
J. D. Ullman" 

Decoding of Cyclic Codes Using 
Position  Invariant  Functions 

Abstract: Ratios that are sufficient to detect  classes  of error patterns in  cyclic  codes are discussed.  Systematic  procedures for 
the correction of Bose-Chaudhuri  codes are given; it is shown that these are quite  fast  but practical only for small  numbers 
of random errors. It is  seen that there is the capability of simultaneous  independent  and burst error correction. 

1. Introduction 

An outstanding  problem  in coding theory is that of de- 
signing decoding devices which are  both simple and fast. 
It is  made interesting and troublesome by the fact that, 
generally, speed is achieved only through  the acceptance 
of a large memory. Although  various techniques have been 
found  that soften  this dilemma by reducing the  amount 
of information that must be stored,  they usually do so at 
the cost of some increase in decoding time. The  method 
to be described here is intended to achieve a similar purpose 
for cyclic codes. It operates by dividing the decoding 
problem into a first part, in which the  error  pattern is 
found,  then into a second, in which the position of the 
error is established. 

We will show that  the  method allows a significant re- 
duction in the number of bits that must be stored  without 
greatly increasing the decoding time. It must be observed, 
however, that  the method  does not give the designer an 
indefinite freedom to accept slightly decreased speed as 
a fair exchange for a reduction  in  storage requirements. 
Rather,  for long  code lengths or large numbers of errors 
the storage requirements indeed become prohibitively 
large. 

From  the received data we will calculate the  error 
syndrome, and in part 2 we will see that it is possible to 
calculate, from  the syndrome, certain functions which de- 
pend only on  the  error pattern. Part 3 gives a sufficient 
condition for consideration of these functions to realize 
the full error correcting capability of the code involved. 
In part 4 we will treat  the special case of double-error 
correcting Bose-Chaudhuri codes, and in part 5 will 
extend these results to triple  errors, or a higher multi- 

plicity of errors. Finally, we will consider burst error cor- 
rection and  the simultaneous correction of bursts and 
random errors. 

The necessary algebra can be found in Peterson' or 
Van Der Waerden.' A discussion of Bose-Chaudhuri codes 
can be found in References (1) and (3), and of general 
decoding methods for these codes in Petersonlf4  and 
Zierler and Gorenstein? The special case of double-error 
correcting Bose-Chaudhuri codes has been considered by 
Melas; and Banerji.? Our method is actually an improve- 
ment and a generalization beyond Banerji's method. Other 
proposals for  the decoding of Bose-Chaudhuri  codes in- 
clude  those of Chien' and Kasami.' The detection of 
burst errors by logical circuitry was proposed by Meggitt." 

2. Definitions and preliminaries 

Let a be a primitive element of the finite field with q 
elements, GF(q). We suppose that q is a power of two. 
Let n be q - 1, the  order of the multiplicative group  and 
the length of the code. Consider a subset of elements in 
that field with elements pi, 1 5 i 5 N. Define mi by 
pi = am'. Let g(x) be the polynomial of least degree with 
coefficients in GF(2) containing all p i  as roots. 

The polynomial g(x) defines a cyclic code which is  the 
ideal generated by g(x) in the algebra of polynomials 
modulo xn - 1. Henceforth,  all  polynomial  operations will 
be modulo X" - 1. Any code  word can be written i(x)g(x), 
where i(x) represents information  by  some method of 
encoding. Suppose e(x) is a polynomial representing an 
error in transmission. Without loss of generality, we can 
find s such that e(x) = x"f(x), and f(x) is relatively prime 
to x. Then the received vector r(x)  is given by: 

r(x1 = i(x)g(x> + e(.) = i(x)g(x> + x"f(x1.  (1) 233 

* The  author  is  presently  a  candidate  for the Ph.D.  in the Department 
of Electrical  Engineering,  Princeton  University.  He  spent  the  summer 
of 1964 at  the I B M  Thomas J. Watson Research Center, Yorktown 
Heights, N. Y .  

IBM JOURNAL - JULY 1965 



We will  define  certain ratios, Ri i ,  that are error-position 
invariant, and use  these to detect error patterns, f(x), 
only.  Once the pattern has been  determined, the location(s) 
can  be  determined  easily.  Define: 

Substituting (I), and noting that g&) = 0: 

We  see that Rii  is a function  only of the pattern f(x), and 
not of the position s. 

If f"'Ui) = 0, we write that Rii = a. In decoding 
schemes, this condition  must  be  detected and m treated 
as though it were an element of the finite  field. 

In our system, we  will carry an extra bit  with  each ratio, 
which  is 1, iff  [if and only ifl, the element  represented is 
infinity. In the arithmetic, the properties  usually attributed 
to , such  as a + a = m , apply  here as well. 

Theorem 1: Given the error pattern  f(x), the location 
may be found iff there is  a  set of pi such that fUi) # 0 and 
the feast common multiple of the orders of these p i  is n. 

Proof: r U i )  = p:fGi), hence = rWi)/fGi)  gives s 
modulo the order of pi. Over all elements  in the subset, 
the residues of s modulo the order of  each pi together 
determine s modulo the L.C.M. of these  orders.  Since s 
is restricted between 0 and n - 1, it is apparent that s is 
unique. 

For necessity,  suppose that  the L.C.M.  of the orders of 
all pi for which fWi)  # 0 was L, and L < n. Then there 
will certainly  be  some  solution, so, to  the equations 
8: = rGi) / fWi)  treated as modular  equations  in s. It is 
clear that so + L is not congruent to so mod n. But so + L 
must  also  satisfy all equations, so so is not unique. 

Theorem 2: If pi = &, then Ri ,  = R:k, and Rki = R2i. 
Proof: 

Likewise for Rki = Rti. 
Two  field  elements are said to be  conjugate if they are 

roots of the same  irreducible  polynomial  with coefficients 
in  some  ground field.'  Specifically,  we  will call elements  of 
GF(q) conjugate if they are roots of the same  irreducible 
polynomial  with coefficients  in the binary field. If /3 is a root 
of an  irreducible  polynomial, so are p2, p", p8 etc., and these 
are all the roots of that polynomial.'  Hence, we have the 
following  corollary: 

Corollary 1:  In any  decoding  procedure  dependent  on 
Rii's alone, it is  unnecessary that the set of pi's include 

234 more than one  element  from  each  irreducible  polynomial. 

J. D. ULLMAN 

Proof: As in  Theorem 2, we  may  easily  show Rii = 1 
if pi and pi are conjugate and that, if Rik is  known, Rik 
can  be  directly  calculated. 

Theorem 3: The ratio Rii  divides the set of polynomials 
f(x) into equivalence classes which identify all f(x) for which 
R i i  takes on a fixed value. These classes have the same 
multiplicative structure as the field elements whose values 
R i i  assumes. 

Proof: If we identify fl(x) and fz(x) iff Rii(f l )  = Rii ( f z )  
then surely : 

a) f d x )  = f d x )  
b) f d x )  E f z ( x )  implies f Z ( 4  = fdx) 
c) f d x )  E J Z ( 4  and f Z ( 4  = f 3 ( 4  implies f l ( 4  3 Mx).  

Also,  if f3(x)  = f l (x)fz(x) ,  

As a result, it is  never mandatory to store or calculate 
ratios corresponding to any but irreducible  polynomials, 
as the rest  could be computed by  field multiplication. 

3. The central theorem 

We  will  first prove a simple  lemma  which is necessary in 
the proof of Theorem 4, then state the central theorem, 
Theorem 5, which  tells us under  what  conditions the 
values Rii  are sufficient to realize the full error correcting 
capabilities of the code. 

Lemma I :  If a is primitive in GF(q) and = am, then 
/3 is  primitive iff there is a unique m-th root in GF(q) for 
every  element  in the field. 

Proof: Consider the homomorphism that sends a to am. 
Suppose akx and ak2 go to the same  element under the map- 

1. 
If is  primitive, n divides (k ,  - kz), but then ak' = aka. 

Conversely, if /3 is not primitive, there is  some (k ,  - kz) 
less than n such that / 3 c k 1 - k a )  = 1. But then akl and aka 
are distinct and their m-th powers  go to the same  element 

. This  element  does not have a unique m-th root. 
The central theorem  will follow almost  directly  from 

ping.  Then a k ~ m  = a k s m  m ( k ~ - k * )  = 1 and p (kx-kn) = ¶ a  

the following  theorem: 

Theorem 4 :  Let  g(x) have among the set of pi, one root 
of each irreducible factor, and let f l (x)  and fz (x)  be two 
errors  with Ri,(f,) = Ril(fz) for all i. Suppose further that 
flW1) # 0, and PI is primitive in GF(q). Then fl and f a  
cannot be distinguished by any decoding method. 

Proof: We will  show that there exist il(x),  &(x), and s 
such that 

i l ( x > d x )  + x " f l ( x )  = iz(x)g(x) + f i b )  (5 )  

dX)Ili l(X) + i2(41 = X"fl(X) + f z (x) .  (6) 
To show  Eq. (6) we simply  show that there is some s 

such that g(x) divides x"fl(x)  + fz(x) .  



We are given that 

for all i. Since 0, is primitive, we  can  find s such that 

Pi = f&%>/fl(PJ or K f l ( P 1 )  + f2(P1) = 0. (8) 
We  now  wish to show: 

P9fl(Pi) + f z ( P 0  = 0 (9) 

for all i. Equation (9) is  certainly true if flWi) = 0 since, 
from Eq. (7), flui) = 0 implies f,Wi) = 0. If flui) # 0 
then, from  Eqs. (7) and (8) 

Hence, 

Since PI is  primitive, by Lemma 1 there  is a unique  ml-th 
root, hence 

and Eq. (9) is  satisfied.  Since x*f2(x) + fl(x) is  annihilated 
by a root of each  irreducible  factor of g(x), it must  be 
divisible by g(x) and the theorem  is  proven. 

Theorem 5: Zf all pi's are primitive, then any two  errors 
which are distinguishable by any  method  are distinguishable 
by examining their ratios R i i .  

Proof: Let the errors f l ( x )  and f,(x) have all ratios 
identical. If flQi) = 0 for all pi, the same  is true of f2Wi). 
Hence g(x) divides fl(x) and f2(x) and neither  is  detectable. 
If there  is  some pi such that fl@,) # 0, let pi take the place 
of p1 in  Theorem 4. Then fl(x) and fz(x) are not distinguish- 
able by any  method  since there are received  vectors  which 
could  have  occurred by either error pattern. 

Since pi is  primitive,  Theorem 1 must apply, hence the 
position  can  always be determined if not all flWi) are zero. 
We mention  also that the error patterns are determined 
by a set of ratios RIi ,   Rzi ,  , Rni whenever fQi) # 0. 
It is not necessary to consider the whole triangular array 
of ratios at any  time. We also note that R i j  and Rik 
determine Rik unless both are zero or both infinity. 

4. Double error correction 

The advantage of solving  independently for position and 
error pattern is that  at each step there are fewer variables 
than if the decoding  took  place all at once.  This  advantage 

is  especially important in the double error case,  since, 
eliminating  position, we have  only  one  unknown  involved. 
Banerji7  has  proposed a procedure for decoding  Bose- 
Chaudhuri codes for which p1 = a, p2 = a3. He looks 
at the function we call (1 + R,,) and notices that any 
double error in a code of length n can  be  represented by 
f(x) = x' + 1 where k 5 $(n - 1). He then  proposes 
that the value of k be  identified by the corresponding 
value of (1 + R,J. 

We will  show,  first of all, that a double error is  uniquely 
determined by R,,, hence by (1 + RZl). We  will also  show 
that  it is not necessary to store all the correspondences 
between R,, and k .  Let f(x) = xk + 1, n > k > 0. 
Then : 

Let y = ab. Since y # I, 

or 

provided Rzl # 1 ; in that case a would  be  zero, from 
Eq.  (15),  hence no double error could  have an RZ1 of 1. 
However, R,, = 1 does  indicate a single error, and it is 
good to check that a single error can  be  distinguished 
from a double error by Rzl alone. 

The roots of Eq.  (16)  can  be  called y and y-', since the 
product of the roots is 1. If y = ak, then y-l = a . 
However, X' + 1 and + 1 represent the same 
error pattern in a cyclic code of length n and so it is 
sufficient to find  either root of Eq. (16) to decode. 

Theorem 6: Equation (16) has solutions for y in GF(q) 
when Rzl takes on exactly one less than half the values of 
elements in that field. Zf there is a solution in GF(q) for 
Rzl = R, then there is  a solution in GF(q) for all R's con- 
jugates. 

Proof: y2 + 1 = 0 implies y = 1 since x' + 1 = 0 has 
a double root x = 1. Hence,  any y # 1 determines an 
R,, by  Eq. (15). y = 0 determines R,, = 1, which cannot 
be put in the form of Eq.  (16).  Hence, q - 2 elements 
represent  solutions to Eq. (16) for some RZ1. Since the 
roots come in pairs,  determining the same RZ1,  there are 
solutions for only  (q/2) - 1 values of Rzl .  

n- k 

Suppose y in GF(q) is a solution for R,, = R .  

235 

DECODING CYCLIC CODES 



Squaring, we obtain 

Hence, y2 is a solution of Eq. (16) in GF(q) for R,, = R2. 
Likewise, for the rest of R’s conjugates. We can  say,  in 
fact, that for a set of conjugate R’s their corresponding 
solutions are themselves  conjugates. 

As a consequence, we can  give the following  modifica- 
tion of the look-up  procedure: 

(1) Store one R from  each  set of conjugates and a corre- 

(2) Compare the computed RZ1 with  each stored R ;  if a 

(3) If no match is found in (2), square each R and y ; repeat 

(4) If after log, q - 1 squarings, no match has been 

sponding y. 

match  is found, read out that y. 

the comparison. 

found, then there is no solution to Eq. (16). 

We  now  give an over-all  decoding  procedure for the 
double-error  case: 

(1) Compute the syndromes r(a), r(a3); if both are zero, 
assume no error exists. 

(2) If either  is not zero,  compute 

if Rzl = 1, assume a single error has  occurred at 
location s where a* = r(a). 

(3) If Rzl # 1, as computed  in the previous  step,  perform 
the look-up and comparison  outlined  above. 

(4) If a solution y is found, then  find s where 
as = r(Q!)/y + 1. 

( 5 )  If a solution y is not found, say an error has been 
detected. 

An example  will  be  given later and a system for imple- 
menting the procedure will  be  shown. 

5. Higher multiplicity of errors and bursts 

In the case 0, = a, 6, = a3, we  were able to show  specif- 
ically that the equations involved  have a unique solution 
and that the look-up  mapping is one-to-one. 

In the case  of triple or higher order errors, or even 
of double errors with  syndromes  corresponding to Q! and 
a‘ with k > 3, it is hard to prove the uniqueness of solu- 
tions for the error patterns. However, if  we know that 
the code may  be  decoded by any method-for  example, 
the Peterson procedure4-and Theorem 5 is  satisfied, we 
have a round-about proof that there will  be a unique 
set of ratios corresponding to any error in the correctable 

236 class. We can  generalize  Theorem 6. 

J. D. ULLMAN 

Theorem 7: Let f(x) = 1 + x p k  and y k  = a*’. 
Suppose that the 7 k  satisfy, for all i and j ,  the  relation: 

&(l + 7:i)mi = (1 + yyi)mi, (19) 
k k 

Then  if Rii  is  squared,  the  substitution of y i  for each yb 
is a solution  to Eq. (19). 

Proof: Square Eq. (19). Note that fVi) = 1 + ck 7:’. 
Hence, we need store only  one  representative  from a set 

of Rii’s and corresponding yL’s. 
We note that in general, if f(pl) # 0 it is  sufficient to 

decode  using  only the Ril’s.  For those f(x)’s with f(pl) = 0, 
f@,) # 0, we use the RiZ’s etc. In general, we may not 
need to compute all Rii’s. For example, it is  possible 
that no error we are trying to decode  has f(pl) and ioz) 
simultaneously  zero. In that case it would  be  sufficient to 
compute the Ril’s and R i 2 k  

The storage  required becomes large very  quickly. As a 
lower bound, we assume that in GF(q), squaring a set of 
Rii’s produces  log, q distinct  sets. Since x‘ = x, no more 
than log, q distinct  sets may  be  produced. The number of 
distinct  e-tuple error patterns, remembering that each 
pattern can  be  represented by e polynomials of degree 
n - 1 or less,  is 

( n  - I)! 
(n  - e)!  e! 

We note that each storage represents  (e - 1) field 
elements, of  log, q bits; hence, the number of solutions 
to be stored (see  Fig. 1) is, 

S 2  ( n  - I)! 
(n - e)! e!  log, q ’ 

and the bit  storage is 

S b  2 ( n  - I)! (e - 1) 
(n - e)!  e! 

The redundancy which the Bose-Chaudhuri  codes  re- 
quire to correct a given multiplicity of errors is  enough 
so that many  sets  of ratios do  not correspond to an error in 
the class of known correctable  errors. We can  assign to 
a set the error in its  equivalence  class  having the greatest 
probability of occurence. Unfortunately, there seems to be 
no way  of telling  how  much additional redundancy is 
necessary to correct additional error patterns such as 
bursts. In practice, the burst-length we can  correct  de- 
pends on which /3 we choose, for if we  wish to correct 
a specified set of errors, we need a unique identification 
of error by ratio set. 

However,  in the burst  case, if  we have a set of pi suffi- 
cient to correct  bursts of specified  length, we can  use 
Theorem 3 to advantage and reduce the storage. We 
select a set of small  degree  polynomials, and a set of 



ICODE LENGTH IN BITS 

10’ 

1 06 

10’ 

104 

l0OC 

100 

10 

s 
e 
2 
m 1  - 

0)  

I I I I I I I I 
15 31 63 127 255 511 1023 2047 40! 

ODE LENGTH IN BITS 

Figure 1 Storage requirements  and  their relation to code length in bits: a)  number of solutions stored; b)  bits stored. 

bursts whose ratios are stored. The bursts are successively 
multiplied by each of the  small degree polynomials, while 
the ratios  are multiplied by the ratios of the small poly- 
nomial. 

The number of bits stored is reduced, because if all 
bursts of degree b are to be corrected, and  the small 
polynomials are of  degree d or less,  every burst of degree 
(b - d) or less generates another  burst in the class for 
each small polynomial chosen. 

There is no procedure known to the author whereby a 
minimal number of bursts can be selected to generate all 
bursts of length b. The following procedure would seem 
to produce a reasonable result, for the case where the 
set of small polynomials is that of all polynomials of 
degree d or less and  none of higher degree. 

For degree i = (n - 1) down to i = (b - d) we eliminate 
all polynomials of degree higher than i that  are  the product 
of a polynomial of degree i and one of degree less than d. 
Suppose that a polynomial f(x) of degree j > i is elimi- 
nated by g(x) of degree i, and  that previously, h(x) of 
degree k > j had been eliminated on  the strength of 

f(x)’s presence. Then h(x)/g(x) = h(x) / f (x )   X i j (x ) /g (x )  
is a polynomial of degree less than d, and so g(x)  generates 
h(x). Thus, every burst of degree (b - d) or greater is 
either selected or generated by the product of a stored 
burst and a polynomial of degree d or less. 

When i is less than (b - d) we no longer have the 
assurance that h(x)/g(x)  is of degree less than d, and so 
cannot continue with the procedure. We can instead 
eliminate polynomials only if they are  not the only way 
to generate some polynomial of degree higher than (i + 6). 

There is no guarantee that this procedure produces an 
optimal selection. However, we note that the only bursts 
of degree b that are not eliminated are those that have 
no factor of degree d or less. These polynomials could 
could not be eliminated by any scheme, and so the number 
of bursts of degree b is minimum. Since the  number of 
bursts of length b is equal  to  the number of bursts of all 
lower  degrees, we have an indication that the  procedure 
is good. 

Note that this procedure concerns itself with bursts 
only, and does not take into account that some “bursts” 237 

DECODING  CYCLIC  CODES 



INFINITY BIT 
INFINITY BIT 
= 1 - ELEMENT = m 

Figure 2 The squaring device  diagrammed. 

can  be  decoded as random errors. If the code  is  intended 
to correct bursts and random errors, some burst storage 
may be saved. 

6. An example 

We  will consider an example of a double-error  correcting 
code and “design” the decoder  involved. The system is 
required to perform  several field additions, multiplications, 
and exponentiations; so, the method by  which  we repre- 
sent the field  will to a large  extent  determine the complexity 
of the circuitry.  One  common  method  is to generate the 
field GF(q) in  terms of powers of a root of a polynomial 
over the binary  field,  which  is  log,  q-th  degree,  primitive 
and irreducible. In this case, addition is  performed by 
component-wise  modulo 2 addition, but multiplication  is 
complex. 

For our purposes, it is simpler to represent  the  element 
a’ by a binary  representation of k. All  zeros  will  represent 
the field  element  zero, and all ones  will  represent a”, the 
field  element  unity. The value 00 will  be denoted by a 
special  bit. 

Squaring becomes  simple,  especially, as it is  merely 
a cyclic shift to the left,  as  is  shown in Fig. 2. Multiplica- 
tion  in the field  becomes a cyclic addition, as is shown 
in  Fig. 3. Unfortunately, addition must  be  done  using 
complex  logic, but there is not too much addition to be 
performed; when  necessary,  we can  convert to the first 
notation mentioned, add by modulo 2 addition, and 
reconvert. 

Our  example  will  be that of a (31,  21) Bose-Chaudhuri 
double-error correcting  code. We generate  GF(Z5)  using 
as a, a root of x5 + x’ + 1 = 0. Let p1 = a, p2 = a3. 
Table 1 gives the correspondence between k and RZ1, if 
y = ak, as determined by Eq. (16). Note that the first  five 
entries in each  column are conjugate; likewise, the second 
five and the last five.  Every error is  represented  either in 
the column  headed k or in that headed (31 - k). We will 
generate all necessary  correction data by storing the fact 
that Rzl = a‘ corresponds to k = 1, Rzl = a2’ corresponds 

238 to k = 3 and RZ1 = CY corresponds to k = 5. 18 

I I 

Figure 3 The  multiplier  diagrammed. 

Table 1 The  correspondence  between k and Rn. See  text at 
left and Eq. (16). 

Table 1 

ks (31 - k) ib 

1 30 6 
2  29 12 
4 27  24 
8 23  17 

16 15 3 

3 28  22 
6 25 13 

12 19 26 
24 7 21 
17  14  11 

5 26 18 
10  21 5 
20 11 10 
9 22 20 

18 13 9 

a Where f(x) = xk  + 1 
Where Rzl = ai 

Since  performing the squaring operations would  re- 
quire  hardware, we  will avoid that task  as much  as  possible. 
Instead of squaring the stored RZ1k we will square the 
calculated  one  only, and take square roots of the stored 
solution y. The square root operation corresponds to a 
cyclic right shift, if squaring is a cyclic left  shift. 

Figure 4 represents the system to decode  double errors. 
In it the clock outputs separately  accomplish the following: 

Output A resets counter, solution storage register, and 
the flip-flop  which  releases the data from the buffer. 

Output B delivers, at the appropriate time,  pulses that 
cycle the squarers and counts to make sure that de- 
tection  occurs  after four such  cycles. 

Output C releases, at the maximum  time to detect the 
error, the output to the buffer  by originating a level 
signal. 

Output D reduces the counter by one for each  bit read 
out of the buffer. 

The operation of the system  is  as  follows: 

(1) Input is read into a buffer, and its  syndromes  calcu- 
lated. 

J. D. ULLMAN 



Figure 4 The  double error corrector.  The  notation is as 
tabulated below: a AND GATE 

X D  OR GATE 

@ SUM MOD 2 GATE 

FLIP FLOP 

FIELD ADDITION 

INHIBIT LEAD 

FIELD MULTIPLICATION 

FIELD DIVISION 

FIELD CUBING 

FIELD SQUARING 

FIELD SOUARE ROOT 

u SYNDROME (POWER SUM) 
SYND. CALCULATOR 

COUNTER 

___) BUNDLE OF LEADS TRANSMITTING 

o=" iX&l ,;i,,;F ATTACHED REGISTER 

A FIELD ELEMENT 

(2) The squaring cycle counter and  the solution storage 

(3) If it is detected that both syndromes are zero, both 
counters for correction are inhibited and the system 
awaits the C signal from  the clock. 

(4) Otherwise, calculate R,l; if the condition Rzl = 1 is 
detected, inhibit one counter, loading r(a) into the 
other. 

( 5 )  If R,, # 1, load it into the squarer. At  this time, five 
pulses from  Output B will  cycle Rzl through  all its 
conjugates, simultaneously using the square root 
operations to calculate the solution y. 

(6) When a match is found, the corresponding y is gated 
into a unit which calculates f(y) = y + 1, and s where 
CY' = r(y)/f(y). Note that s is the representation for 
CY*, so that a* is loaded directly into one counter. The 
other counter is loaded with ya". 

(7) If no match is found, an error detect signal is given. 

are reset. 

CLOCK 

A B C D  
1 

~ 

COUNT T 

DETECT 

I I 

239 

DECODING  CYCLIC CODES 



(8) Otherwise, level signal C begins shifting data  out of 
the buffer. If the count on either  counter is one, the 
bit is corrected. Pulse D reduces the count by one after 
each bit  that emerges from  the buffer. Note  that d 
is represented by all 1’s and so that case must  be 
detected separately. 

7. Conclusions 

The  method presented offers two advantages, speed and 
the ability to handle  burst and independent  errors, or 
burst errors alone. The disadvantage is that  storage goes 
up exponentially with  either the number of independent 
errors, or the length of burst. 

For  the independent  errors, the speed is primarily 
determined by the number of times the  ratios must be 
squared to insure a match,  in other words, by the logarithm 
of the code length. For burst  errors, speed depends on 
how many  small polynomials are used. As a result, it 
should be possible to construct a decoder that operates 
in a little more  time than it takes to calculate the syn- 
dromes. The  actual time is determined by what  sort of 
arithmetic  units one is prepared to use. 

A lower bound  on  the storage is given by Eq. (21); it 
is seen that  for large numbers of errors, the requirements 
are too great to  make this a feasible method. 

When storage is small, this method uses quantities of 
equipment  commensurate  with or less than  that employed 
with other  method^^'^'^ and operates at higher speeds. 
Also, the storage  required is an  order of magnitude less 
than  that of Banerji7 in  the double-error case. 

It would appear  that  for many cases involving short 
codes or small  numbers of errors  the  method described 
will offer distinct advantages. 

Acknowledgement 

The  author  thanks  Dr. R. T. Chien for his many  helpful 
comments and suggestions. 

References 
1. W. W. Peterson, Error Correcting Codes, John Wiley and 

Sons,  New York, 1961. 
2. B. L. Van  Der  Waerden, Modern Algebra, Fredrick  Ungar 

Publishing  Co., 1949. 
3. R. C.  Bose and D. K. Ray-Chaudhuri,  “On  a Class  of 

Error  Correcting  Binary Group Codes,” Information and 
Control, 3, 68-79,  1960. 

4. W. W. Peterson,  “Encoding  and  Error-Correction  Proce- 
dures  for the Bose-Chaudhuri  Codes,” IRE Transactions 
on Information Theory, IT-6, 459-70,  1960. 

5. N.  Zierler and D. Gorenstein, “A Class of Error  Correcting 
Codes  in p m  Symbols,” Journal of the Society for Industrial 
and  Appried Mathematics 9, 2, pp. 207-14. 

6. C. M. Melas, “A Cyclic  Code for Double  Error  Correction” 
IBM Journal 4, 3 (1960). 

7. R. B. Banerji, “A Decoding  Procedure for Double Error 
Correcting  Bose-Ray-Chaudhuri  Codes,” Proceedings of 
IRE 49, (1961). 

8. R. T. Chien, “A Cyclic  Decoder for Bose-Chaudhuri- 
Hocquenghem  Codes,” IEEE Transactions on Information 
Theory IT-10, 357-62,  1964. 

9. T. Kasami, “A Decoding  Procedure for Multiple Error 
Correcting  Cyclic  Codes,” IEEE Transactions on Information 
Theory IT-10, pp. 134-8,  (1964). 

10. J. E. Meggitt, “Error Correcting  Codes for Correcting 
Bursts of Errors,” ZBM Journal 4, 1 (1960). 

Received March 19,1965 

240 

J. D. ULLMAN 


