J. D. Ullman*

Decoding of Cyclic Codes Using
Position Invariant Functions

Abstract: Ratios that are sufficient to detect classes of error patterns in cyclic codes are discussed. Systematic procedures for
the correction of Bose-Chaudhuri codes are given; it is shown that these are quite fast but practical only for small numbers
of random errors. It is seen that there is the capability of simultaneous independent and burst error correction.

1. Introduction

An outstanding problem in coding theory is that of de-
signing decoding devices which are both simple and fast.
It is made interesting and troublesome by the fact that,
generally, speed is achieved only through the acceptance
of a large memory. Although various techniques have been
found that soften this dilemma by reducing the amount
of information that must be stored, they usually do so at
the cost of some increase in decoding time. The method
to be described here is intended to achieve a similar purpose
for cyclic codes. It operates by dividing the decoding
problem into a first part, in which the error pattern is
found, then into a second, in which the position of the
error is established.

We will show that the method allows a significant re-
duction in the number of bits that must be stored without
greatly increasing the decoding time. It must be observed,
however, that the method does not give the designer an
indefinite freedom to accept slightly decreased speed as
a fair exchange for a reduction in storage requirements.
Rather, for long code lengths or large numbers of errors
the storage requirements indeed become prohibitively
large.

From the received data we will calculate the error
syndrome, and in part 2 we will see that it is possible to
calculate, from the syndrome, certain functions which de-
pend only on the error pattern. Part 3 gives a sufficient
condition for consideration of these functions to realize
the full error correcting capability of the code involved.
In part 4 we will treat the special case of double-error
correcting Bose-Chaudhuri codes, and in part 5 will
extend these results to triple errors, or a higher multi-

* The author is presently a candidate for the Ph.D. in the Department
of Electrical Engineering, Princeton University. He spent the summer
of 1964 at the IBM Thomas J. Watson Research Center, Yorktown
Heights, N. Y.

plicity of errors. Finally, we will consider burst error cor-
rection and the simultaneous correction of bursts and
random errors.

The necessary algebra can be found in Peterson' or
Van Der Waerden.” A discussion of Bose-Chaudhuri codes
can be found in References (1) and (3), and of general
decoding methods for these codes in Peterson''* and
Zierler and Gorenstein.” The special case of double-error
correcting Bose-Chaudhuri codes has been considered by
Melas,’ and Banerji.” Our method is actually an improve-
ment and a generalization beyond Banerji’s method. Other
proposals for the decoding of Bose-Chaudhuri codes in-
clude those of Chien® and Kasami.® The detection of
burst errors by logical circuitry was proposed by Meggitt.'°

2. Definitions and preliminaries

Let a be a primitive element of the finite field with ¢
elements, GF(g). We suppose that g is a power of two.
Let n be ¢ — 1, the order of the multiplicative group and
the length of the code. Consider a subset of elements in
that field with elements 3;, 1 < i < N. Define m; by
B; = a™. Let g(x) be the polynomial of least degree with
coefficients in GF(2) containing all §; as roots.

The polynomial g(x) defines a cyclic code which is the
ideal generated by g(x) in the algebra of polynomials
modulo x” — 1. Henceforth, all polynomial operations will
be modulo x” — 1. Any code word can be written i(x)g(x),
where i(x) represents information by some method of
encoding. Suppose e(x) is a polynomial representing an
error in transmission. Without loss of generality, we can
find s such that e(x) = x°f(x), and f(x) is relatively prime
to x. Then the received vector r(x) is given by:

r(x) = i(x)g(x) + ex) = i(x)glx) + x"f(x). (1)

233

IBM JOURNAL * JULY 1965

234

We will define certain ratios, R;;, that are error-position
invariant, and use these to detect error patterns, f(x),
only. Once the pattern has been determined, the location(s)
can be determined easily. Define:

mi
R;; = ",,,—(IBQ : 2
r™(8;)

Substituting (1), and noting that g(3,) = 0:

C_BTTB) _aTE) B g
CTEG) T G 6

We see that R,; is a function only of the pattern j(x), and
not of the position s.

If °4B;) = 0, we write that R;; = . In decoding
schemes, this condition must be detected and « treated
as though it were an element of the finite field.

In our system, we will carry an extra bit with each ratio,
which is 1, iff [if and only if], the element represented is
infinity. In the arithmetic, the properties usually attributed
to o, such as a 4 ® = o, apply here as well.

Theorem 1: Given the error pattern f(x), the location
may be found iff there is a set of B; such that f(8;) #~ 0 and
the least common multiple of the orders of these f3; is n.

Proof: r(8;) = Bif(8:), hence B; = r(8,)/f(B:) gives s
modulo the order of 8;. Over all elements in the subset,
the residues of s modulo the order of each 8; together
determine s modulo the L.C.M. of these orders. Since s
is restricted between 0 and » — 1, it is apparent that s is
unique.

For necessity, suppose that the L.C.M. of the orders of
all 8, for which f(8;) # 0 was L, and L < n. Then there
will certainly be some solution, s,, to the eguations
8: = r(8,)/(B;) treated as modular equations in s. It is
clear that s, + L is not congruent to s, mod n. But s, + L
must also satisfy all equations, so s, is not unique.

Theorem 2: If 3; = (32, then Ry, = R%,, and R,; = R},.

Proof :

R, = 1@ _ 176D
ToMe £

Likewise for R,; = R}..

Two field elements are said to be conjugate if they are
roots of the same irreducible polynomial with coefficients
in some ground field.” Specifically, we will call elements of
GF(g) conjugate if they are roots of the same irreducible
polynomial with coefficients in the binary field. If 8 is a root
of an irreducible polynomial, so are 8%, 8%, 8° etc., and these
are all the roots of that polynomial.' Hence, we have the
following corollary:

) _ e

7 (Bs)

Corollary 1: In any decoding procedure dependent on
R;;’s alone, it is unnecessary that the set of 3;’s include
more than one element from each irreducible polynomial.

J. D. ULLMAN

Proof: As in Theorem 2, we may easily show R;; = 1
if 8; and B; are conjugate and that, if R;; is known, R;;
can be directly calculated.

Theorem 3: The ratio R;; divides the set of polynomials
#(x) into equivalence classes which identify all f(x) for which
R;; takes on a fixed value. These classes have the same
multiplicative structure as the field elements whose values
R;; assumes.

Proof : If we identify f,(x) and f,(x) iff R,;(fi) = R::i(fs)
then surely:

a) fi(x) = f(x)

b) fi(x) = fo(x) implies f(x) = f(x)
0 filx) = fox) and f,(x) = fo(x) implies f,(x) = f(x).

Also, if f3(x) = f(x)f2(x),

5 (B _ BB
Rii(fs) = i = e i =
5 (B;) T (B (8))
As a result, it is never mandatory to store or calculate

ratios corresponding to any but irreducible polynomials,
as the rest could be computed by field multiplication.

R:;i(fOR:;(f2). (4)

3. The central theorem

We will first prove a simple lemma which is necessary in
the proof of Theorem 4, then state the central theorem,
Theorem 5, which tells us under what conditions the
values R,; are sufficient to realize the full error correcting
capabilities of the code.

Lemma 1: If « is primitive in GF(g) and 8 = «™, then
B is primitive iff there is a unique m-th root in GF(g) for
every element in the field.

Proof : Consider the homomorphism that sends a to a™.
Suppose o** and o go to the same element under the map-
ping. Then &®™ = o™, o *7* = 1and g%’ = 1.
If B is primitive, n divides (k; — k), but then o = o

Conversely, if 8 is not primitive, there is some (k; — k)
less than n such that 8*~** = 1. But then a** and o**
are distinct and their m-th powers go to the same element
&*™. This element does not have a unique m-th root.

The central theorem will follow almost directly from
the following theorem:

Theorem 4: Let g(x) have among the set of B;, one root
of each irreducible factor, and let f,(x) and fs(x) be two
errors with R;(f,) = Ry (f>) for all i. Suppose further that
H(BY) # 0, and B, is primitive in GF(q). Then f, and f,
cannot be distinguished by any decoding method.

Proof: We will show that there exist i,(x), is(x), and s
such that

i1(x)g(x) + x"fi(x) = i(x)gx) + fa(x) 5)
g@)i(x) + x)] = x"h(x) + f(x). (6)

To show Eq. (6) we simply show that there is some s
such that g(x) divides x°f1(x) 4+ f2(x).

We are given that

1B _ 28y

W L2 A 7
G AN @
for all i. Since (3, is primitive, we can find s such that

B = fZ(ﬁl)/fl(:Bl) or B;fl(ﬁl) + f2(51) = 0. (8)

We now wish to show:
5:f1(ﬁ1) + fz(ﬁi) =0 (9)

for all i, Equation (9) is certainly true if f,(8;) = 0 since,
from Eq (7), fl(.Bi) = 0 implies fg(ﬁ,’) = O. If fl(ﬂi) # O
then, from Egs. (7) and (8)

ome _ 1281 _ 12 (B)

= T = =, 10
@) U@ 1) (10
But,
@Y™ = @ = @)™ (1)
Hence,

nme _ | LB ™
B = [n(m)] : (12)

Since B3, is primitive, by Lemma 1 there is a unique m,-th
root, hence

(D)
=16 (13
and Eq. (9) is satisfied. Since x'f,(x) + f.(x) is annihilated
by a root of each irreducible factor of g(x), it must be
divisible by g(x) and the theorem is proven.

Theorem 5: If all 8;’s are primitive, then any two errors
which are distinguishable by any method are distinguishable
by examining their ratios R,;.

Proof: Let the errors f;(x) and f,(x) have all ratios
identical. If f,(3;) = O for all 8;, the same is true of f,(3,).
Hence g(x) divides f,(x) and f,(x) and neither is detectable.
If there is some §3; such that f;(8;) 7% 0, let 8; take the place
of 8, in Theorem 4. Then f,(x) and f,(x) are not distinguish-
able by any method since there are received vectors which
could have occurred by either error pattern.

Since {3; is primitive, Theorem 1 must apply, hence the
position can always be determined if not all f,(3;) are zero.
We mention also that the error patterns are determined
by a set of ratios Ry;, Ry;, +++ , R,; whenever f(3;) # 0.
It is not necessary to consider the whole triangular array
of ratios at any time. We also note that R;; and Rj;
determine R;; unless both are zero or both infinity.

4. Double error correction

The advantage of solving independently for position and
error pattern is that at each step there are fewer variables
than if the decoding took place all at once. This advantage

is especially important in the double error case, since,
eliminating position, we have only one unknown involved.
Banerji’ has proposed a procedure for decoding Bose-
Chaudhuri codes for which 8, = a, 8; = «*. He looks
at the function we call (1 + R,;) and notices that any
double error in a code of length » can be represented by
f(x) = x* 4+ 1 where £k < 1(n — 1). He then proposes
that the value of k£ be identified by the corresponding
value of (1 + Rs)).

We will show, first of all, that a double error is uniquely
determined by R.;, hence by (1 -+ Rs;). We will also show
that it is not necessary to store all the correspondences
between R,, and k. Let f(x) = X+ 1,n>k>0.
Then:

fo®) o™ 41
@)~ @ 1) (14

R, =

Lety = o. Sincey # 1,

I ol T i e 2 u |
R21 - (’Y+1)3_ "/2+1 s (15)
or
1
2 —_— —
'Y+1+R217+1—0, (16)

provided R, # 1; in that case a would be zero, from
Eq. (15), hence no double error could have an Ry of 1.
However, R,; = 1 does indicate a single error, and it is
good to check that a single error can be distinguished
from a double error by R,; alone.

The roots of Eq. (16) can be called v and ¥, since the
product of the roots is 1. If y = o, then v™* = "%
However, x* + 1 and x™™® 4- 1 represent the same
error pattern in a cyclic code of length » and so it is
sufficient to find either root of Eq. (16) to decode.

Theorem 6: Equation (16) has solutions for v in GF(q)
when R, takes on exactly one less than half the values of
elements in that field. If there is a solution in GF(q) for
R,, = R, then there is a solution in GF(q) for all R’s con-
Jugates.

Proof:4¥*+ 1 = 0 implies v = 1 since x* + 1 = 0 has
a double root x = 1. Hence, any v #* 1 determines an
R,, by Eq. (15). v = 0 determines R,; = 1, which cannot
be put in the form of Eq. (16). Hence, g — 2 elements
represent solutions to Eq. (16) for some R,;. Since the
roots come in pairs, determining the same R,,, there are
solutions for only (g/2) — 1 values of R,,.

Suppose v in GF(q) is a solution for Ry; = R.

1
1+ R

¥+ vy+1=0. (17

235

DECODING CYCLIC CODES

236

Squaring, we obtain

™) + 1—_:—Rz &) +1=0. (18)
Hence, v° is a solution of Eq. (16) in GF(q) for R,; = R®.
Likewise, for the rest of R’s conjugates. We can say, in
fact, that for a set of conjugate R’s their corresponding
solutions are themselves conjugates.

As a consequence, we can give the following modifica-
tion of the look-up procedure:

(1) Store one R from each set of conjugates and a corre-
sponding 7.

(2) Compare the computed R,; with each stored R; if a
match is found, read out that ~.

(3) If no match is found in (2), square each R and v ; repeat
the comparison.

@) If after log, ¢ — 1 squarings, no match has been
found, then there is no solution to Eq. (16).

We now give an over-all decoding procedure for the
double-error case:

(1) Compute the syndromes (), r{c”); if both are zero,
assume no error exists.

(2) If either is not zero, compute
R, = @) _ 1)
- 3 - 3 s
rl@
if R,y = 1, assume a single error has occurred at
location s where o’ = r(a).

(3) If Ry # 1, as computed in the previous step, perform
the look-up and comparison outlined above.

(4) If a solution v is found, then find s where
o’ = r(a)/y + 1.

(5) If a solution v is not found, say an error has been
detected.

An example will be given later and a system for imple-
menting the procedure will be shown.

5. Higher multiplicity of errors and bursts

In the case 8, = «, B, = o, we were able to show specif-
ically that the equations involved have a unique solution
and that the look-up mapping is one-to-one.

In the case of triple or higher order errors, or even
of double errors with syndromes corresponding to « and
o with k > 3, it is hard to prove the uniqueness of solu-
tions for the error patterns. However, if we know that
the code may be decoded by any method—for example,
the Peterson procedure*—and Theorem 5 is satisfied, we
have a round-about proof that there will be a unique
set of ratios corresponding to any error in the correctable
class. We can generalize Theorem 6.

J. b. ULLMAN

Theorem 7: Let f(x) = 1 + Z,, x™* and v, = o™
Suppose that the v, satisfy, for all i and j, the relation:

mm+;ﬁw=u+;ﬁw. (19)

Then if R;; is squared, the substitution of v2 for each v,
is a solution to Eq. (19).

Proof : Square Eq. (19). Note that f(3;) = 1 + Z,, it

Hence, we need store only one representative from a set
of R;;’s and corresponding v,’s.

We note that in general, if f(3,) # 0 it is sufficient to
decode using only the R;,’s. For those f(x)’s with (3,) = 0,
f(B=) # 0, we use the R,;’s etc. In general, we may not
need to compute all R;;’s. For example, it is possible
that no error we are trying to decode has f(8,) and f(8,)
simultaneously zero. In that case it would be sufficient to
compute the R,;’s and R,,’s.

The storage required becomes large very quickly. As a
lower bound, we assume that in GF(g), squaring a set of
R;;’s produces log, ¢ distinct sets. Since x* = x, no more
than log, g distinct sets may be produced. The number of
distinct e-tuple error patterns, remembering that each
pattern can be represented by e polynomials of degree
n— 1orless, is

(n — 1)
(n —e)lel

We note that each storage represents (e — 1) field
elements, of log, g bits; hence, the number of solutions
to be stored (see Fig. 1) is,

(n — 1)

>
§=2 (n —e)le log, q’ (20)
and the bit storage is
_—) —
8, > (n D=1 (1)

(n —e)e!

The redundancy which the Bose-Chaudhuri codes re-
quire to correct a given multiplicity of errors is enough
so that many sets of ratios do not correspond to an error in
the class of known correctable errors. We can assign to
a set the error in its equivalence class having the greatest
probability of occurence. Unfortunately, there seems to be
no way of telling how much additional redundancy is
necessary to correct additional error patterns such as
bursts. In practice, the burst-length we can correct de-
pends on which 8 we choose, for if we wish to correct
a specified set of errors, we need a unique identification
of error by ratio set.

However, in the burst case, if we have a set of 8, suffi-
cient to correct bursts of specified length, we can use
Theorem 3 to advantage and reduce the storage. We
select a set of small degree polynomials, and a set of

107

108

10°

10*

1000

100

10

(a)

NUMBER OF SOLUTIONS STORED

{ | { 1 | 1 1
7 15 31 63 127 255 511 1023 2047 4095

CODE LENGTH IN BITS

107

10°

10°

10*

1000

100

10,

(b)

BITS STORED

1 1 1] 1 1 1 |
7 15 31 63 127 255 511 1023 2047 4095

CODE LENGTH IN BITS

Figure 1 Storage requirements and their relation to code length in bits: a) number of solutions stored; b) bits stored.

bursts whose ratios are stored. The bursts are successively
multiplied by each of the small degree polynomials, while
the ratios are multiplied by the ratios of the small poly-
nomial.

The number of bits stored is reduced, because if all
bursts of degree b are to be corrected, and the small
polynomials are of degree d or less, every burst of degree
(b — d) or less generates another burst in the class for
each small polynomial chosen.

There is no procedure known to the author whereby a
minimal number of bursts can be selected to generate all
bursts of length 5. The following procedure would seem
to produce a reasonable result, for the case where the
set of small polynomials is that of all polynomials of
degree d or less and none of higher degree.

For degree i = (n — 1) down to i = (b — d) we eliminate
all polynomials of degree higher than i that are the product
of a polynomial of degree i and one of degree less than 4.
Suppose that a polynomial f(x) of degree j > i is elimi-
nated by g(x) of degree i, and that previously, A(x) of
degree & > j had been eliminated on the strength of

f(x)’s presence. Then A(x)/g(x) = h(x)/f(x) X:{(x)/g(x)
is a polynomial of degree less than d, and so g(x) generates
h(x). Thus, every burst of degree (b — d) or greater is
either selected or generated by the product of a stored
burst and a polynomial of degree d or less.

When i is less than (b — d) we no longer have the
assurance that h(x)/g(x) is of degree less than d, and so
cannot continue with the procedure. We can instead
eliminate polynomials only if they are not the only way
to generate some polynomial of degree higher than (i +).

There is no guarantee that this procedure produces an
optimal selection. However, we note that the only bursts
of degree b that are not eliminated are those that have
no factor of degree d or less. These polynomials could
could not be eliminated by any scheme, and so the number
of bursts of degree b is minimum. Since the number of
bursts of length b is equal to the number of bursts of all
lower degrees, we have an indication that the procedure
is good.

Note that this procedure concerns itself with bursts
only, and does not take into account that some “bursts”

237

DECODING CYCLIC CODES

238

R I O R

FA FA FA FA FA

G |s €2 lsz €3 Lsa C4 154 Cs 155

Figure 2 The squaring device diagrammed.

can be decoded as random errors. If the code is intended
to correct bursts and random errors, some burst storage
may be saved.

6. An example

We will consider an example of a double-error correcting
code and “design” the decoder involved. The system is
required to perform several field additions, multiplications,
and exponentiations; so, the method by which we repre-
sent the field will to a large extent determine the complexity
of the circuitry. One common method is to generate the
field GF(g) in terms of powers of a root of a polynomial
over the binary field, which is log, g-th degree, primitive
and irreducible. In this case, addition is performed by
component-wise modulo 2 addition, but multiplication is
complex.

For our purposes, it is simpler to represent the element
o* by a binary representation of k. All zeros will represent
the field element zero, and all ones will represent «”, the
field element unity. The value o will be denoted by a
special bit.

Squaring becomes simple, especially, as it is merely
a cyclic shift to the left, as is shown in Fig. 2, Multiplica-
tion in the field becomes a cyclic addition, as is shown
in Fig. 3. Unfortunately, addition must be done using
complex logic, but there is not too much addition to be
performed; when necessary, we can convert to the first
notation mentioned, add by modulo 2 addition, and
reconvert.

Our example will be that of a (31, 21) Bose-Chaudhuri
double-error correcting code. We generate GF(2°) using
asa,arootof x>+ xX* 4+ 1=0.Let B = a, B, = a°.
Table 1 gives the correspondence between &k and Ry, if
v = o, as determined by Eq. (16). Note that the first five
entries in each column are conjugate; likewise, the second
five and the last five. Every error is represented either in
the column headed k or in that headed (31 — k). We will
generate all necessary correction data by storing the fact
that R,, = o corresponds to k = 1, Ry, = o corresponds
to k = 3 and Ry = «'® corresponds to k = 5.

J. D. ULLMAN

1 INFINITY BIT
==] == ELEMENT = o0

Figure 3 The multiplier diagrammed.

Table 1 The correspondence between k and Rz, See text at
left and Eq. (16).

Table 1

k2 (31— k) i

1 30 6
2 29 12
4 27 24
8 23 17
16 15 3
3 28 22
6 25 13
12 19 26
24 7 21
17 14 1
5 26 18
10 21 5
20 1 10
9 22 20
18 13 9

s Where f(x) = x* + 1

b Where Ry = of

Since performing the squaring operations would re-
quire hardware, we will avoid that task as much as possible.
Instead of squaring the stored R,,’s we will square the
calculated one only, and take square roots of the stored
solution v. The square root operation corresponds to a
cyclic right shift, if squaring is a cyclic left shift.

Figure 4 represents the system to decode double errors.
In it the clock outputs separately accomplish the following:

e Output A resets counter, solution storage register, and
the flip-flop which releases the data from the buffer.

e Qutput B delivers, at the appropriate time, pulses that
cycle the squarers and counts to make sure that de-
tection occurs after four such cycles.

¢ Output C releases, at the maximum time to detect the
error, the output to the buffer by originating a level
signal.

e Output D reduces the counter by one for each bit read
out of the buffer.

The operation of the system is as follows:

(1) Input is read into a buffer, and its syndromes calcu-
lated.

Figure 4 The double error corrector. The notation is as
tabulated below:

AND GATE sQ FIELD SQUARING

OR GATE SQ. RT.} FIELD SQUARE ROOT

SYNDROME (POWER SUM)
SUM MOD 2 GATE SYND. CALCULATOR

FLIP FLOP COUNT| COUNTER
BUNDLE OF LEADS TRANSMITTING
A FIELD ELEMENT

0=“ GATE (=1 IF ATTACHED REGISTER
HOLDS “A”)

AL BT L

-+ | FIELD ADDITION

INHIBIT LEAD

X FIELD MULTIPLICATION

FIELD DIVISION

CUBE | FIELD CUBING

IEEUIEeUC

(2) The squaring cycle counter and the solution storage
are reset.

(3) If it is detected that both syndromes are zero, both
counters for correction are inhibited and the system
awaits the C signal from the clock.

(4 Otherwise, calculate Ry;; if the condition R,; = 1 is
detected, inhibit one counter, loading r(«) into the
other.

(5) If R,; # 1, load it into the squarer. At this time, five
pulses from Output B will cycle R,; through all its
conjugates, simultaneously using the square root
operations to calculate the solution #.

(6) When a match is found, the corresponding v is gated
into a unit which calculates f(y) = v -+ 1, and s where
o' = r(y)/{(y). Note that s is the representation for
a’, so that o is loaded directly into one counter. The
other counter is loaded with va’.

(7) If no match is found, an error detect signal is given.

A [8 [c]D
INPUT SUFFER | — \ /T OUTPUT
1
-0
—» SYND.
rla)
L o CUBE
syno. K >
e L):—_\/
DETECT
ERROR
- =1
RZI
-0 —
sQ
COUNT
—ab | -a22 |- al®
[T
\ |
COUNT = 4
i——ERT‘I l—-[so. RT.I J4‘5(). RT.l J—l X |-
r=a v=ad r=a5

RESET

239

DECODING CYCLIC CODES

240

(8) Otherwise, level signal C begins shifting data out of
the buffer. If the count on either counter is one, the
bit is corrected. Pulse D reduces the count by one after
each bit that emerges from the buffer. Note that o’
is represented by all 1's and so that case must be
detected separately.

7. Conclusions

The method presented offers two advantages, speed and
the ability to handle burst and independent errors, or
burst errors alone. The disadvantage is that storage goes
up exponentially with either the number of independent
errors, or the length of burst.

For the independent errors, the speed is primarily
determined by the number of times the ratios must be
squared to insure a match, in other words, by the logarithm
of the code length. For burst errors, speed depends on
how many small polynomials are used. As a result, it
should be possible to construct a decoder that operates
in a little more time than it takes to calculate the syn-
dromes. The actual time is determined by what sort of
arithmetic units one is prepared to use.

A lower bound on the storage is given by Eq. (21); it
is seen that for large numbers of errors, the requirements
are too great to make this a feasible method.

When storage is small, this method uses quantities of
equipment commensurate with or less than that employed
with other methods**'® and operates at higher speeds.
Also, the storage required is an order of magnitude less
than that of Banerji’ in the double-error case.

It would appear that for many cases involving short
codes or small numbers of errors the method described
will offer distinct advantages.

J. D. ULLMAN

Acknowledgement

The author thanks Dr. R. T. Chien for his many helpful
comments and suggestions.

References

1. W. W. Peterson, Error Correcting Codes, John Wiley and
Sons, New York, 1961.

2. B. L. Van Der Waerden, Modern Algebra, Fredrick Ungar
Publishing Co., 1949.

3. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of
Error Correcting Binary Group Codes,” Information and
Control, 3, 68-79, 1960.

4. W. W. Peterson, “Encoding and FError-Correction Proce-
dures for the Bose-Chaudhuri Codes,” IRE Transactions
on Information Theory, IT-6, 459-70, 1960.

5. N. Zierler and D. Gorenstein, “A Class of Error Correcting
Codes in pm Symbols,” Journal of the Society for Industrial
and Applied Mathematics 9, 2, pp. 207-14.

6. C. M. Melas, “A Cyclic Code for Double Error Correction™
IBM Journal 4, 3 (1960).

7. R. B. Banerji, “A Decoding Procedure for Double Error
Correcting Bose-Ray-Chaudhuri Codes,” Proceedings of
IRE 49, (1961).

8. R. T. Chien, “A Cyclic Decoder for Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Transactions on Information
Theory IT-10, 357-62, 1964.

9. T. Kasami, “A Decoding Procedure for Multiple Error
Correcting Cyclic Codes,” IEEE Transactions on Information
Theory IT-10, pp. 134-8, (1964).

10. J. E. Meggitt, “Error Correcting Codes for Correcting
Bursts of Errors,” IBM Journal 4, 1 (1960).

Received March 19, 1965

