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On a Circular Crack in a Transversely Isotropic
Elastic Material Under Prescribed Shear Stress

In a recent paper the elasticity problem of a planar
displacement discontinuity in a transversely isotropic
elastic material was studied." This note is concerned with
the analogous, mixed boundary value problem of a
penny-shaped crack under prescribed shear stress at its
surface. The analysis is partly based upon the treatment
of a similar problem in isotropic elastic materials.” The
problem is formulated for the quasistatic situation, i.e.,
when the crack is moving at a constant velocity along a
direction perpendicular to its surfaces; the solution to
the static case is then obtained by making the magnitude
of the velocity vanish. Strain energy associated with the
crack is calculated.

Basic equations

In the linear theory of elasticity the fundamental system
of field equations is: the linearized strain-displacement
equations, the linear stress-strain relations, and the stress
equations of motion. We shall restrict ourselves to trans-
versely isotropic, homogeneous media with the axis of
symmetry of the material taken to be the z axis.

The stress-strain relations are:

O = C11€pr 1+ Ci2€59 + Ciae.,

Tog = C12€r, T Cui€ps 1 C13€.,

Gee = C1s(err + €g9) + Case.s

Org = %(Cu — C12)er (n
0. = C44€4,

Ory = C44€rq

where the five c;;’s are the elastic constants.

It is assumed that the crack moves along the z axis at
a constant velocity v for a long time so that to an observer
moving at the same velocity, the displacement field appears
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to be always the same. We use a cylindrical coordinate
system (r, 8, z) moving with the crack, so that the plane
of the crack always coincides with the z = 0 plane.

It can be shown® that all the field equations are satisfied
if the displacement components u,, uy, u, are expressed
in terms of three “harmonic” functions ¢, ¢,, ¥ which
are solutions of

(vi+Zs =0 u=12 @
(vf + £)¢ = o, 3)
where

=2/ (i=1,2,3) (4)
Vi = 6%25 + ;15? + 71£; (5)

and »,, v, are roots of the equation

c1uCay’ — [(Cos — pU)Cas + (Caz — pU)en

— (cs + 1)’y + (cas — PU2)<C44 - PU2) =0, (6)
and also

vs = 2(cas — pv°)/(c11 ~— €12). (7)

In Egs. (6) and (7), p is the density of the material.
The displacement components are

=9 19y
”r"‘ar(¢1+¢2)+ Y
14 d
”0=;5’é(¢1+¢2)—6—f (8)
oo KO0 K 0

'\/Vl 9z, \/;’; oz,




where k, and k., are given by

ki(c33 — Pvz)
kicss + (6'13 + C44)
- kf(C13 + 044) + (044 - PUQ). (9)

C11

v; =

From the above equations the three stress components
of immediate interest are

:,

021/644 = (1 + kl) + le/Vl] 2
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3¢z

-+ [(1 + kz) + sz/Vz] (10)
aorfen = L1 + )/ /] 1= ‘f,’;l
1 8%, 1 9%y
+ [(1 + k2)/ \/Vz] r 98 9z - \/;}; ar dz,
1D
orfein = [(1+ k)/ V] 0 02
— » 1 10
TSRV AL + e Loy
(12)
In Eq. (10), 8 = pv’/cy . a3

It is assumed that the roots in Eq. (6), v, and »,, will
be unequal, and may be positive real, or complex con-
jugates. The root »; is always assumed to be real and
positive. It is specified that in the case of complex roots,
/v, and 4/, will have positive real parts. Physically
we restrict v to be less than any of the propagation ve-
locities of the material.

Boundary conditions

As mentioned previously, the crack is situated at the
plane, z = 0. It is assumed to be circular and defined by
the circle r = 1. The boundary conditions may be stated as:

(1) The functions (o,, — pv°du,/dz), (g4, — pv° s/ 7),
and (o,, — pvzau,/ dz) are continuous everywhere across
the z = 0 plane. Within the unit circle, ¢,, and o,, are
specified.

(2) The displacement components u,, u,, and u, are
continuous across the z = 0 plane except perhaps within
the unit circle.

(3) Stress components must vanish at infinity.

Let plain and prime quantities be associated with half

spaces defined by z > 0 and z < 0, respectively. Boundary
conditions become:

Atz=0

(tfn — ot %) = (612 — v’ a;;:) (14)
(troz — pt° aa—tj) = <aéz — o %g) (15)
o) = fmw®)

u, = ul, uy = u} 17
u, = ul. (18)
At z=0,r<1

0., = 2, M,(r) cos nf (19)
—0y, = Z N,(r) sin né. (20)
Solution

We shall be concerned with the two half spaces z > 0
and z < 0 to which are assigned the potential functions
(¢4, P2, ¥) and (9], ¢4, ), respectively. We try the following
substitutions:
&ilr, 0,21) = —(r, 8, —2z1)
-2
(1 -+ kl)c44
&u(r, 0, 22) = —¢i(r, 6, _Zz)

N
(1 + k2)044

H(r, a, ZI)

H(r, 0, z,) (21)

Ylr, 0,z0) = —¥'(r, 6, —z5) = 2\/V3 G

(r ’ ZS) .
H(r, 0, z) and G(r, 6, z) are both harmonic functions
in (r, 6, z) space. It is observed that Egs. (14), (15), (16),
and (18) are now satisfied.

The functions H and G are assumed to be of the form:

H(r, 0,2) = D cos nﬁf u  h (e T.(ru) du
n=0 o

- - (22)
G(r, 6,2) = 2 sin nef w g (We ™ J.(ru) du.
n=1 0

J.(u) is a Bessel function of order »; h,(#) and g,(x) are
yet to be determined. After Eq. (22) is substituted into
Egs. (21), (8), (11), and (12), the conditions in Egs. (17),
(19), and (20) become for n = 0:
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28 f " o) ) du = Mor) (< 1)
fo " ho(d) J,(ur) du = 0. ) 232)
Forn > 1:
Jtan + sl =0 > 1)
J tan@ - s@na@ a=0 >
J7 B + 8.60) Jueslar) (230)
= —3M0) + N0 ¢ <1
[ uBh) — 8] sl
= 3M0) — MO, ¢ <1

where

1 1 1

4= \/g[1+k1_1+kj
[ 1 1_] (24)
Vi Awd

Pairs of simultaneous dual integral equations of the
above type with n = 1, M,(r) = N,(r) = 1, have been

solved by Westmann,® whose work leads us to try to
solve the case where M,(r) = N,(r) = r"'. Setting

gn(u) = Ah,(u), and (4 + B)h,(u) = —p.(u)  (25)

we obtain

I

B

fo ) up,(u) Jo_i(ur) du = r*? (r < 1) (26)
‘/:’ Pu(tt) T (ur) du = 0 r>1 27N
j:o up,(u) Joi1(ur) du = 0. r<t (28)

Solution to the pair formed by Eqs. (26) and (27) is
given by [see Luke,* Eq. 13.4.8 (10)]:

__I'(n
V2uT(n + 3)

From the well-known relation,

Pn(u) = Ji/zen(W). (29)

f T T al) Tub) du = 0 (0 < a < B)
° (30)

bm a2 _ b2 n—m—1
= 2ﬂ_,(n_1anr(n)_ m), (0 < b < a)

Re(n — m) > 0, Re(m) > —1.
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It can be verified that Eq. (29) also satisfies Eq. (28)
[see Luke,* Eq. 13.4.2 (4)]. Hence, Eqgs. (25) and (29) form
the solution to the particular pair of simultaneous dual
integral equations, Eqs. (26) to (28).

With the knowledge of the solution to the general pair
of dual integral equations, Eqgs. (23b), the elasticity
problem as stated between Egs. (14) and (20) is solved.
We shall now examine two simple physically interesting
examples utilizing the general solution.

Examples

o Uniform shear stress

Suppose there is a unit uniform shear stress acting along
the direction 8 = 0, on the surface of this crack of unit
radius. In Egs. (19) and (20) we shall have M,(r) =
Ny(r) = 1, all other M,(r) and N,(r) vanish. From Eq. (29)
we have

n = (2)" sut 61

and all other p,(«) vanish. Equations (21), (22), (25), and
(31) form the solution to this particular elasticity problem.

We shall evaluate the strain energy associated with
this crack of unit radius under unit shear stress at its
surfaces. We shall assume also that it is stationary, i.e.,
pv® = 0. We find that the energy is

2x 1
W = f f (00,49 + o,,u,) |rdrd
0 L] z=0"
- 84
3C44(A + B)

From Eq. (24), with 8 = 0,

W = {8ci, Vi (Vi + V)
+ (Beal Vows (Vi + Videu
+ (e1s F el + k)1 + k) Visl}. (32

In the case of isotropy, this expression reduces to

_ 8Cr+ N
7 3u(4n + 3N

where A and u are Lamé’s constants. This result may be
shown to agree with the value of strain energy calculated
from Westmann’s results.”

(33)

o Linearly varying shear stress

In this example the magnitude of the shear stress varies
linearly with the distance along the § = 0 direction




(say, the x direction). Hence at z = 0, r < 1,
G = X (34)
or

o,, = 3r(1 4 cos 26)
—ag, = 3rsin 26. (35)
From the previous results contained between Egs. (23)
and (30), we find that

ho(u) = 3B_\I/2ﬁ- s72(10) (36)
and
ni) = L (2)" 1 @7

and all other p,(«) vanish for n > 1.

Equations (36) and (37) thus form the solution to the
elasticity problem specified by Eq. (34).

When z = 07, r < 1, the displacement components
ug, u,, are

4 /vy Ar(1 — )" sin 20
37r(A + B)C44

2 \/vs Ar(1 — #)/’[(4 + B) + 2B cos 26]
37(A + B)Bcs,

Uy =

u, =

39)

The strain energy is found to be

84 \/vs (4 + 3B)
450, B(A + B) (39)

From Eq. (24) with 8 = 0, the strain energy is
W = {8C11 '\/E (\/;I + \/;;)[cll(\/;; + \/Z)
s 4 301 4 k) ka)ews + cas) V7))

W:

+ {45cu(ens + el + k(1 + ko)
'[011(\/1/—1 + \/IZ) \/;1;
+ (1 + k)1 + K)o + ca) V)l (40)
In the case of isotropy, this expression reduces to

_ 4B+ N £+ M) (41)
45u(u + N4 + 3))
The solution to this elasticity problem seems to be
new even for the isotropic case.

Conclusion

The analysis provides the solution for the elasticity
problem of a circular flat crack in a transversely isotropic
elastic solid under uniform or linear shear stress distribu-
tion at the crack surface. This analysis, together with the
published works®® on circular cracks under normal
stress, solves the problem of a circular crack under any
uniform stress distribution at large distance from the
crack. The result should be of interest in fracture me-
chanics. It may be of interest to remark that the solution
presented here has provided valuable insight to solving
the corresponding problem for the elliptical crack.
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