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Chain Matrices and the Crank-Nicolson Equation 

In Reference 1, a practical  application of the special 
properties of a class of matrices  called chain matrices is 
made to obtain numerical solutions of partial differential 
equations of the elliptic  type.  In this communication, we 
wish to present an application of these  matrices to the 
study of the problem of obtaining numerical solutions of 
parabolic partial differential equations. This  method  is not 
proposed as a general  method for obtaining a numerical 
solution to parabolic equations, for its limitations are 
obvious. Its use,  however,  does  allow  us to obtain some 
interesting  theoretical  results. 

Under the proper conditions, solutions of parabolic 
partial differential equations satisfy a maximum  principle. 
In a one-dimensional  problem, for example, this principle 
states that  the value of the solution at the interior point 
(xo, to) does not exceed the largest and least  value of the 
solution at any point on the boundary (x ,  t )  such that 
t 5 to. This  principle  provides a powerful tool for the 
analysis of solutions of such equations. 

In order to obtain a numerical solution of a parabolic 
partial differential equation, one  generally  replaces the 
equation by a finite  difference equation. The numerical 
solution of this equation is  then  obtained as an approxi- 
mation to the solution of the original equation. If the 
solution of the finite  difference equation also  satisfies a 
maximum  principle, then one can use this to establish 
the convergence of the solution to the solution of the 
differential equation. This is used  by Douglas, for example, 
in Reference 2. Also, from a computational point of  view, 
one  wishes the approximate solution to “behave”  in the 
same manner as the exact  solution. 

For such  difference equations, Douglas3  has given an 
example of a stable difference equation which  does not 
satisfy the maximum  principle. By use of the properties 
of chain  matrices, we are able to construct other such 
examples, A by-product of this construction is a relation 
which  gives some  insight into  the problem of how to 
choose the mesh ratio so that the maximum  principle will 
be  satisfied. 

Chain matrices 

196 A chain  matrix CN of order N is a square matrix  whose 

elements c,,,,(m, n = 1, 2, . . , N) satisfy the recurrence 
relationship 

cm,n-1 + cm,n+1 - ~rn-1.n + ~ m + l . n ,  (2.1) - 

where  zero  is substituted for any  element  with  one  index 
0 or N +  1. 

Examples : 

1 2 1 0 0 ’  
1 2 1 0  
0 1 2 1  
0 0 1 2 ,  

An immediate  consequence of this definition  is that a 
chain matrix  is  uniquely  determined by the elements  of 
the first  row, and, symbolically, we  may write 

CN = { c l , l ;  cl,Z; * ; C I , N ] *  (2.2) 

In Reference 1, the following  properties of a chain 
matrix are established: If CN is a chain matrix, and if 

k is a scalar, then kcN is a chain matrix.  (2.3a) 

BN is a chain matrix, then CN + B N  is a chain 
matrix. Hence  any  finite linear combination 
of chain  matrices  is a chain  matrix.  (2.3b) 

BN is a chain  matrix, then BNCN is a chain  matrix. (2.3~) 

Further, if we say that the elements ci,i ( i  = 1, . , N )  
are on the main  diagonal, and the elements C,,N+l-i 
(i = 1, . . , N )  are on the “second”  diagonal, then a 
further useful property of the chain  matrix is that it is 
symmetric about the main and second  diagonals. 

Consider now the chain  matrices 

where is the Kronecker delta; i.e., 6,,i = 1 if i = j ,  
and 6 i , j  = 0 if i # j .  Note that EN.1 is just the identity 
matrix.ItiseasilyseenthatifCN= {cl,l;cl,2; ; c ~ . N ) ,  
then 

N 

CN = x C l , i E ~ , j .  (2.5) 
j = 1  

Further, we may note that the matrix, all of  whose 
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elements are zero, is a chain matrix, and therefore, the 
set of all  chain matrices of order N form a vector space of 
dimension N over the field  of real or complex numbers, 
and  the elements E,v,i may be taken as a basis for the 
vector space. 

Not all  chain matrices have inverses. For example, the 
chain matrix E 3 , 2  is singular, and hence does not possess 
an inverse. However, as an almost immediate consequence 
of the Cayley-Hamilton theorem, it follows that if the 
chain  matrix CN is nonsingular, then its inverse CL1 is a 
chain matrix. 

It shall be important  later to note the following result, 
which follows immediately from  (2.5): 

Theorem 2.1: If the elements cl,i ( j  = 1, 2, . . - , N) of 
CN are positive, then all of the elements of CN are positive. 

Proof: It is sufficient to  note  that all elements of  EN.^ 
are nonnegative and  that there is no zero element in the 
matrix cy=l EN,i. 

Although further properties of chain matrices may be 
determined, it is  of interest to consider an example wherein 
such matrices may arise. 

Example 

We shall consider the following problem: To obtain in 
R :  { 0 _< x 5 1, t 2 01 a numerical solution of the  equation 

(3.1) 

These are difference equations arising from  the use of 
the Crank-Nicolson pr~cedure.~ Equation  (3.3) may be 
written in matrix  notation as 

ANW%+I = -BB,vWn, (3 - 5 )  

where 

W 1 . k  

w, = . 

I W N , k z  

and AN and BN are the  chain matrices 

AN 1 { a ;  1 ;  0 ;  ; 01 

BIY = { b ;  1; 0 ;  . . .  ; 0 ) .  

The value of a is - 2(1 + l/r)  and  the value of b is 
-2(1 - I/r). 

Since (a ]  > 2, we know by a theorem of Hadamard' 
that AN is nonsingular, and hence AN1 exists. We may 
then write (3.5) as 

W n + 1  = CAvWn, (3.8) 

where 

cN = - A-'B N N .  (3.9) 

Using properties previously noted,  it is seen that CN is 
also  a  chain matrix. 

subject to  the conditions 

u(0, t )  = u(1,  t )  = 0 t > o  (3.2a) 

u(x,  0) = f ( x )  O < x < l .  (3.2b) 

We impose on R a  lattice with grid points x, = mAx' 
m = 0, 1, , N +  1 ;  tn = nAt, n = 0, 1 ,  2, . - -  ,with 
Ax = 1/(N + 1). The quantity N is an integer, and we 
shall always assume that N is an  odd integer in order that 
the line x = 0.5 will have grid points on it.  This is no 
essential restriction, for the modifications required in the 
work following are obvious. We choose At = r(Ax)2, 
where r is a preassigned constant called the mesh ratio. We 
denote &Ax,  nAt) by gm,". 

We consider the following difference equation as  an 
approximation to (3.1)-3.2b): 

The elements of Cx 

It is possible to write down explicitly the elements of the 
first row of C,. Let IA,vI denote the determinant of AN 
and let IAo I = 1 and IAl 1 = a. Then 

[Akl = a IAk-11 - IAk--21. (4.1) 

The solution of this difference equation is 

I Akj = (- l)k[sinh (k + l)y/sinh y ] ,  (4 4 
where 

Y = log[l + (l/r) + d ( 1  + 1/rI2 - 11. (4.3) 
" 

Let 

(4.4) 

It is easily seen that AN1 = {Dl; +&; P 3 ;  * * ; PN}. 
Note  that  it follows from (4.1) and (4.4) that P k f P  = 

a/3k+l - Pk (k  = 1,  2, - 0 .  , N - 2), and  that Po = 1. 
Using this relationship, one finds easily  by matrix multi- 
plication that 

~ 1 , k  = ( - l )k(4 /r )Pk - 8 k . l  
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I Then, from (4.1) and (3.9), Then wl,l = c1.], and by Theorem 4.1, w l , l  < Ofor r > y. 

4sinh ( N  - k + 1 ) ~  
C1,k = - r sinh (N + 1)y - a k , l  

We may state this as a theorem: 

Theorem 5.1: If !(xm) = (m = 1 ,  2, . .. , N), the 

I (k = 1 ,  2, . . . , N). (4.6) solution of (3.3) violates the maximum  principle if r > y. 

Hence for all r > 0, and  for r > 1, these  elements are 
positive. However, 

4 sinh Ny 
"*' = 5 sinh ( N  + l)y - 1 .  (4.7) 

Therefore, in order  that cl,l be positive, it is necessary 
that  the following condition  hold: 

sinh Ny 
sinh (N + 1)y' 

< 

For N sufficiently large, the condition (4.8) is approxi- 
mately satisfied if 

Two things  should be noted. First,  the value of y de- 
pends  in general upon  the length of the interval, which 
has been assumed to be of unit  length  in  this  note. Secondly 
this example, while depending upon  an unusual  initial 
condition,  actually is significant because it shows the 
smallest value of r for which the maximum principle is 
violated. 
Let 

h' 

s m  = c m . k  m = 1 ,  2, . . .  , N. ( 5  4 
k = l  

Theorem 5.2: S ,  C 1 m = 1,  2, - .  , N. 

r < 4e-', (4.9) Proof: From Eq. (2.1), we see that 

1.e., N  N 

r < 4/[l + l/r + 1 / ( 1  + 1/r)2 - 1 1 .  (4.10) k = l  k = l  
C m + 2 , k  C m + l . k - 1  

The relation (4.10) is equivalent to the requirement 
r <  4 -  21.4. 

N N 

f C m + l . k + l  - c m , k *  
k = l  k = l  

We may then  state  the following theorem: (m = 0 ,  1 ,  , N - 2). (5.3) 

By a reordering of the above  relation, we find that S ,  
Theorem 4.1: For r > 0, the element is positive if and satisfies the  relation 
only if r < y, where y is the least upper bound of r such that 

S m + ,  = 2srn+l - S m  - [ C l . m + l  + ~ 1 , n - m l .  (5.4) 

r < 4  
sinh Ny 

sinh ( N  + 1)y' By definition, So = 0, and by direct calculation 

2 sinh (N/2)y s l = - .  r smh y/2 cosh (N + 1/2)y - 1 .  (5.5) 
For N sufficiently large, y is approximately 4 - 2I.4. 

The importance of this  result lies in Theorem 2.1, for, 
if cl,l > 0, then all elements of CN are positive. On  the 
other  hand, if clql < 0, then  the value of each of the sm = l [ - p / ( e y  - l)z][&N--m+l)y + e"'] + 6,,,,(5.6) 
elements on  the main  diagonal of C, is decreased. In  fact, 

We may use these initial conditions to solve the dif- 
ference equation. We find that 

by (2.51, where 
v 

2 e  
r cosh (N + 1/2)y' 

- ( N - I / Z ) z i  

(4.11) 1.1 = - 

Since EN,] is just  the identity  matrix, if the value of cl, l  We observe that 
is changed by any given amount,  the value of each of the 
remaining elements of the  main diagonal is changed by -I.1 - e(N-m)u],  

exactly the same amount. 

Counterexample and so 

Theorem 4.1 allows us immediately to construct an ex- s, < s2 < . . . < s ( ~ + ~ ) , ~  
ample to show that  the system (3.3), although stable in 
the L, sense, has a solution which does not satisfy the > S ( N + ~ ) D  > * .  * > SN-1 > SN. 
maximum principle. Choose 

s,,, - sm = - e' - 1 (5.8) 

The maximum value for S ,  occurs for m = N + 1/2, 
198 !(xm) = 6m,l(m = 1 ,  2 ,  , N). (5.1) for which we have 
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2 
cosh ( N  + 1 / 2 ) y  S N + 1 , 2  = 1 - < 1 .  (5 .9 )  

In particular, if r < y, then clearly SI > 0, and since 
then 0 < S ,  < 1 for m = 1,  2, . - a  , N, we  see from E q .  
(3.8) that  the condition r < y is a suficient condition  in 
order  that  the maximum principle be satisfied. We have 
then, the following result: 

Theorem 5.3: A necessary  and sufficient condition that the 
solution of the  discrete system defined by (3.3) satisfy the 
maximum  principle for  arbitrary f(x), 0 < x < 1,  is that 
0 < r < y, where y is defined in Theorem 4.1. 

It should be explicitly pointed out  that  for some choices 
of initial  conditions larger mesh ratios may be used with- 
out violating the maximum principle. For example, if 
!(x) = 1 , 0 < x < 1, then  the maximum principle is 
satisfied if r < 4. The conditions which must be imposed 
upon f(x) in order to use larger mesh ratios  are  not under- 
stood  at  the present time. 

Remarks 

The various examples given above point  out again that 
the use of implicit difference methods to obtain numerical 
solutions of parabolic partial differential equations  may 
contain  some drawbacks. Theorem 4.1 shows that in  order 
to be completely safe without any  further analysis, r 
should  be chosen less than 4 - 2&(=1.172) if one uses 
the Crank-Nicolson  method. However, the use of this 

method involves about  four times as  much work per 
point as does the use of the forward difference method. 
Thus, it is clear that in certain circumstances, it is more 
efficient to use the forward difference method  than  the 
Crank-Nicolson  method. 

Note again, however, that  the backward difference 
method, i.e., the use of the difference equation 

W,, , , ,  - Wm,,, = rA2 W,,,,,,, (6.1) 

instead of (3.3), does not have this  particular  drawback of 
the Crank-Nicolson  method, for,  as shown  in Reference 2, 
solutions of this difference equation do satisfy the maxi- 
mum principle. 
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