken 
vowels. The eight clusters were successfully detected and 
coded with the premise that  the space was initially un- 
known and multi-clustered. 
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