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Chain Matrices and the Crank-Nicolson Equation

In Reference 1, a practical application of the special
properties of a class of matrices called chain matrices is
made to obtain numerical solutions of partial differential
equations of the elliptic type. In this communication, we
wish to present an application of these matrices to the
study of the problem of obtaining numerical solutions of
parabolic partial differential equations. This method is not
proposed as a general method for obtaining a numerical
solution to parabolic equations, for its limitations are
obvious. Its use, however, does allow us to obtain some
interesting theoretical results.

Under the proper conditions, solutions of parabolic
partial differential equations satisfy a maximum principle.
In a one-dimensional problem, for example, this principle
states that the value of the solution at the interior point
(xo, %) does not exceed the largest and least value of the
solution at any point on the boundary (x, t) such that
t < t,. This principle provides a powerful tool for the
analysis of solutions of such equations.

In order to obtain a numerical solution of a parabolic
partial differential equation, one generally replaces the
equation by a finite difference equation. The numerical
solution of this equation is then obtained as an approxi-
mation to the solution of the original equation. If the
solution of the finite difference equation also satisfies a
maximum principle, then one can use this to establish
the convergence of the solution to the solution of the
differential equation. This is used by Douglas, for example,
in Reference 2. Also, from a computational point of view,
one wishes the approximate solution to “behave” in the
same manner as the exact solution.

For such difference equations, Douglas® has given an
example of a stable difference equation which does not
satisfy the maximum principle. By use of the properties
of chain matrices, we are able to construct other such
examples. A by-product of this construction is a relation
which gives some insight into the problem of how to
choose the mesh ratio so that the maximum principle will
be satisfied.

Chain matrices

A chain matrix Cy of order N is a square matrix whose
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elements c,, ,(m, n = 1, 2, --- , N) satisfy the recurrence
relationship
cm,n—l + cm,n+1 = cm—l,n + Cm+1,n9 (2'1)

where zero is substituted for any element with one index
Oor N+ 1.

Examples:
<12) 103} [2100)
21/ lo4a0| (1210
301) (0121
0012

An immediate consequence of this definition is that a
chain matrix is uniquely determined by the elements of
the first row, and, symbolically, we may write

;N (2.2)

In Reference 1, the following properties of a chain
matrix are established: If Cy is a chain matrix, and if

Cy = {01.1§Cl,2§

k is a scalar, then kCy is a chain matrix. (2.3a)

By is a chain matrix, then Cy + By is a chain
matrix. Hence any finite linear combination
of chain matrices is a chain matrix. (2.3b)

By is a chain matrix, then ByCy is a chain matrix. (2.3c)

Further, if we say that the elements ¢;,; i=1, -+, N)
are on the main diagonal, and the elements ¢, yii—;
(=1, ---, N)are on the “second” diagonal, then a
further useful property of the chain matrix is that it is
symmetric about the main and second diagonals.

Consider now the chain matrices

* s 6N.i}s (2.4)

where 6, ; is the Kronecker delta; ie., 6,; = 1if i = j,
and 6; ; = 0if i # j. Note that Ey, is just the identity

Ey,; = {51.:'; 02,55

matrix. It is easily seen that if Cy = {¢1,15 ¢1,2; -+ 3 Cin)y
then
N
Cy = ECl.iEN,i- (2.5)
i~

Further, we may note that the matrix, all of whose




clements are zero, is a chain matrix, and therefore, the
set of all chain matrices of order N form a vector space of
dimension N over the field of real or complex numbers,
and the elements Ey ; may be taken as a basis for the
vector space.

Not all chain matrices have inverses. For example, the
chain matrix E,_ , is singular, and hence does not possess
an inverse. However, as an almost immediate consequence
of the Cayley-Hamilton theorem, it follows that if the
chain matrix Cy is nonsingular, then its inverse Cy' is a
chain matrix.

It shall be important later to note the following result,
which follows immediately from (2.5):

Theorem 2.1: If the elements ¢, ; (j = 1,2, -+ , N) of
Cy are positive, then all of the elements of Cy are positive.

Proof: 1t is sufficient to note that all elements of Ey ;
are nonnegative and that there is no zero element in the
matrix D+, Ex.;.

Although further properties of chain matrices may be
determined, it is of interest to consider an example wherein
such matrices may arise.

Example

We shall consider the following problem: To obtain in

R: {0 < x < 1, ¢ > 0} a numerical solution of the equation
2

u _0du (3.1)

at=§, 0<x<1, t>0

subject to the conditions
w0, = u(l,5) =0 t>0 (3.2a)
u(x, 0) = f(x) 0<x < 1. (3.2b)

We impose on R a lattice with grid points x,, = mAx’
m=0,1,.-- , N+ 1;¢t, = nAt,n=0,1,2, --- , with
Ax = 1/(N + 1). The quantity N is an integer, and we
shall always assume that N is an odd integer in order that
the line x = 0.5 will have grid points on it. This is no
essential restriction, for the modifications required in the
work following are obvious. We choose At = r(Ax),
where r is a preassigned constant called the mesh ratio. We
denote g(mAx, nAr) by g, .

We consider the following difference equation as an
approximation to (3.1)~3.2b):

Wimo = Umo = [(Xm) 1<m<N
Wamir = Waon = (F/2D(A Wp i1 + AW, ),
1<m<N,n2>0 (3.3)

Wom = Wys1,a = 0 n>0,
where
Azwm.k = Wanet b — 2Wi e T Wtk (3-4)

These are difference equations arising from the use of
the Crank-Nicolson procedure.* Equation (3.3) may be
wriften in matrix notation as

AyW,.y = —ByW,, (3.5)
where
Wik
W= : (3.6)
WN .,k

and 4y and By are the chain matrices

Ay = {a;1;0; -+ ; 0}

By = {b;1;0; -+ ; 0}. -7
The value of a is —2(1 < 1/r) and the value of b is
—2(1 — 1/7).

Since |a] > 2, we know by a theorem of Hadamard®
that Ay is nonsingular, and hence Ay' exists. We may
then write (3.5) as

Wi = CyW,, (3.8)
where
Cy = — Ay Bw. (3.9)

Using properties previously noted, it is seen that Cy is
also a chain matrix.

The elements of Cy

It is possible to write down explicitly the elements of the
first row of Cy. Let |4y| denote the determinant of Ay
and let |4y = 1 and |4,| = a. Then

| 4] = a | dia| = | 4isl. (4.1)
The solution of this difference equation is

| 4:] = (—1)"[sinh (k + 1)y/sinh y], (4.2)
where

y=loglt + (/) + VU + 1/ ~1].  (43)
Let
. |

It is easily seen that Ay = {B:; +82; Bss - ; Bn}.

Note that it follows from (4.1) and (4.4) that §8,,, =
aBrey — Brk=1,2, .-+ , N— 2),and that 8, = 1.
Using this relationship, one finds easily by matrix multi-
plication that

Cre = (”l)k(4/r)ﬁk — Ok
k=1,2,--+, N). (4.5)
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Then, from (4.1) and (3.9),

4 sinh (N — k + l)y_
r sinh (N 4 1)y

(k=1,2,---,N). (4.6

Hence for all r > 0, and for r > 1, these elements are
positive. However,

Cix =

ak,l

4 sinh Ny _
rsinh (N + 1)y

11 = (4.7)
Therefore, in order that ¢;,, be positive, it is necessary
that the following condition hold:

sinh Ny

r<4Smh (N + Dy

(4.8)

For N sufficiently large, the condition (4.8) is approxi-
mately satisfied if

r<de?, (4.9)
i.c.,
r<4/[t+ 1/r+ /0 + 1/r)° — 1]. (4.10)

The relation (4.10) is equivalent to the requirement
r<d4-—2/2.
We may then state the following theorem:

Theorem 4.1: For r > 0, the element ¢, , is positive if and
only if r < =, where v is the least upper bound of r such that

sinh Ny

r < 4—————Sinh N+ 1Dy

For N sufficiently large, v is approximately 4 — 2v2.

The importance of this result lies in Theorem 2.1, for,
if ¢;.; > 0, then all elements of Cy are positive. On the
other hand, if ¢;; < 0, then the value of each of the
elements on the main diagonal of Cy is decreased. In fact,
by (2.5),

N
Cy = 11 Exiy + 2 ¢1.:Ex ;. (4.11)
i=2

Since Ey , is just the identity matrix, if the value of ¢ ;
is changed by any given amount, the value of each of the
remaining elements of the main diagonal is changed by
exactly the same amount.

Counterexample

Theorem 4.1 allows us immediately to construct an ex-
ample to show that the system (3.3), although stable in
the L, sense, has a solution which does not satisfy the
maximum principle. Choose

fxn) = 8,(m=1,2,---, N). (5.1
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Then wy,; = ¢;.1, and by Theorem 4.1, w, , < Oforr > 7.
We may state this as a theorem:

Theorem 5.1: If {(x,) = 8, (m = 1,2, --- , N), the
solution of (3.3) violates the maximum principle if r > .

Two things should be noted. First, the value of v de-
pends in general upon the length of the interval, which
has been assumed to be of unit length in this note. Secondly
this example, while depending upon an unusual initial
condition, actually is significant because it shows the
smallest value of r for which the maximum principle is
violated.

Let
N
Sm = 2 Comos m=1,2,--+,N. (5.2)

k=1

Theorem 5.2: S, <1 m=1,2,---,N.

Proof: From Eq. (2.1), we see that

N N
E : Cni2,k = Z Cm+l,k—1
k=1 k=1

N N
+ Zcm+l,k+l - Zcm,k-
k=1 k=1

(m=0,1,+--,N—2). (5.3)

By a reordering of the above relation, we find that S,
satisfies the relation

Sm+2 = 2Sm+1 - Sm - [Cl,m+1 + Cl,n—m]' (5‘4)
By definition, S, = 0, and by direct calculation

inh (N
s, =2 sinh (N/2)y 1. (5.5)

7 sinh y/2 cosh (N + 1/2)y -

We may use these initial conditions to solve the dif-
ference equation. We find that

Sm = 1[—p/( — DI[e"™PY 4+ €™] 4 8,.0.(5.6)

where

2 e—(N—l/?)zJ

uo= = . (5.7)
r cosh (N + 1/2)y

We observe that
Spir = Sp = [ — ™, (5.8)
e’ — 1

and so

§ < S < 0 < Sy

> S(N+3)/2 > Lt > SN—l > SN.

The maximum value for S,, occurs for m = N + 1/2,
for which we have




2
cosh (N 4+ 1/2)y <

Swire =1 — 1. (5.9)

In particular, if r < +, then clearly S; > 0, and since
then0< S,, < 1form= 1,2, ---, N, we see from Eq.
(3.8) that the condition r < + is a sufficient condition in
order that the maximum principle be satisfied. We have
then, the following result:

Theorem 5.3: A necessary and sufficient condition that the
solution of the discrete system defined by (3.3) satisfy the
maximum principle for arbitrary {(x), 0 < x < 1, is that
0 < r < =, where v is defined in Theorem 4.1.

It should be explicitly pointed out that for some choices
of initial conditions larger mesh ratios may be used with-
out violating the maximum principle. For example, if
f(x) = 1, 0 < x < 1, then the maximum principle is
satisfied if r < 4. The conditions which must be imposed
upon f(x) in order to use larger mesh ratios are not under-
stood at the present time.

Remarks

The various examples given above point out again that
the use of implicit difference methods to obtain numerical
solutions of parabolic partial differential equations may
contain some drawbacks. Theorem 4.1 shows that in order
to be completely safe without any further analysis, r
should be chosen less than 4 — 2v2(=<1.172) if one uses
the Crank-Nicolson method. However, the use of this

method involves about four times as much work per
point as does the use of the forward difference method.
Thus, it is clear that in certain circumstances, it is more
efficient to use the forward difference method than the
Crank-Nicolson method.

Note again, however, that the backward difference
method, i.e., the use of the difference equation

Wm,n+l - Wm,n = I'A2 Wm,n+1 (6‘1)

instead of (3.3), does not have this particular drawback of
the Crank-Nicolson method, for, as shown in Reference 2,
solutions of this difference equation do satisfy the maxi-
mum principle.
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