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Abstract: This  paper  discusses the performance of a digital  matched  filter  receiver  matched to a biphase-modulated  signal  in a 
clutter environment  consisting of other biphase-modulated  signals.  Analytic  results for a white-Gaussian  model  and for a non- 
linear capture model are compared with simulation  results  obtained from an IBM 7094 computer. The white-Gaussian  model 
is in  general  agreement  with the simulation  results for equal power clutter signals; the capture model  and the simulator yield 
similar  results when a dominant clutter source is present. 

Introduction 

In this  paper the performance of a digital matched filter 
for the reception of pseudo-noise, biphase-modulated 
signals is analyzed. A simulation of this filter on a general- 
purpose  computer is also discussed. The  radio receiver 
described by Corr,  et al.’ utilized digital matched filters 
similar to those analyzed in this paper. However, here  the 
emphasis will be placed on  the performance of a receiver 
containing  components that perform in an “ideal” man- 
ner. The discussion treats  the performance of the digital 
matched filter in an environment that contains the signal 
to which the filter is matched and  other similar signals 
(clutter) to which the filter is not matched. The effects of 
thermal noise and  band limiting operations which distort 
the instantaneous phase shifts of the biphase modulation 
are neglected. 

The matched filter operation is performed on  the band- 
pass signal by first generating baseband quadrature com- 
ponents and then performing two  baseband  matched 
filter operations. Figure 1 gives a block diagram of such a 
matched filter. 

The clutter  problem is treated first from a white noise 
viewpoint based on  the  approach used for analog  matched 
filters: and then strong clutter sources are considered from 
a non-Gaussian  point of  view. In  the  strong clutter  analy- 
sis the nonlinear effects of hard limiting are included. 

Finally, the performance of the filter combined with 
either a “greatest of” or a “threshold”  detector is dis- 

264 cussed and simulation results are presented. 

Analysis of digital matched filter performance 

The purposes of this section are to give insight into  the 
performance of a digital matched filter and  to establish a 
basis for interpreting the results of the simulation. The 
first part of this section is included as  an explanation of 
the filter mechanism; nonlinear effects are  not given. A 
short discussion of the performance of the filter under the 
assumption of a white-Gaussian environment is included. 
The  output signal-to-noise ratio is calculated so that  the 
results of Turin: Reiger,” and Nuttal15 for  the  error  rate 
versus output signal-to-noise ratio of an analog  matched 
filter with an M-ary signal alphabet can be  compared with 
the simulation results for a digital matched filter. A 
nonlinear  capture  model is also developed to explain 
the results of the simulation when a dominant  clutter 
signal is present. 

The received signal is of the form 
K K 

s(t)  = si(t) = A i  COS {wo( t  - Ai) 
i= l  2 = 1  

+ @i + $i(t - Ai)), 0 < t < T (1) 

where 

Ad = amplitude of the it” signal at  the desired receiver, 
wo = carrier frequency, 
$i(t) = biphase pseudo-noise modulation (i.e., a sequence 

of M 0’s and d s )  to which the it” receiver is matched, 
Bi = rf phase of the it” signal, 
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Figure 1 Block diagram of digital  matched  filter. 

T = duration of the modulated rf pulse, 
Ai = delay of the ith signal. 

After quadrature mixing and lowpass filtering, the signal 
takes the forms 

and 

in the cosine and sine arms, respectively (see Fig. 1). The 
denominator  factor (Xi is included so that  the max- 
imum output of the matched filter will be independent of 
the  input power, i.e., normalized. The nonlinear effects  of 
hard limiting are  not considered in  this  analysis; however, 
they are included in the analysis of strong  clutter  sources 
and in the simulation results given later in this paper. How- 
ever, it is known' that  for white noise, hard limiting 
will reduce the  output signal-to-noise ratio by a few 
dB. Since each receiver is matched to a different biphase 
signal, the  output of the receiver matched to #i(t) is the 
sum of the squares of the  outputs of the two arms  and is 
given  by 

O&) = " { cos # j ( 7 6 )  
1 

CAq 

+ -3 { c cos +, (76) 
1 

C A i  Y 

A <  COS l i ( t  - y6 - Ai)  sin O i l ] ' .  (3) 

Here 6 is the sampling rate of the digital  matched filter 
and x, represents the sum over all stages of the shift 
register. By interchanging the order of the summations, 
one  can  show that 

Here R i j  is the crosscorrelation between the ith ant 
signals and Ri is the autocorrelation of the jth signal. 

For example, consider the  output of receiver 1 in an 
environment containing the desired signal without  inter- 
ference. Since there are  no clutter  talkers, E q .  (4) simpli- 
fies to  the form 

01( t )  = R;l( t  - Ai) .  ( 5 )  

In  other words the  output is the autocorrelation  function 
of signal 1. At  the instant of match, t = AI and 

Ol(A1) = RTl(0) = 1, ( 6 )  

since Rll is the normalized autocorrelation  function. In 
fact, although  the  output is deterministic, if statistical 
averaging is performed over the complete set of outputs 
the results would be the same  as the statistics for coin 
flipping. Specifically, toss a coin n times, where n = num- 
ber of bits  in  each arm of the digital matched filter. The 
output is then given  by (heads - tails)'/n2, which on the 
average is I/n. 

Now, consider the  output of receiver 1 in an environ- 
ment with the desired signal and a single interfering signal. 

+ 2~ A2Rll( t  - A ~ ) R ~ ~ ( ~  - AJ COS (e ,  - eZ>l. (7) 

The first two  terms represent the contributions of the 
separate  signals; the  third term is a mutual contribution. 
Since the rf phases of the two signals are independent, 
the average of the  mutual clutter  term,  cos (e ,  - Oz), over 
phase is zero. Hence, the "expected value" of the  output 
averaged over the rf phases is 

At the time of match t = A1 : 

The time  argument of Rzl  has been dropped because the 
statistics of Rzl are independent of time. Hence, the  out- 
put  at  the time of match is reduced by an  amount propor- 
tional to  the ratio of the clutter power to  the  total power. 265 
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In general, if many  clutter  sources are present, 

where Po is the clutter power  of those  signals that overlap 
the desired  signal, P, is the signal  power, and RZ is the ex- 
pected  value of the square of the crosscorrelation  function. 

At all times other than the desired  time of match, Eq. 
(8) yields 

E[Ol(Ql = R 2 ,  t # Ai. (1 1) 

Here, R2 = R;l = Ril since the statistics of R;l and R:l 
are identical and essentially  independent of time. In gen- 
eral, Eq. (10) holds  independent of the number of clutter 
sources. 

White-Gaussian model 

Additional understanding of the digital  matched  filter can 
be obtained by considering the signal-to-noise ratio at the 
output of this system.  Here, the clutter will  be  assumed 
to have a white-Gaussian distribution and it becomes 
possible to make  use of  well known  results to determine 
the output signal-to-noise ratio. For a matched  filter  in a 
white-Gaussian  noise  environment it has been  shown that 
the peak output signal-to-noise ratio 11: is  given  by2 

where E is the signal  energy and NOT is the total Gaussian 
noise  power  density. The simulation  discussed later shows 
that the white-Gaussian  assumption  is  valid for digital 
pseudo-noise  signals in a wide  variety  of  circumstances. 

The three sources of distortion in a multiple access 
system are thermal noise,  clutter from authorized signals 
other than the desired talker, and jamming. The total inter- 
ference power  density  is  given  by 

The thermal noise  power  is  given  by No W where No is the 
noise  power  density in watts  per  cycle  per  second and W 
is the bandwidth of the system. The clutter  term  is KE/T 
where K is the number of interfering  signals at a given 
time, E is the energy of a single  signal, which  is  assumed 
to be the same for all transmitted signals, and T is the 
duration of the signals. The jamming power  is  given  by J. 

Hence, the signal-to-noise ratio at the output of the 
matched  filter  is given  by 

266 which  assumes that the jamming  signal  looks  like  random 

noise to the matched  filter  receiver.  Special cases  of oper- 
ation arise when performance  is  limited in turn by each 
of the three causes of distortion. A thermal noise  limited 
system  would  result in an output signal-to-noise ratio 
given  by 

7 l P  = X ’  2 2E 

This is the well-known result  obtained by North7 and 
It is  interesting to note that as is the case  in 

standard point-to-point communication  systems, the ther- 
mal noise  is  overcome by signal  energy. In the clutter 
limited  case, Eq. (14)  reduces to 

Here, as expected,  signal  energy  does not play a role in 
the performance of the system.  This  is true because  in- 
creasing the signal  energy for one  user  set  means,  accord- 
ing to our assumptions, that the energy  would  be  increased 
for all  in the same ratio and  the ratio of  received signal 
power to the received clutter power  would not change. 
It is  also  interesting to note that the ratio of T / K  can be 
considered as a constant of the system  because an increase 
in the time duration of all signal  waveforms  results  in a 
corresponding  increase in the number of signals  which are 
overlapping at a given  time. The actual value of T / K  is 
determined by the information flow  of the entire multiple- 
access  system.  Hence, we conclude that the only way to 
improve the output signal-to-noise ratio of all signals  in 
a clutter-limited  environment is to increase the band- 
width*.  Finally, for the jammer  limited  case, Eq. (14)  re- 
duces to 

i = ” -  
2 W E   2 W T S  - 

J ’  

where S is the average  signal  power. 
Here it is noted that the effectiveness  of a white-noise 

jammer is reduced by a factor proportional to the matched 
filter  processing  gain (WT). However, a jammer  could  im- 
prove  his effectiveness  by repeating the signals  he  received, 
or by transmitting signals of the same form as those  used 
by the system.  This  phenomenon  is  discussed  in the follow- 
ing  section. 

Non-Gaussian  capture  model 

The Gaussian noise  model  discussed  in the previous  sec- 
tion provides an explanation of the simulation  results  ob- 
tained when the clutter environment  consisted of a set 
of signals of the same power as the desired  signal.  How- 
ever,  when the environment  includes a dominant inter- 

increase of its signal  duration  without  changing  the  duration of other 
* The effect of clutter on a particular  signal  may be reduced by an 

signals. 
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ference  signal of greater  average power than the desired 
signal,  such as a clutter source, a CW jammer, or a re- 
peater jammer, the Gaussian model  does not offer a satis- 
factory  explanation of the results. From the simulation 
results, it is  seen that an interfering  signal at twice the 
power  of the desired  signal  causes a higher error rate 
than two  interfering  signals  each equal in power to the 
desired  signal. 

The analysis  presented in this section  is  based on the 
assumption that the rf phases of both the desired  signal 
and the interference  remain constant over a single rf pulse 
of each  signal. The phase  is  uniformly distributed over 
the rf pulses. The basic  matching  process  performed by 
the digital  matched  filter  depends on constant rf phase 
over  each  pulse of the desired  signal. A direct  result of this 
assumption  is that the receiver  is captured by either the de- 
sired  signal or the clutter source.  Hence, in this  case, 
capture probability is a more meaningful  measure of per- 
formance than signal-to-noise  ratio. In addition, both 
the analysis and simulation  assume that the switching  time 
for the biphase modulation is zero.  However, it is  con- 
jectured that the results  hold for nonzero  switching  times. 

The environment  considered in this section contains 
the desired  signal [A, ,  e,, $,(t)] and an interference  signal 
[Ai, Oi, ~,b~(t)]  with A i  > AI and no thermal noise. The 
outputs of the low-pass  filter  in the cosine and sine  arms 
of the matched  filter are, respectively 

u, = A~ cos e, COS +,( t )  

+ Ai  COS Oj cos $ j ( t )  (18a) 

u, = A ,  sin 0, cos $, ( t )  

+ A~ cos ej COS +; ( t ) .  (18b) 

First, consider the case  of an interfering  signal of greater 
power than the desired  signal, and assume that 

lcos e,\ > \cos e , [ .  (19) 

When the inequality of E q .  (19) does not hold, the roles of 
the sine and cosine  arms are reversed. 

Since the output of an ideal hard limiter is the sign  of 
the input, it follows that 

i + cos $i(t) if  cos Oi > 0 

- COS $i(t) if cos O j  < 0 ,  
U c l  = (20) 

where u C 2  is the output of the hard limiter in the cosine 
arm. In other words, the output in the cosine arm is inde- 
pendent of the desired  signal. 

From Eq. (18b) it follows  immediately that the output 
of the hard limiter  in the sine arm is 

f cos  if 1 A ,  sin 8,1 > I Ai sin Oil 

f cos $Jt) if I A ,  sin ell < 1 A j  sin Oil, 
V a l  = 

( 2  1) 

Here, the output of the sine arm is  determined by the 
desired  signal if (A,  sin 8, [ > IAi sin ei) and is deter- 
mined by the interfering  signal  otherwise.  (The  equality of 
(A,  sin 011 and [A;  sin Oil is  neglected  since it is a zero 
probability  event.) 

The problem of determining the probability that the 
interfering  signal  does not capture the system  has  now 
been reduced to determining the probability (PL) that 

A ,  sin 0, > Ai sin Oi, (22)  

under the conditions 

sin 0, > sin Oi (23) 

and 

The absolute value  symbol  has  been  removed by restrict- 
ing both phase  angles to the range from zero to n/2. This 
restriction  does not limit the generality of the results be- 
cause Isin 01 has the same distribution function over  each 
range of a/2. 

It is  now a simple matter to obtain an upper  bound on 
PL. The probability that Eq. (22) holds  is  certainly  less 
than the probability that 

A,  > A j  sin Oj. (25) 

Hence,  since Oi is  assumed to be  uniformly distributed 
over the range 0 to n/2, 

where Fz is an upper  bound on the probability that the 
filter  is not captured by the undesired  signal. It is  interest- 
ing to note that for a synchronized  digital  matched  filter 
(e ,  = a/2), E q .  (22) is  replaced by Eq. (25) and, P: = 7:. 
At this point it is appropriate to assume that the signal  is 
detected  properly  with  probability  one if it determines the 
output of either arm of the digital  matched  filter  because 
the output of the detector  is at least 2"'2, and the simula- 
tion results  have  shown that the probability of noise 
producing an output exceeding 2"" is  extremely  small.* 
The  probability of correct  detection  is 1/M when the 
output is independent of the desired  signal  because all 
outputs are equally  probable.  Hence, 

where P E  is the error probability for the M-ary  "greatest 
of" detector. In the course of the simulation it was  shown 
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It was found that the output did not exceed 0.63 on  any of the 
150,000 trials used in determining the three standard distributions dis- 
cussed. 



that Eq. (27) is an excellent approximation to the error 
probability determined by the simulator. 

Description of the simulation 

The computer  simulation of the digital matched filter was 
performed on  an  IBM 7094. The simulation model is 
described by the block diagram shown  in Fig. 1. The 
principal  aim of this simulation was to study the effects 
of clutter (from other users) on  the  error  rate  at  the de- 
sired receiver. Thermal noise is neglected. Channel effects 
such as  Doppler and multipath were also neglected. In 
addition it is assumed that  the channel  forms the com- 
posite signal by an algebraic summation of the desired 
and clutter signals. 

All components  in the receiver are assumed to perform 
their  operations  in an ideal manner. For instance  there 
are  no intermodulation  terms  in  translating the  input 
signal to if;  the  quadrature mixers introduce no  distortion; 
there is no limiter ambiguity; etc. 

The  input signal to the receiver will contain the desired 
signal and K - 1 undesired or clutter signals. Each of these 
K signals is of the  form given in  Eq. (1). Since ideal recep- 
tion and  quadrature detection are assumed, the simulation 
can work with the baseband quadrature components 
directly, thereby eliminating the need of generating the 
bandpass signal as part of the simulation. The inphase and 
quadrature components of the jth clutter  source  are, 
respectively 

u, i ( t  - Ai) = A ,  COS # i ( t  - A?) COS 6'i, 

and (28 )  

ua i ( t  - Ai)  = - A i  cos f i j ( t  - A?) sin Oi. 

The ensemble of signals is completely defined by the 
set of A,, Ok, #k, and Ak. The delay A,, relative to  the delay 
of the desired signal, and  the duty  factor determine which 
signals overlap the desired signal and, hence affect the 
output at the time of match. The duty  factor is given by 
d = T/To where T i s  the duration of each pulse and  l/To 
is the repetition rate which is assumed to be the same for 
all signals. Although Ak and #,(f) are deterministic, the 
starting positions of the u,(t)'s and their rf phases, O h ,  are 
considered as random variables. These starting positions 
and phase angles are assumed to be uniformly distributed 
over the ranges 0 to To, and 0 to 2n, respectively. The rf 
phases are assumed to be constant over a pulse duration T. 

These composite signals, uJt) and u,(t), comprised of 
partially overlapping signals given by Eq. (28) constitute 
the inputs to  the demodulation  simulator shown in 
Fig. 1. 

The  outputs of the limiters in the  inphase and  quadrature 
268 arms  are sgn ( u c ( t ) )  and sgn ( u 8 ( t ) ]  respectively, where 
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sgn (x) = 1  for x > 0, and sgn (x) = - 1 for x < 0. 
The digital matched filter correlates the limited composite 
signal with the desired sequence given by cos $ ~ ~ ( t ) .  Opera- 
tionally, the  output of the filter is the difference between 
the number of + 1's and - 1's in the sequence formed by 
the product of the sgn { u ( t ) )  sequence and  the cos #l(t)  
sequence. In  both  quadrature  arms  the results are then 
squared and summed. Finally, a normalizing factor is 
introduced to make the resulting range of values conven- 
ient for statistical analysis. 

Perhaps the most important information provided by 
the simulation is the probability density function and 
cumulative distribution  function of the  output of the 
digital matched filter at  the time of match. The time of 
match is the time at which the desired signal is fully loaded 
into  the shift register. In  the absence of thermal  noise 
and clutter, it is the time at which the  output of the  digital 
matched filter is maximized. Also, of importance is the 
probability density function and cumulative distribution 
function at all times other  than  the time of match. It was 
expected that these functions are dependent on  the 
processing gain* and  that they are independent of the 
environment. These expectations were verified in  the  course 
of the simulation so that is was possible to use the same 
standard functions for all environments. 

Figure 2 Distribution of normalized output signal  values at 
instant of match.  Solid  curves  indicate  distributions  with 30 
partially overlapping  signals  and  dashed  curves,  with 10. 
Signal  processing  gain ( W T )  is a parameter. 

I NORMALIZED OUTPUT. IOl(A~)l" 

* The  processing  gain  equals  the  bandwidth-time  product ( W T )  of the 

each arm of the filter. 
signals  and is also  equal to the  number  of bits in  the  shift  register  in 



The distribution of the  outputs at the time of match 
and  at all other times is the raw data  that is used to deter- 
mine the probability of error for two kinds of detectors. 
First, consider the "greatest of" detector. The problem is 
to determine which of M positions is the time when the 
desired signal is matched. This is similar to  the M-ary 
signal reception discussed in the l i t e r a t ~ r e . ~ ' ~ ' ~  The 
"greatest of" detector is then  a maximum likelihood 
detector. The probability of error P E  for  this type of 
detector is 

1 

P E  = 1 - Pz(X,,,:,, , 'M < X)Pl(Y = X). (29) 
X = O  

Here, Pz(x,,,, < X) represents the probability that  the 
maximum of the M - 1 values when the signal is not 
matched is less than X and P,(y = X) is the probability that 
the  output  at  the time of match is equal  to X. The summa- 
tion is over all the values of the  output of the matched 
filter. The quantity Pz(x,,,,M"I = X) is calculated from 
repeated use of the recursion relation. 

P2(Xmnx..w-1 = X) = Pz(x,,,,nf-z < X)P,(Xl = X) 

+ P ~ ( x , , , , . M - ~  = X>Pz(xl < X), (30) 

where P,(xl = X) is the probability that clutter will  yield 
an  output equal to X. This probability is determined by a 
Monte-Carlo  simulation. 

Simulation results 

In this section, some results of the simulation are tabulated. 
Figure  2 shows distribution  functions for  the matched 
filter output values at  the instant of match when 10 and 
30 signals overlap the desired signal for a variety of proc- 
essing gains. The percent of overlap is chosen from a 
uniform  distribution. Hence, the average overlap with the 
desired signal is 50%. If the average clutter power over- 
lapping the desired signal is substituted into Eq. (10) the 
result agrees to within 10% with the result  obtained from 
calculating O,(A,)  from the  data used to plot Fig. 2. 
The mean is also insensitive to  the number of phase re- 
versals per waveform for a specified number of clutter 
sources. For a given ratio of P, to PC one can also see that 
the distribution is more  peaked  for higher WT products, 
as would be expected. 

Figures  3 and 4 illustrate the probability of error  for 
a "greatest of" detector as a  function of the number of 
equal-power talkers (signals) per megacycle. The "greatest 
of" detector makes a decision that  the signal is matched 
in the time slot for which the receiver output is greatest. 
In fact the signal is matched,  although masked by clutter, 
in one of the M time  slots considered by the detector. 
In these figures and those that follow it was assumed 
that each talker  transmitted 8000 signals per second and 
each biphase bit is of 0.2 psec, duration. Hence, the 

TALKEfWMEGACYCLE 

Figure 3 Error rate vs number of equal-power talkers per 
megacycle  using  "greatest of" detection  with M 8 quanti- 
zation levels.  Signal  processing  gain  is a parameter. Dashed 
curve  derived from Turin's  results for analog matched  filters. 

duty  factor for each user is 0.2, 0.1, 0.05 for 128, 64 and 
32 bit digital matched filters, respectively. 

Figure 5 gives another presentation of error  rate curves 
as functions of the number of equal-power talkers per 
megacycle, where WT is held constant at 128 and  the 
number of quantization levels, M, is allowed to vary. 269 
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Figure 4 Error rate vs number of equal-power talkers per 
megacycle  using  “greatest of” detection  with M = 32 quanti- 
zation  levels.  Signal  processing  gain is a parameter. Dashed 
curve from Turin. 

Figures 6 and 7 illustrate the effect of one strong talker 
on  the performance of the system. The  strong  talker is 
received with a 60 dB power advantage over the desired 
talker so that when the  strong talker’s signal is present 
the receiver matches to his signal. The limiting performed 
by the receiver is ideal hard limiting and spill-over in 
time and frequency is neglected. These curves indicate 

270 the  error  rate when the  strong talker partially overlaps 
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Figure 5 Error rate vs number of equal-power talkers per 
megacycle  using  “greatest of” detection  with WT = 128. 
Number of quantization  levels is a parameter. 

the desired talker with probability one. Since the  strong 
talker and desired talker are  not in  time synchronism, the 
overlap is chosen from a uniform  distribution from zero 
to  total overlap. These figures also show  the effect of the 
duty factor when the system contains a strong talker. 
These curves were plotted by weighting the strong-talker 
curves by the probability that  the  strong talker  overlaps 
the desired talker and by weighting the  equal power talker 



STRONG 
TALKER  (ST) 

21 10 (ST) 
j 81 10 (ET) 

EQUAL POWER 
TALKERS (ET) 

I 1 I 
10 20 30 4 

‘ALKERSIMEGACYCLE 

Figure 6 Effects of one  “strong talker” on error rate. 
“Greatest of” detection; 8 quantization levels;  signal pro- 
cessing  gain, WT = 64. 

curves by the probability that  the  strong talker  does not 
overlap the desired talker. 

Up until now, we have considered only the case where 
we know that  the signal will be present and  that  it will 
be  in one of M different time slots, thereby allowing the 
use of “greatest of” detection. However, the case where 
signal  synchronization is not desired or possible is also 
of considerable interest. Here, a threshold type detector 
must  be employed. Figure 8 gives curves of probabiIity 
of false detection as a function of probability of false alarm 
for various talker per  megacycle values, with threshold 
detection. 

The previously presented data have been limited to 
either very strong talkers or equal-power talkers. Figure 9 
shows results for a “greatest of” detector  in an environ- 
ment consisting of the desired signal and  one clutter  source 
of greater power that completely overlaps the desired 

l’OF------ 
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Figure 7 Effects of one  “strong talker” on error rate. 
“Greatest of” detection; 8 quantization  levels;  signal pro- 
cessing  gain, WT = 128. 

signal. The simulation  results are  also compared  against 
Eq. (27). For this case the simulation results were inde- 
pendent of WT as discussed earlier. 

Figure 10 gives results using “greatest of” detection 
for sets of clutter talkers whose powers vary in a particular 
manner. The talkers are distributed  such that  the desired 
talker is a distance A,  and  the nearest  talker is a distance 
B 5 A from  the receiver. The remaining talkers are 
distributed uniformly over the area  contained between 
the concentric circles whose centers are  at  the receiver 
and whose radii are A and B. The received power is 
assumed to vary inversely with the  fourth power of the 



distance between the  transmitter  and receiver. An equal 
number  of  additional  talkers is distributed  uniformly 
between concentric circles whose  centers  are a t   the  receiver 
and  whose  radii  are A and 2A. (These  talkers do  not  
count in computing  the  talkers  per megacycle.) An 
important  conclusion  that  follows  from  Figures 9 and 10 
is that  the  error  rate  increases  at a faster  rate  with  in- 
creasing  dynamic  range  than  would  be  predicted  from a 
Gaussian  noise  model. 

I PROBABILITY OF FALSE ALARM 

Figure 8 Probability of false alarm vs probability of false 
detection for various  numbers of talkers per megacycle. 
Threshold  detection. 

Figure 9 Error  rate vs ratio of clutter  power to signal 
power. Solid lines  represent  simulation  results;  dashed lines 
represent Eq. (27).  Number of quantization levels is a 
parameter. 
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Figure 10 Effects of distributed-power talkers on error  rate. 
“Greatest of” detection; 32 quantization levels; and signal 
processing gain, W T  x 64. Solid lines: unequal-power talk- 
ers  uniformly  distributed between distances B and A from 
receiver. Dashed lines: equal-power  talkers at B. 
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