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Multiplexing*

Abstract: To achieve the advantages of a new technique (ISAM) for integrating the functions of time-division switching and
frequency-division multiplexing, it is necessary to design filters that are somewhat different from those used in conventional
switching and multiplexing systems. This paper analyzes the performance of ISAM filters. Since in the new technique signals
are resonantly transferred between band-pass filters, the theory of resonant transfer for this general case is developed. The con-
ditions for obtaining resonant transfer between ideal filters are determined and then the effects of using nonideal filters are
investigated. An example is given showing the synthesis of a set of filters designed to meet ISAM requirements.

Introduction

This paper is primarily concerned with determining the
design requirements for the filters used in a new communi-
cations technique. A previous paper discussed the systems
concepts of a technique in which the functions of fre-
quency-division multiplexing and time-division switching
are combined as a single process. The integrated process
of switching and multiplexing (called ISAM) gives the
same results as are obtained with a conventional system
in which the two functions are performed separately.
The novelty of the technique is in its practical use of the
sampling-frequency harmonics generated in a time-
division switch. Sidebands of these harmonics are selected
by appropriate bandpass filters, thus allowing the signals
to be multiplexed in a manner equivalent to that of the
usual single-sideband, suppressed carrier system.

The earlier paper suggested that the integration of func-
tions can lead to considerable saving of electronic hard-
ware in some applications. However, requirements on
filter performance are more stringent for ISAM than for
the conventional techniques. Discussion in the present
paper will be directed toward the definition of these
requirements.

To develop this discussion, we will first briefly review
the signal expressions for conventional time-division
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switching and frequency-division multiplexing. Compar-
ing these expressions with those of ISAM, we will demon-
strate the functional equivalence of the new and conven-
tional techniques. The expressions will also point out the
problem areas of ISAM.

We will note that a method is needed for overcoming
the large attenuation of a signal that is switched from input
filter to output filter. As with conventional time-division
switching, the method used in ISAM is one called “reso-
nant transfer.” The technique of resonant transfer has
been extensively analyzed for the usual lowpass to low-
pass case (see, for example, Cattermole®). Since ISAM
involves switching between bandpass filters or between
lowpass and bandpass filters, we extend the analysis of
resonant transfer to both these cases. Then, with an
understanding of the ISAM resonant transfer process,
we will proceed to show that the filters require not only
a distinct amplitude and phase response, but also a
well-defined ring-off behavior. In addition, we will in-
vestigate the influences of unequal filter input capaci-
tances and finite out-of-band attenuation. Finally, we
give an example of filter design using insertion-loss
parameters.

Signal analysis

o Time-division switching

In a time-divided telephone switching interchange the
sampling switches close at time intervals T = 1/f, where




the sampling frequency f, is larger than twice the cut-off
frequency of the lowpass filters which band-limit the in-
coming message signals. The switches stay closed during
a short time interval + < T/n, where n is the number of
switchable channels. Proper spacing of sampling pulses
provides that no two pulses overlap at the time-divided
highway. By synchronously closing any input-output
switch pair, signal switching from any input line to any
output line can be achieved conveniently. The demulti-
plexed sampled data pulse trains are fed into individual
lowpass filters for reconstruction of the original waveform.
The quality of the reconstructed waveform depends on
the cut-off slope of the filters and the ratio of sampling
frequency to information bandwidth.

In the interval 0 < ¢t < T,, the input message m(f) can
be represented by the complex Fourier series

m(f) = 2, Ce™"™, a0 J)
where
WOp = 2w/T,,

c =2 fT m(De ™t gt
n T 0 .

It is assumed that m(f) has no dc component, i.e., C, = 0.
The periodic closure of the sampling switch at intervals T
is expressed as a Fourier series expansion

1 & ik,
5@ = 2 G, )
where
w, = 27r/ T,

T/2 .

C. = f A dr
—-7/2

sin kw,7/2

= A kw,7/2

The sampled message is then

S m) = 5 T T Gt ()
T k=—00 n=-x
where nw,, < w,/2 to prevent aliasing.
Finally, sending the sampled message through a low-
pass filter of bandwidth w,/2 leaves only the signal compo-
nent for k = 0 at the output; or

(S0 mens = 41 3 G
= % A, m(t), (4)

which is, for 4, = 1, exactly the input waveform multi-
plied by an attenuation factor v/7. To overcome this

sampling loss, the resonant transfer technique® is applied
to time-division switching systems.

o Frequency-division multiplexing

In a single-sideband, suppressed carrier FDM system the
band-limited input function m(?) is multiplied by a high-
frequency carrier 4; cos w.t. Representing m(#) as a com-
plex Fourier series and using exponential notation for
the carrier yields the modulator output:

A, cos w,t- m(t) = _g_l (eiwct + e—iwct)

o0
S G, 0. (5)
Since the upper sideband component is assumed o be
selected by filtering, the transmitted wave is given by

A ;
Eu(t) — __2_1_ Zl [Cne:(wcwmﬂg)t

+ C_"e—i(wc+nwm)t:]. (6)

The product detector at the receiver multiplies E,(#) with
the local carrier, 4, cos (w.t 4+ ¢.), where ¢, may repre-
sent any phase (¢, = const) or frequency differences
(¢. = ¢.(1) between the local carrier and the signal carrier.
This leads to

A;Az [ef (051499 | gmitoctise)]

. Z [Cnei(wc+nwm)t + C_ne—f(wcwwm)t]’ (7)

n=1

which, after lowpass filtering yields

E.(t) = ﬁié 3T G 0, (8)

n=—0o0
If the carriers are synchronized in both phase and fre-
quency, ¢, = 0 and thus E (1) = (A4, 4./ ®Hm(0). If the car-
riers are synchronized in frequency but not in phase,
¢. = const, the phase transfer function shows a zero
intercept phase distortion which will not influence the
envelope delay, dp/dw. This intercept phase distortion is
not very important in audio transmission but has to be
carefully considered in data transmission.

o Integrated switching and multiplexing ISAM)

The fundamental idea behind ISAM is that the pulse
modulated message of a time-division switch contains
higher harmonics of the sampling frequency with their
associated upper and lower signal sidebands. Placing
appropriate bandpass filters along the frequency axis
generates the usval frequency multiplex of a SSSC system.
Recovery of the original message is effected by synchro-
nously sampling the various filtered-out sideband signals.
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This second sampling process is equivalent to multiplying
the transmitted waveform with the original sampling fre-
quency and its higher harmonics. In this case the trans-
mitted wave, E (1), is the upper sideband of the kth har-
monijc generated by the first sampling and selected by
bandpass filtering. It has the form,

o0

Eu(t) — % Z Cnef(kws-#nwm)t’

n=-—00

n # 0. 9
The second sampling operation is expressed by

1 & ne
S2(t) — 7‘ Z Cley(l xt+¢s)’ (10)

l=—w0
which is the same as the expression for the first sampling
operation except for the constant phase shift, ¢,. Multi-
plying Eq. (9) by Eq. (10) results in

%l% E Z Cnclev‘Hl+k)w.t+numt+¢g]’ n 0. (11)

n=—o0 l=—o
Subsequent filters can now select any desired harmonic
I + k. Selection of [ = 0 for instance, would place the
signal back to its original place on the frequency axis. Any
other choice / + k > 0 allows for shifting the message to
other desired sideband slots. The particular case [+ & = 0
calls for an output lowpass filter which recovers the origi-
nal baseband message

EL() = A A(r/TY D2, Cud'memit®!, n 0
(12)

phase shifted by ¢, and, for 4, = A4, = 1, multiplied by
@/ T)°. Just as in the purely time-division switching case,
the attenuation factor (r/T) can be avoided by using
resonant transfer between filters. The influence of the
phase shift ¢, can also be overcome.

If we assume frequency synchronous operation between
stations and equal delays for message and carrier, the
sampling phase difference is ¢, = w4, Where w, is the ap-
plicable carrier frequency kw, and ¢, is the time difference
between sampling instants at the input and output of the
line. For a fixed sampling time scheme at input and out-
put, it will introduce a constant phase shift ¢,. Since the
human ear is relatively insensitive to signal phase rela-
tionships, the constant phase shift is of little or no con-
cern for the transmission of voice., For data transmission,
however, it is important to require that ¢, be zero or a
multiple of = radians. This could theoretically always be
achieved by properly synchronizing the corresponding
sampling times at sender and receiver, such that 7, =
nr/we, n =1, 2,3, -+- . Such a synchronizing scheme is
possible but requires additional hardware. However,
modems’® which are used for data transmission in SSSC
systems automatically eliminate the effect of any zero
intercept phase distortion.
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Analysis of ideal generalized resonant
fransfer transmission

The preceding review of signal relations has noted that
the ISAM technique employs resonant transfer of signals
between input and output filters. In various ISAM applica-
tions, the transmission could be between bandpass filters,
between a low pass and a bandpass filter, or between
lowpass filters. Since previous analyses of resonant
transfer have been restricted to the lowpass to lowpass
case, it is important to develop an understanding of the
general mode of resonant transfer operation. We will do
this in the following paragraphs, using ideal filters for
the analysis.

In Fig. 1, a simplified resonant transfer circuit is shown.
The capacitors C; and C, are the equivalent input capaci-
tances that the input filter and output filter present to the
switch at a frequency 1/27. The initial conditions are
Vi(0) = Voand V(0) = O, with L = L, + L,and 1/C =
(1/C) + (1/C). Assuming the circuit is tuned so that
T = 71-\/ LC, the following expressions are obtained for
resonant current and voltages:

i = n(V,C/7)sinw(t/7),
V. = Vo{Ci/(C, + CIN1 — cos =(t/7),
Vi= Vo — V. (13)

For C, = C,, which is the condition for optimum power
transfer, Vy(r) = V, and Vi(r) = 0, or, in other words,
the voltages on the capacitors C; and C, are interchanged
after every switch closure. Another necessary condition
for optimum power transfer is that the initial conditions.
are properly fulfilled. If f(¢) is the band-limited output of
the open circuited input filter, one has to assure that
Vi(nT) = f(nTyand V,(nT) = 0, wheren = 1,2,3 ...,
T < 1/2Af, and Af is the bandwidth of the input filter.
By proper design of the adjacent filter networks at both
sides of the swiich, the initial conditions can indeed be
met before every switch closure, as will be shown later.

The following analysis is based on the fact that the
resonant transfer circuit serves to generate a good approxi-
mation to a weighted current ‘“delta function” at every
sampling instant. The circuit may be analyzed by consider-
ing that a weighted current impulse is applied to the input
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Figure 1 Basic resonant transfer circuit.




of the output filter and the negative of this impulse to the
output of the input filter at the sampling instants. The
operation will be traced from input to output. To carry
out this analysis, certain impulse responses and the voltage
transfer function of the input filter under open circuit
conditions are considered.

o Impulse responses and transfer function

In Fig. 1, assume the two networks represented by the
boxes are lossless; they are either lowpass or bandpass
filters covering baseband or upper or lower sideband
regions along the frequency axis. Assume that the load
resistance, Ry, is equal to the source resistance, Rs. Fur-
ther, for the moment assume that the input and output
filter networks cover the same frequency range. Let these
filters be ideal in the sense that

Rpe et within the band

224 = Zlg = { L (14)
0 elsewhere,

where

Zo = E4/12,

Zys = E3/11, and

t, is the phase shift constant. This leads to the following
statements for the unit current impulse voltage responses
at the output of the output filter, point 4, and at the input
of the output filter, point 2.

2R . AL —
) = 2R |y T 10

7f.(t — t,)
reos T (2n — 1)],

4RL [ . 7rf,t
sin ——
wt 2

-cos% (2n — 1)] t>0 (15)

20(1) = gint) =

where n = 1 for a baseband filter, n = 2 for a first lower
sideband filter, n = 3 for a second lower sideband filter,
etc.

These equations will be used subsequently in describing
the overall circuit operation. The assumption of an ideal
filter characteristic also leads to a statement regarding the
open circuited voltage transfer function for the input
filter in the forward direction; that is,

% _ fe"””" within the band (16)
8 10 elsewhere.

This shows that ideally no drop occurs across Rg, a
fact that will also be used subsequently.

o Circuit operation

As indicated, the input to the output filter may be con-
sidered to be a series of weighted current impulse functions
occurring at the sampling instants. The weight of these
impulses may be determined by integrating the expression
for the resonant transfer current pulse, Eq. (13), from
zero to 7; that is,

4= ’r—V‘)gf sin™ dr = 2¥,C. (17)
T 0 T

The conclusion to be drawn is that the weighting factor
for the unit impulse would be 2V,C or 2V,(nT)C. The
weighted current impulse may be written

2V.(nT)C(t — nT)

where 8(t+ — nT) is the unit impulse function. To get the
voltage at point 4 and point 2 due to such an impulse,
simply convolve this current impulse with g,,(f) and g..(?)
respectively. The result would be

Il

2 Vl("T)Cg24(t — nT)
2V1(nT)Cg22(t — nT).

A0)
V(1)

(18)

The voltages at points 4 and 2 due to a succession of such
impulses would be just the superposition of the impulse
responses due to successively occurring impulses generated
by the resonant transfer process at the sampling instants.
There are two especially significant points to note. The
first is that by considering the expression for g,,(t — nT),
it may be seen that the voltage at the point of insertion of
the impulses into the output filter, point 2, will always be
passing through zero at the sampling instant. This holds
true for the case where the filter is coextensive with the
baseband or any sideband. This guarantees fulfillment of
the initial condition that V,(nT) = 0 at these times. This
particular point is discussed in more detail and in a slightly
different way in the subsequent section entitled ““ring-off be-
havior.” The second point to note is that the amplitude of
g4(t — nT) is one-half that of g,.(t — »T). The effect of
this is that the continuous voltage wave reconstructed
by the output filter will have an amplitude one-half that
of the voltage wave that is sampled by the resonant trans-
fer gate.

The next question to examine is just what voltage wave
is it that is so sampled. That is, what do the weights V,(nT)
represent? To determine this, examine the behavior of
the voltage at the output of the input filter, or at point 1.
A convenient way to look at this is to consider that when
an impulse of a given polarity is applied to the output
filter, an impulse of the opposite polarity is applied to
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the output of the input filter. Since the input circuit, when
viewed from the switch, looks just like the output circuit
as viewed from this point, the voltage response to this
current impulse will be the negative of that occurring at
point 2. This voltage may then be superimposed on the
voltage that would be coming out of the filter if it were
open circuited to get the resultant waveform. Such a super-
imposition will show that at the sampling instant, V;(nT)
drops from f(nT) to zero and then in the next T seconds
builds back up to f[(n + 1)T]. The way in which it builds
up will be dependent on what sideband region the filter
covers. Thus, the other initial condition is guaranteed;
that is, Vi(nT) = f(rnT). Since the open circuited voltage
transfer function, Eq. (16), implies that f(nT) is just a
delayed version of the input voltage, it may be said that
Vi(nT) is a delayed version of the input voltage.

In summary, then, the input voltage, V., is simply trans-
ported in sampled form to the open circuited output of the
input filter. It is undiminished in amplitude and delayed
by an amount depending on the filter phase shift constant,
5. These samples produce a voltage “ring-off” into the
output filter, producing a continuous output signal with
a voltage level of one-half of the input voltage and with
a further phase delay dependent on #,.

This is the result to be expected, since this makes the
ideal generalized resonant transfer transmission circuit
equivalent to the ideal lossless filter connected between a
generator of internal resistance, Ry, and a load, R, where
Ry = R;. In such an ideal filter, half of the input voltage
will appear across Rg and half across R, producing a
3 dB loss from generator to load.

s Band shifting

Thus far in the analysis, both halves of the circuit have
been assumed to cover the same frequency band, base-
band or sideband. This has allowed a comparison to be
drawn between the resonant transfer mode and the case
of the ideal filter operating between source and load. The
situation may be easily further generalized by allowing the
input and output filters to define different sideband regions,
or for one filter to define a baseband and the other a side-
band region. The same kind of operation will occur. The
only difference is that the impulse responses of each filter
will differ. It is the fact that the two impulse responses do
not have to be the same, that makes it possible to change
bands. The only difference in operation between the cases
where the bands are the same and where they are not is
that when they are the same, the buildup of the voltage
at point 1 and the decay of the voltage at point 2 are de-
pendent on the same impulse response, while when the
bands are different, the buildup at point 1 and the decay
at point 2 are not dependent on the same impulse response.
The methods outlined for determining these voltage vari-
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ations when the bands are the same are equally applicable
when the bands are not the same.

Filter considerations for ISAM

o Amplitude response

The required amplitude response for ISAM low pass
filters is very similar to the response required for conven-
tional SSSC low pass filters. For a system with 4 kc/sec
channel spacing the spectrum should be sufficiently at-
tenuated at 4 kc/sec, without introducing signal degrada-
tion at passband frequencies. For purposes of proper
filter ring-off, as is shown later, this passband should be
made as wide as possible without compromising the
4 kc/sec attenuation requirements. In this respect, a
resonant transfer ISAM lowpass filter has a more severe
constraint than a resonant transfer filter for purely time-
division switching, which does not have the 4 kc/sec at-
tenuation requirement,

The amplitude response for an ISAM bandpass filter is
basically different from the usual SSSC channel filter.
While the SSSC filter that follows the modulator need
discriminate against only the second sideband, the ISAM
bandpass filter must discriminate against a multitude of
carrier harmonics and their sidebands. If the nominal filter
bandwidth is, for instance, f, = 4 kc¢/sec, f. denoting the
carrier frequency, the SSSC filter can cut off at a frequency
slightly greater than f, + 4 kc/sec because no energy will
enter the conventional SSSC filter beyond this frequency.
An ISAM filter, however, has to be sufficiently down
at f. + 4 kc/sec to prevent the energy spill-over from
existing sideband harmonics. Similar considerations hold
true for the bandpass filter preceding the demodulator.
The significance of these considerations is then, that the
attenuation of the required ISAM channel filters has to
be sufficiently large at both sides of the band as well as
at the side of the carrier.

* Ring-off behavior

It was previously mentioned that optimum power transfer
is achieved in resonant transfer ISAM only if the input
voltage to the channel filter is zero shortly before the next
pulse transfer takes place. This condition, V,(nT) = 0,
will clearly be satisfied if the input pulse response of the
filter has zeros at t = nT, where T = 1/f, is the switching
time interval. Ideally, filters with a bandwidth f,/2 and
one sided termination will indeed have the required ring-
off behavior if properly located along the frequency axis.

The response of the passive filter input impedance Z;;
to a unit impulse is

I io
V() = Ef_ Zy(jew)e' " dw. (19)




Considering that this input impedance consists of a real
part and an imaginary part, or

z,(w) = Re (Zy) + jIm (Zy,) (20)

one obtains* for > 0
2 o0
V() = - f Re (Z1,) cos wt dw. (1)
0

For a lossless reactance network which is terminated by
a 1-ohm load resistor, it is easy to show™ that Re (Z) =
|Z,,(jw)|* where Z,, is the transfer impedance of the con-
sidered network. For the ideal bandpass filter |Z,,(jw)| = 4
for w; < w < w,, and 0 otherwise; with these assumptions,
the input pulse response of the bandpass filter is

2 W2
Vop(t) = - f A cos wt dw

sin Awt/2

2 ——e
4 A°Af cos wet Awt/2

(22)
where

wo = (w1 -+ wy)/2 = center frequency of filter,
Aw = 21rAf = w, — w; = bandwidth of filter.

This shows that the ring-off of an ideal bandpass filter has
a sin x/x component which is modulated with the high
frequency carrier cos wof.

The pulse response of the corresponding lowpass filter
V,.(?) is obtained from V,g(¢) for the conditions w;, = 0,
w, = Aw, and takes the form

sin Aw?

Vor(t) = 4 AAf A

s t > 0' (23)

The important zero crossings of the bandpass and lowpass
filters occur, respectively, at

_2n—17
B — ’
2
“o (4)
nw
tL—Aw, n=1,2,3,---.

The longest possible sampling time interval, 7, consistent
with the requirement that sampling occur at the ring-off
zero is, forn = 1,

= r.
Aw

Any ISAM bandpass filter will have more than one zero
crossing during this interval 7. Compatibility is assured
as long as the first zero crossing of the lowpass filter coin-
cides with a zero crossing of the bandpass filter. This gives
the compatible values of the bandpass center frequency:

wy = [(2n — 1)/2]Aw. (26)

This development shows that the necessary initial con-
dition for resonant transfer, V,(nT) = 0, is achieved for a

153

(25)
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Figure 2 Amplitude response characteristics for nonideal
filters. (a) Lowpass filter; (b) Bandpass filter.

lowpass filter if Af = 1/2T = £,/2 and for a f,/2 wide
bandpass filter if center frequency f, = (2n — 1)f,/4.

All these considerations have assumed ideal rectangular
filter characteristics. The influence of a nonideal cut-off
characteristic will be studied next.

e Effect of nonideal response characteristics

No practical filter will have the assumed ideal rectangular
amplitude response. The actual filter slope between pass-
band and stopband can be approximated by a straight
line (Fig. 2). This simplified model allows us to obtain
some general results on the influence of filter cut-off slope
on the time-domain filter ring-off.

The transfer impedance of the approximated nonideal
lowpass filter is

1 for o < w,
Zu()f = 92—2 for w <o < w 7)
. 0 for w > ws.
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Using the relations from the previous section, one obtains
the response of the lossless reactance filter network termi-
nated by an impedance of 1 ohm:

2 Wi
Vor(f) = - [f cos wT dw
0

1 Wz
+ o f (ws — w) cos wT dw:|. (28)
d Juw,
Evaluation of this integral leads to

2 1
Vor(t) = e (cos wit — cos wst)
d

2 sin w,t sin wgt/2

W

2
% w,t wgt/2 (29)

where w, = (w; + »;)/2 and w; = w, — w,. The zero cross-
ings of V,.(#) are mainly determined by the w, term, since
in a typical ISAM system application w, > Aw/2. Thus
the nonideal lowpass filter with a 3 dB bandwidth of w,
will have the same ring-off zeros as the ideal filter of band-
width w..

The ring-off behavior of a nonideal symmetric bandpass
filter can be investigated similarly. The transfer impedance
is here approximated by

0 for w < w;
(w — wy)/wy for w; <o < w
|Zys|* = 1 for w, < w < ws (30)
(wy — w)/wg for w; <ow < wy
0 for w > w,.

Using the previously developed relation for the response
of a lossless reactance network terminated with 1 ohm
yields

211 ©e
Vas(t) = - [;d f (0 — wy) cos wt dw

2

-+ f cos wt dw

1 Wae
+ = f (wy — w) cos wt dwi]. (31)
[OF] wsa
Evaluation of these integrals leads to

21
Vas(t) = ol (cos wst

— COS wyt — COS wyl + €OS wsl),

sin Awt/2 sin wyt/2
Awt/2 wit/2

I

721_ Aw cos wyt (32)
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Wy = (wa + wz)/Z,

and

Wg = Wg — Wy = g — W3,

Aw = (w3 + w4 — @, — wy)/2 = 3dB bandwidth.

For w, = 0 it can be shown that this expression is the same
as the one previously found for the ideal bandpass filters.
The nonideal bandpass filter will have all the zero crossings
of the ideal bandpass filter. In addition, it will have zeros
caused by the w, term.

The conflict between amplitude and time response in a
nonideal w,/2 wide ISAM lowpass filter arises because
of the high attenuation requirement at w,/2. The finite
slope has to shift the 3 dB frequency to a lower value,
w,/2 = w,/2, which will produce ring-off zeros at T' =
1/(f, — {,) instead of 1/f,. Similar arguments hold for the
nonideal ISAM bandpass filters. The detailed influence of
this unavoidable, nonideal match between sampling time
intervals and filter ring-off zero spacing has been partially
analyzed and will be the subject of further investigations.

& Effect of unequal capacitive input impedance

Resonant transfer requires capacitive filter input imped-
ances at frequency 1/27. In the following, it is shown how
the energy transfer depends on the relative size of the two
resonance capacitors C, and C,. Considering only the
energy W, transferred from C, to C, during one switch
closure of duration r leads to

0

Using the current and voltage expressions of Eq. (13),
with r = 1r\/ LC, yields

Cc [ t 1
W, = Vz——\/:f sin ——— (1 -~ ¢OoS ——;) dt.
: ‘C.NL \/LC \/LC

(34)
Solution of this integral leads to
(€,

W, = 2V, 5,
where
C = Cng/(Cl + Cz).
Substituting C, = oC,
W, = 2ViC, - 36

2 ov1 (1 _|_ a)Z ( )

The maximum for W, will occur for « = 1. Its value is
Wameny = 3V2C,, which is equal to the energy on C;
shortly before switch closure for a voltage V, across C;.
Substitution of W, . yields finally

W, . 4o )
WZ(max) (1 "I" a)z

(37)
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Figure 3 Effect of filter capacitance mismatch on resonant
transfer of energy.

A plot of this function is shown in Fig. 3. It can be seen
that the transferred energy is relatively insensitive to ca-
pacitor mismatch. For & = 2 or 1/2, corresponding to
C, = 2C, or C, = 3(, it is seen that W, is only about
10 percent less than Wy(may) . For @ = 5 or 1/5, the trans-
ferred energy will be 0.56 Wy (uax,-

o Out-of-band selectivity

Most practical filters have a guaranteed, small but non-
zero transfer impedance outside the passband. The most
economical Cauer parameter filters approximate this small
constant transfer impedance in an optimum way (equal
ripple). It is thus very important to find out how a filter
of this type operates in a resonance transfer system.

Most critical is the filter output in response to pulse
inputs. Since the power of the widely spaced input pulses
must be equal to the power of the continuous filter output
signal, the pulse amplitude is much larger than the output
signal. Suppression of these large input pulses requires a
relatively small transfer impedance outside the passband.

Assume an ideal bandpass filter with the following
transfer impedance

A for —w, <ow < —w
. and o <o <o
le(f(*’) = - ! “ : (38)
pAz for lw| > o
and o] < o, p K 1.

Further assume that the filter receives input pulses of the
form
sin w,t

HL(t) = 2Bf, (39)

[ 4
These pulses serve as approximation to the half-wave sine
function of the resonance circuit during switch closure.
This particular approximation has been chosen since the
corresponding Fourier transform has now the simple form
of

for |u| < @,

Fi(jw) = {B (40)

0 for |w| > w,.

The output signal of the filter has then the frequency do-
main representation

Fz(jw) = le(jw)'Fl(j‘—'-’)- (41)

The corresponding output time function is finally

12(0)

l_fw . jwt
o Fo(jw)e'** dw

AB — @1 i g .
#—I:f e“”dw—l—/ 't dw
27 —wa w1

+p f e do+ p f et dw:|. (42)

I

Evaluation of these integrals leads to

in Awt/2
fo(t) = 2AB|:Af cos wotil%&/;—/( — p)

sin w,t
+ of, ot } (43)
where again w, = (W, + w2)/2, Aw = w, — wy, and Aw =
2rAf. For p = 0 one obtains a waveform that is identical
in shape to the one obtained for the input ring-off be-
havior of the ideal filter, but has only half its amplitude.
From the computed pulse response of the bandpass filter,
the corresponding lowpass filter response is obtained for
wy = 0 as

_ sin Awt/2
fo(r) = 2AB[AJ‘ TAwt)2 (1 —p)

sin w,?
+ of, w—] (44)

where Aw is the cut-off frequency. The Aw term in both
expressions represents the ring-off behavior of the ideal
filter while the w, term characterizes an undesired residual
of the input pulse.

The relative amplitude of this residual term can be ex-
pressed as K = pf,/Af. This formula allows us to make a
quick estimate on the required out-of-band filter char-
acteristic, p, if we know the resonance transfer frequency
f» the filter bandwidth Af and the relative amplitude of
the residual pulses, K, at the output of the filter. This
computed value of p will be smaller than required in a
practical system, because of our sin x/x pulse approxima-
tion and the additional selectivity obtained in a practical
filter where pA is only the maximum transfer impedance.

Filter synthesis

The chosen synthesis procedure is based on the prescribed
squared magnitude of a transfer impedance lZ,ZIz, which
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Figure 4 ISAM filter designed with 6th-order Cauer parameters.
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Figure 5 Amplitude response achieved with 8th-order Cauer
parameters.

ideally is constant within the band and zero elsewhere.
Instead of approximating |Zm|2, it is more convenient to
approximate the slightly transformed function

Flw) = lell—zlz —1 (45)

Cauer® has first solved this approximation problem with
functions that have equal ripple inside and outside the
passband. A table of these functions® was used to get the
Cauer-parameters and from these, F(w).

For trade-off between in-band ripple amplitude against
out-of-band ripple amplitude, an additional factor 2 was
included to yield

2 1 ,
]le(S)l = I—W@O—) , s = jw. (46)

Generation of Z,(s) from |Z12(s)|2 will require the solu-

ROEHR, THRASHER AND MCAULIFFE

tion of an nth-order polynomial, n being the order of the
original approximating function F(w).

The resonant transfer filter is terminated at only one
side. For such filters Guillemin* has shown that, given
Z1(s) = m/(my + n;), one can obtain two impedance
matrix elements of the filter: z,, = my/n, and zy, =
m/n,, where m and m, are even polynomials of s and
n, is an odd polynomial of s. The final synthesis of the
filter is achieved by developing the open circuit secondary
driving point impedance z,, into a ladder-type configura-
tion such that the zeros of the transfer impedance are
being implemented.

An example of a 6th-order ISAM low pass filter is
shown in Fig. 4. The matching bandpass filter was gen-
erated by a lowpass to bandpass transformation, as given
by Saal and Ulbrich,” which produced inductors and ca-
pacitors of convenient size. The channel bandpass filters
at the upper end of the frequency range between 60 kc/sec
and 108 kc/sec presented some implementation problems
since inductors with sufficiently high Q are not readily
available. To compensate against the influence of imper-
fect inductors, predistortion methods were applied which
produced almost perfect amplitude response of individual
filters. Due to the influence of predistortion on the filter
input impedance and hence the filter ring-off, the overall
response of an up-down conversion process proved not as
good as without predistortion.

Figure 5 shows a typical amplitude response for the up
conversion process which was achieved with 8th-order
Cauer parameter filters without predistortion. Better
transfer characteristics are expected by use of high-Q
crystal resonators.

Conclusions

It has been shown that for successful use of the ISAM
technique, it is necessary to design filters that are more
sophisticated than those required for conventional reso-
nant transfer operation. Amplitude transfer and ring-off
behavior of the filters were shown to be of vital importance
in ISAM systems operation. Unequal capacitive input
impedances were demonstrated to be of moderate influ-
ence over a wide range of capacitance ratios, while insuffi-
cient filter out-of-band selectivity was shown to produce




output voltage spikes, whose amplitude can be easily
estimated.

Amplitude characteristics achieved so far with LC
filters are still affected by insufficient inductor Q. How-
ever, this problem is believed to be no more difficult than
that usually encountered in conventional FDM channel-
filter design.
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