264

IBM JOURNAL

R. Van Blerkom
R. E. Sears
D. G. Freeman

Analysis and Simulation of a Digital Matched
Filter Receiver of Pseudo-Noise Signals

Abstract: This paper discusses the performance of a digital matched filter receiver matched to a biphase-modulated signal in a
clutter environment consisting of other biphase-modulated signals. Analytic results for a white-Gaussian model and for a non-
linear capture model are compared with simulation results obtained from an IBM 7094 computer. The white-Gaussian model
is in general agreement with the simulation results for equal power clutter signals; the capture model and the simulator yield

similar results when a dominant clutter source is present.

Introduction

In this paper the performance of a digital matched filter
for the reception of pseudo-noise, biphase-modulated
signals is analyzed. A simulation of this filter on a general-
purpose computer is also discussed. The radio receiver
described by Corr, et al." utilized digital matched filters
similar to those analyzed in this paper. However, here the
emphasis will be placed on the performance of a receiver
containing components that perform in an ‘“ideal” man-
ner. The discussion treats the performance of the digital
matched filter in an environment that contains the signal
to which the filter is matched and other similar signals
(clutter) to which the filter is not matched. The effects of
thermal noise and band limiting operations which distort
the instantaneous phase shifts of the biphase modulation
are neglected.

The matched filter operation is performed on the band-
pass signal by first generating baseband quadrature com-
ponents and then performing two baseband matched
filter operations. Figure 1 gives a block diagram of such a
matched filter.

The clutter problem is treated first from a white noise
viewpoint based on the approach used for analog matched
filters,” and then strong clutter sources are considered from
a non-Gaussian point of view. In the strong clutter analy-
sis the nonlinear effects of hard limiting are included.

Finally, the performance of the filter combined with
either a “greatest of” or a “threshold” detector is dis-
cussed and simulation results are presented.
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Analysis of digital matched filter performance

The purposes of this section are to give insight into the
performance of a digital matched filter and to establish a
basis for interpreting the results of the simulation. The
first part of this section is included as an explanation of
the filter mechanism; nonlinear effects are not given. A
short discussion of the performance of the filter under the
assumption of a white-Gaussian environment is included.
The output signal-to-noise ratio is calculated so that the
results of Turin,® Reiger,* and Nuttall® for the error rate
versus output signal-to-noise ratio of an analog matched
filter with an M-ary signal alphabet can be compared with
the simulation results for a digital matched filter. A
nonlinear capture model is also developed to explain
the results of the simulation when a dominant clutter
signal is present.
The received signal is of the form
K

S(t) = Z Si(t) = Ij A; cos {“’o(t - Ai)

i=1 i

S48+ e — A, 0<t<T (1)

where
A; = amplitude of the i*" signal at the desired receiver,
we = carrier frequency,

¥,(f) = biphase pseudo-noise modulation (i.e., a sequence
of M 0’s and =’s) to which the i*" receiver is matched,
8; = rf phase of the i*" signal,
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Figure 1 Block diagram of digital matched filter.

T = duration of the modulated rf pulse,
A; = delay of the i* signal.

After quadrature mixing and lowpass filtering, the signal
takes the forms

5> 57 [ Acos vl ~ A)cos 0] (a)
and
= 57 (D dicos pio = a)sine] ()

in the cosine and sine arms, respectively (see Fig. 1). The
denominator factor (3 ; 42" is included so that the max-
imum output of the matched filter will be independent of
the input power, i.e., normalized. The nonlinear effects of
hard limiting are not considered in this analysis; however,
they are included in the analysis of strong clutter sources
and in the simulation results given later in this paper. How-
ever, it is known® that for white noise, hard limiting
will reduce the output signal-to-noise ratio by a few
dB. Since each receiver is matched to a different biphase
signal, the output of the receiver matched to ¢;(¢) is the
sum of the squares of the outputs of the two arms and is
given by

0:(1) = Z—IAE {Z cos ¥,;(v6)

Y

i
i

[Z A; cos ¢;(t —v8 — A;) cos 0]}
Z A Z cos y,(y0)

Z A; cos Y,(t —v6 — A)sin 8,1}, (3)

Here § is the sampling rate of the digital matched filter
and Z., represents the sum over all stages of the shift
register. By interchanging the order of the summations,
one can show that

0,() = 5= [T AIRL( =~ 8)

+ 2 3 Ai AR(t — ADRL(E — A))

X cos (6; — 6,)]. (4)

Here R;; is the crosscorrelation between the i*" and j*°
signals and R;; is the autocorrelation of the 7* signal.

For example, consider the output of receiver 1 in an
environment containing the desired signal without inter-
ference. Since there are no clutter talkers, Eq. (4) simpli-
fies to the form

0,(f) = Riy(t — A)). ©)

In other words the output is the autocorrelation function
of signal 1. At the instant of match, ¢+ = A; and

01(A1) = R?I(O) =1, (6)

since R,; is the normalized autocorrelation function. In
fact, although the output is deterministic, if statistical
averaging is performed over the complete set of outputs
the results would be the same as the statistics for coin
flipping. Specifically, toss a coin » times, where n = num-
ber of bits in each arm of the digital matched filter. The
output is then given by (heads — tails)*/n”, which on the
average is 1/n.

Now, consider the output of receiver 1 in an environ-
ment with the desired signal and a single interfering signal.
Ay) + AgRgl(t — Ay

0.() = —5———3 [A:R1,(t —

1
A+ A

+ 24, ARy (t — AR, (t — Ap) cos (6, — 8,)]. @)

The first two terms represent the contributions of the
separate signals; the third term is a mutual contribution.
Since the rf phases of the two signals are independent,
the average of the mutual clutter term, cos (8, — 8.), over
phase is zero. Hence, the “expected value” of the output
averaged over the rf phases is

1

E[0,(1)] = TI A [4R0(t — A)
+ AgRgl(t - Az)]- (8)
At the time of match ¢ = A,:
1
E[OI(AI)] = Al x A2 [Al -+ A2R21]
_ A2 2
=1- A1 + A2 (1 Rzl)- (9)

The time argument of R,; has been dropped because the
statistics of R,, are independent of time. Hence, the out-
put at the time of match is reduced by an amount propor-
tional to the ratio of the clutter power to the total power.
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In general, if many clutter sources are present,

P,

E[0,(A)] =1 — P 1P

(1 - R, (10)
where P, is the clutter power of those signals that overlap
the desired signal, P, is the signal power, and R’ is the ex-
pected value of the square of the crosscorrelation function.

At all times other than the desired time of match, Eq.
(8) yields

E[0,(1)] = R, t# A (11)

Here, R® = R%, = R, since the statistics of R?, and R2,
are identical and essentially independent of time. In gen-
eral, Eq. (10) holds independent of the number of clutter
sources.

o White-Gaussian model

Additional understanding of the digital matched filter can
be obtained by considering the signal-to-noise ratio at the
output of this system. Here, the clutter will be assumed
to have a white-Gaussian distribution and it becomes
possible to make use of well known results to determine
the output signal-to-noise ratio. For a matched filter in a
white-Gaussian noise environment it has been shown that
the peak output signal-to-noise ratio 4> is given by’

‘2 2FE
N = Nor * (12)

where E is the signal energy and Ny is the total Gaussian
noise power density. The simulation discussed later shows
that the white-Gaussian assumption is valid for digital
pseudo-noise signals in a wide variety of circumstances.
The three sources of distortion in a multiple access
system are thermal noise, clutter from authorized signals
other than the desired talker, and jamming. The total inter-
ference power density is given by
Nor = l:NOW'}"I_;E‘i‘ J] "lu—/ (13)
The thermal noise power is given by Ny where Ny is the
noise power density in watts per cycle per second and W
is the bandwidth of the system. The clutter term is KE/T
where K is the number of interfering signals at a given
time, E is the energy of a single signal, which is assumed
to be the same for all transmitted signals, and T is the
duration of the signals. The jamming power is given by J.
Hence, the signal-to-noise ratio at the output of the
matched filter is given by

2E
=N = 2 ; (14)
" —1~|:NW+£€+ J]
wiL’ T

which assumes that the jamming signal looks like random
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noise to the matched filter receiver. Special cases of oper-
ation arise when performance is limited in turn by each
of the three causes of distortion. A thermal noise limited
system would result in an output signal-to-noise ratio
given by

2 _ 2E
Mo = N, (15)

This is the well-known result obtained by North’ and
others.®"® It is interesting to note that as is the case in
standard point-to-point communication systems, the ther-
mal noise is overcome by signal energy. In the clutter
limited case, Eq. (14) reduces to

"= 2w (16)
Here, as expected, signal energy does not play a role in
the performance of the system. This is true because in-
creasing the signal energy for one user set means, accord-
ing to our assumptions, that the energy would be increased
for all in the same ratio and the ratio of received signal
power to the received clutter power would not change.
1t is also interesting to note that the ratio of 7/K can be
considered as a constant of the system because an increase
in the time duration of all signal waveforms results in a
corresponding increase in the number of signals which are
overlapping at a given time. The actual value of T/K is
determined by the information flow of the entire multiple-
access system. Hence, we conclude that the only way to
improve the output signal-to-noise ratio of all signals in
a clutter-limited environment is to increase the band-
width*. Finally, for the jammer limited case, Eq. (14) re-
duces to

s 2WE 2WTS
Ny = J - J ’ (1 7)
where S is the average signal power.

Here it is noted that the effectiveness of a white-noise
jammer is reduced by a factor proportional to the matched
filter processing gain (WT). However, a jammer could im-
prove his effectiveness by repeating the signals he received,
or by transmitting signals of the same form as those used
by the system. This phenomenon is discussed in the follow-
ing section.

o Non-Gaussian capture model

The Gaussian noise model discussed in the previous sec-
tion provides an explanation of the simulation results ob-
tained when the clutter environment consisted of a set
of signals of the same power as the desired signal. How-
ever, when the environment includes a dominant inter-

* The effect of clutter on a particular signal may be reduced by an
increase of its signal duration without changing the duration of other
signals.




ference signal of greater average power than the desired
signal, such as a clutter source, a CW jammer, or a re-
peater jammer, the Gaussian model does not offer a satis-
factory explanation of the results. From the simulation
results, it is seen that an interfering signal at twice the
power of the desired signal causes a higher error rate
than two interfering signals each equal in power to the
desired signal.

The analysis presented in this section is based on the
assumption that the rf phases of both the desired signal
and the interference remain constant over a single rf pulse
of each signal. The phase is uniformly distributed over
the rf pulses. The basic matching process performed by
the digital matched filter depends on constant rf phase
over each pulse of the desired signal. A direct result of this
assumption is that the receiver is captured by either the de-
sired signal or the clutter source. Hence, in this case,
capture probability is a more meaningful measure of per-
formance than signal-to-noise ratio. In addition, both
the analysis and simulation assume that the switching time
for the biphase modulation is zero. Howeyver, it is con-
jectured that the results hold for nonzero switching times.

The environment considered in this section contains
the desired signal [4,, 6;, Y1(9)] and an interference signal
[4;, 0;, ¢,(O] with 4; > A4, and no thermal noise. The
outputs of the low-pass filter in the cosine and sine arms
of the matched filter are, respectively

v, = A; cos 0; cos ¥, (t)

+ A; cos 6; cos y;(t) (18a)
v, = A, sin 6, cos ¥(f)

4+ A; cos 6; cos y¥;(r). (18b)

First, consider the case of an interfering signal of greater
power than the desired signal, and assume that

|cos 6;] > |cos 8,]. (19)

When the inequality of Eq. (19) does not hold, the roles of
the sine and cosine arms are reversed.

Since the output of an ideal hard limiter is the sign of
the input, it follows that

0, = {-{— cos ¥, () if cos8;, >0 (20)
— cos ¥;(¢) if cos 8, <0,

where v,; is the output of the hard limiter in the cosine

arm. In other words, the output in the cosine arm is inde-

pendent of the desired signal.

From Eq. (18b) it follows immediately that the output
of the hard limiter in the sine arm is

I {:l: cos ¥, (1) if [A4,sin 6,{ > |4, sin 6;]
al

=+ cos ¢, (t) if |4, sin 6, < |4, sin 6;],
(21)

Here, the output of the sine arm is determined by the
desired signal if (4, sin 6,] > [4; sin 6;) and is deter-
mined by the interfering signal otherwise. (The equality of
|4, sin 6;] and |4; sin ;] is neglected since it is a zero
probability event.)

The problem of determining the probability that the
interfering signal does not capture the system has now
been reduced to determining the probability (£?) that

A, sin 6, > A;sin 8;, (22)

under the conditions

sin 6, > sin 6; (23)
and
4, > A, (24)

The absolute value symbol has been removed by restrict-
ing both phase angles to the range from zero to w/2. This
restriction does not limit the generality of the results be-
cause |sin 8] has the same distribution function over each
range of x/2.

It is now a simple matter to obtain an upper bound on
P!. The probability that Eq. (22) holds is certainly less
than the probability that

Al > A,‘ sin 0,‘. (25)

Hence, since 6; is assumed to be uniformly distributed
over the range 0 to 7/2,

P, = 2/r arcsin [ﬁ] (26)
4;

where —13: is an upper bound on the probability that the
filter is not captured by the undesired signal. It is interest-
ing to note that for a synchronized digital matched filter
(6, = 7/2), Eq. (22) is replaced by Eq. (25) and, P! = P..
At this point it is appropriate to assume that the signal is
detected properly with probability one if it determines the
output of either arm of the digital matched filter because
the output of the detector is at least 27"/%, and the simula-
tion results have shown that the probability of noise
producing an output exceeding 272 is extremely small.*
The probability of correct detection is 1/M when the
output is independent of the desired signal because all
outputs are equally probable. Hence,

A
Py =1— {2/1r arcsin~A—l

.oA
+ 1/M|:1 — 2/r arcsin j:'}, 27)

i
where Pj is the error probability for the M-ary “greatest
of” detector. In the course of the simulation it was shown
® It was found that the output did not exceed 0.63 on any of the

150,000 trials used in determining the three standard distributions dis-
cussed.
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that Eq. (27) is an excellent approximation to the error
probability determined by the simulator.

Description of the simulation

The computer simulation of the digital matched filter was
performed on an IBM 7094. The simulation model is
described by the block diagram shown in Fig. 1. The
principal aim of this simulation was to study the effects
of clutter (from other users) on the error rate at the de-
sired receiver. Thermal noise is neglected. Channel effects
such as Doppler and multipath were also neglected. In
addition it is assumed that the channel forms the com-
posite signal by an algebraic summation of the desired
and clutter signals.

All components in the receiver are assumed to perform
their operations in an ideal manner. For instance there
are no intermodulation terms in translating the input
signal to if ; the quadrature mixers introduce no distortion;
there is no limiter ambiguity; etc.

The input signal to the receiver will contain the desired
signal and K — 1 undesired or clutter signals. Each of these
K signals is of the form given in Eq. (1). Since ideal recep-
tion and quadrature detection are assumed, the simulation
can work with the baseband quadrature components
directly, thereby eliminating the need of generating the
bandpass signal as part of the simulation. The inphase and
quadrature components of the jth clutter source are,
respectively

v.;i(t — A;) = A; cos ¥;(t — A;) cos 8;,
and (28)
v,i(t — A;) = — A; cos ¥;(t — A;) sin 6.

The ensemble of signals is completely defined by the
set of A, 0.,¢,, and A,. The delay A,, relative to the delay
of the desired signal, and the duty factor determine which
signals overlap the desired signal and, hence affect the
output at the time of match. The duty factor is given by
d = T/T, where T is the duration of each pulse and 1/T,
is the repetition rate which is assumed to be the same for
all signals. Although A, and ¢,(r) are deterministic, the
starting positions of the v,(¢)’s and their rf phases, 6,, are
considered as random variables. These starting positions
and phase angles are assumed to be uniformly distributed
over the ranges 0 to T,, and O to 27, respectively. The rf
phases are assumed to be constant over a pulse duration 7.

These composite signals, v,() and v,(¢), comprised of
partially overlapping signals given by Eq. (28) constitute
the inputs to the demodulation simulator shown in
Fig. 1.

The outputs of the limiters in the inphase and quadrature
arms are sgn {v.()} and sgn {v,(r)} respectively, where
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sgn (x) = 1 for x > 0, and sgn (x) = —1 for x < 0.
The digital matched filter correlates the limited composite
signal with the desired sequence given by cos ¥,(f). Opera-
tionally, the output of the filter is the difference between
the number of +1°s and —1’s in the sequence formed by
the product of the sgn {v(f)} sequence and the cos ¥, (r)
sequence. In both quadrature arms the results are then
squared and summed. Finally, a normalizing factor is
introduced to make the resulting range of values conven-
ient for statistical analysis.

Perhaps the most important information provided by
the simulation is the probability density function and
cumulative distribution function of the output of the
digital matched filter at the time of match. The time of
match is the time at which the desired signal is fully loaded
into the shift register. In the absence of thermal noise
and clutter, it is the time at which the output of the digital
matched filter is maximized. Also, of importance is the
probability density function and cumulative distribution
function at all times other than the time of match. It was
expected that these functions are dependent on the
processing gain* and that they are independent of the
environment. These expectations were verified in the course
of the simulation so that is was possible to use the same
standard functions for all environments.

Figure 2 Distribution of normalized output signal values at
instant of match. Solid curves indicate distributions with 30
partially overlapping signals and dashed curves, with 10.
Signal processing gain (WT) is a parameter.

280

NUMBER OF OCCURRANCES OF OUTPUT VALUE

~
032 040 . . . 0.72

* The processing gain equals the bandwidth-time product (W7T) of t}}e
signals and is also equal to the number of bits in the shift register in
each arm of the filter,




The distribution of the outputs at the time of match
and at all other times is the raw data that is used to deter-
mine the probability of error for two kinds of detectors.
First, consider the “greatest of” detector. The problem is
to determine which of M positions is the time when the
desired signal is matched. This is similar to the M-ary
signal reception discussed in the literature.’"*”® The
‘“greatest of” detector is then a maximum likelihood
detector. The probability of error Py for this type of
detector is

1
Py =1— Z Poy(Xmax, s < MPi(y = N). (29)
s}

Here, Py(Xpax, 11 << M) represents the probability that the
maximum of the M — 1 values when the signal is not
matched is less than A and P,(y = M) is the probability that
the output at the time of match is equal to A. The summa-
tion is over all the values of the output of the matched
filter. The quantity Py(Xmar,y—1 = M) is calculated from
repeated use of the recursion relation.

PZ(xmax,_M-—l = )\) = P2(-xmax,111—2 < )\)Pz(-’ﬁ = )\)
+ P2<x1nax,M‘2 = A)})2(-)51 < )\)’ (30)

where P,(x, = \) is the probability that clutter will yield
an output equal to A. This probability is determined by a
Monte-Carlo simulation.

Simulation results

In this section, some results of the simulation are tabulated.
Figure 2 shows distribution functions for the matched
filter output values at the instant of match when 10 and
30 signals overlap the desired signal for a variety of proc-
essing gains. The percent of overlap is chosen from a
uniform distribution. Hence, the average overlap with the
desired signal is 509. If the average clutter power over-
lapping the desired signal is substituted into Eq. (10) the
result agrees to within 109, with the result obtained from
calculating O,(4,) from the data used to plot Fig. 2.
The mean is also insensitive to the number of phase re-
versals per waveform for a specified number of clutter
sources. For a given ratio of P, to P, one can also see that
the distribution is more peaked for higher WT products,
as would be expected.

Figures 3 and 4 illustrate the probability of error for
a “greatest of” detector as a function of the number of
equal-power talkers (signals) per megacycle. The *‘greatest
of” detector makes a decision that the signal is matched
in the time slot for which the receiver output is greatest.
In fact the signal is matched, although masked by clutter,
in one of the M time slots considered by the detector.
In these figures and those that follow it was assumed
that each talker transmitted 8000 signals per second and
each biphase bit is of 0.2 usec, duration. Hence, the
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Figure 3 Error rate vs number of equal-power talkers per
megacycle using “greatest of” detection with M — 8 quanti-
zation levels. Signal processing gain is a parameter. Dashed
curve derived from Turin’s results for analog matched filters.

duty factor for each user is 0.2, 0.1, 0.05 for 128, 64 and
32 bit digital matched filters, respectively.

Figure 5 gives another presentation of error rate curves
as functions of the number of equal-power talkers per
megacycle, where WT is held constant at 128 and the
number of quantization levels, M, is allowed to vary.

269

DIGITAL MATCHED FILTER ANALYSIS



270

1.0
01—~
-
-
0.01—
- -
o
o
o
wr
[T —
o
>
[
b=}
@
<
[
g
a. 0.001 i 1 1 1
0 5 10 15 20 25
TALKERS/MEGACYCLE

Figure 4 Error rate vs number of equal-power talkers per
megacycle using “greatest of” detection with M = 32 quanti-
zation levels. Signal processing gain is a parameter. Dashed
curve from Turin.

Figures 6 and 7 illustrate the effect of one strong talker
on the performance of the system. The strong talker is
received with a 60 dB power advantage over the desired
talker so that when the strong talker’s signal is present
the receiver matches to his signal. The limiting performed
by the receiver is ideal hard limiting and spill-over in
time and frequency is neglected. These curves indicate
the error rate when the strong talker partially overlaps
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Figure 5 Error rate vs number of equal-power talkers per
megacycle using “greatest of” detection with WT = 128.
Number of quantization levels is a parameter.

the desired talker with probability one. Since the strong
talker and desired talker are not in time synchronism, the
overlap is chosen from a uniform distribution from zero
to total overlap. These figures also show the effect of the
duty factor when the system contains a strong talker.
These curves were plotted by weighting the strong-talker
curves by the probability that the strong talker overlaps
the desired talker and by weighting the equal power talker
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Figure 6 Effects of one “strong talker” on error rate.
“Greatest of” detection; 8 quantization levels; signal pro-
cessing gain, WT = 64.

curves by the probability that the strong talker does not
overlap the desired talker.

Up until now, we have considered only the case where
we know that the signal will be present and that it will
be in one of M different time slots, thereby allowing the
use of *‘greatest of”’ detection. However, the case where
signal synchronization is not desired or possible is also
of considerable interest. Here, a threshold type detector
must be employed. Figure 8 gives curves of probability
of false detection as a function of probability of false alarm
for various talker per megacycle values, with threshold
detection.

The previously presented data have been limited to
either very strong talkers or equal-power talkers. Figure 9
shows results for a “greatest of” detector in an environ-
ment consisting of the desired signal and one clutter source
of greater power that completely overlaps the desired

1.0

=T

T T 1

- STRONG
TALKER (ST}

2/5 (S8T)
-1-3/5 (ET)

0.1 E

0.01

T T TT

EQUAL POWER

o

I3 TALKERS (ET)

[+

ur

N -

s}

>

=

S

m

<

a

e

a. 0.001 | t 1 |
0 5 10 15 20 25
TALKERS/MEGACYCLE

Figure 7 Effects of one “strong talker” on error rate.
“Greatest of” detection; 8 quantization levels; signal pro-
cessing gain, WT = 128.

signal. The simulation results are also compared against
Eq. (27). For this case the simulation results were inde-
pendent of WT as discussed earlier.

Figure 10 gives results using “greatest of” detection
for sets of clutter talkers whose powers vary in a particular
manner. The talkers are distributed such that the desired
talker is a distance 4, and the nearest talker is a distance
B < A from the receiver. The remaining talkers are
distributed uniformly over the area contained between
the concentric circles whose centers are at the receiver
and whose radii are 4 and B. The received power is
assumed to vary inversely with the fourth power of the
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distance between the transmitter and receiver. An equal
number of additional talkers is distributed uniformly
between concentric circles whose centers are at the receiver
and whose radii are 4 and 24. (These talkers do not
count in computing the talkers per megacycle.) An
important conclusion that follows from Figures 9 and 10
is that the error rate increases at a faster rate with in-
creasing dynamic range than would be predicted from a
Gaussian noise model.
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o
h=4

5 TALKERS/MEGACYCLE

PROBABILITY OF FALSE DETECTION

0.001 L L.l i IR NN ] Ll
0.001 0.01 0.1

PROBABILITY OF FALSE ALARM

Figure 8 Probability of false alarm vs probability of false
detection for various numbers of talkers per megacycle.
Threshold detection.

Figure 9 Error rate vs ratio of clutter power to signal
power. Solid lines represent simulation results; dashed lines
represent Eq. (27). Number of quantization levels is a
parameter.
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272 RATIO OF CLUTTER POWER TO SIGNAL POWER
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Figure 10 Effects of distributed-power talkers on error rate.
“Greatest of” detection; 32 quantization levels; and signal
processing gain, WT = 64. Solid lines: unequal-power talk-
ers uniformly distributed between distances B and 4 from
receiver. Dashed lines: equal-power talkers at B.
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