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On a Circular  Crack in a Transversely  Isotropic 
Elastic Material Under  Prescribed  Shear Stress 

In a recent paper the elasticity problem of a planar 
displacement discontinuity in a transversely isotropic 
elastic material was studied.' This  note is concerned with 
the analogous, mixed boundary value problem of a 
penny-shaped crack under prescribed shear stress at its 
surface. The analysis is partly based upon the treatment 
of a similar problem in isotropic elastic materials? The 
problem is formulated for  the quasistatic  situation, i.e., 
when the crack is moving at a constant velocity along a 
direction perpendicular to its surfaces; the solution to 
the static  case is then obtained by making the magnitude 
of the velocity vanish. Strain energy associated with the 
crack is calculated. 

Basic equations 

In  the linear theory of elasticity the fundamental system 
of field equations is: the linearized strain-displacement 
equations, the linear stress-strain relations, and  the stress 
equations of motion. We shall restrict ourselves to trans- 
versely isotropic, homogeneous media with the axis of 
symmetry of the material taken to be the z axis. 

The stress-strain relations are: 

uyv = c1lerr + c1zeee + C13ezr 

ueo = C12err + clleee + c13err 

ceE = ~ 4 4 ~ ~  

urs = Ci4era , 

where the five cii7s are  the elastic constants. 
It is assumed that  the crack moves along the z axis at 

a constant velocity u for a long  time so that  to  an observer 
192 moving at  the same velocity, the displacement field appears 
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to be always the same. We use a cylindrical coordinate 
system (r, 0, z )  moving with the crack, so that  the plane 
of the crack always coincides with the z = 0 plane. 

It can be shown3 that all the field equations are satisfied 
if the displacement components u,, ug, u, are expressed 
in terms of three "harmonic" functions $1, $2, 1c. which 
are solutions of 

where 

z< = z / &  ( i  = 1, 2, 3) 

and vl,  v2 are roots of the  equation 

c11c44v2 - Kc44 - PU2)C44 + (c33 - PU2)C1, 

- (c13 c,~)']v + (~33 - pu2)(c44 - PU') = 0, (6)  

and also 

v3 = Z C 4 4  - PU2)/(C11 - C l J .  (7) 

In Eqs. (6) and (7), p is the density of the material. 
The displacement components are 



spaces defined by z 2 0 and z 5 0, respectively. Boundary 
conditions become: 

A t z = O  

(9) (u,. - PU2 2) = ( d Z  - PU z) au: 

From  the above  equations the three  stress  components 
of immediate interest are 

(10) 
A t z = O , r >  1 

u, = u:, ug = ue' 

u, = u:.  

It is assumed that  the  roots  in  Eq. (6), v1 and v2, will 
be unequal, and may  be positive real, or complex con- 
jugates. The  root v3 is always assumed to be  real and 
positive. It is specified that in the case of complex roots, 
4; and 4; will have positive real  parts. Physically 
we restrict v to be less than any of the propagation ve- 
locities of the material. 

Boundary  conditions 

As mentioned previously, the crack is situated at  the 
plane, z = 0. It is assumed to be circular and defined by 
the circle r = 1. The boundary  conditions may be stated  as: 

(1) The functions (uzs - pu2au,/az), (as, - pu2aua/az), 
and (urr - pu2au,/az) are continuous everywhere across 
the z = 0 plane. Within the unit circle, uvs and ugz are 
specified. 

(2) The displacement components u,, u,,  and ug are 
continuous  across the z = 0 plane except perhaps within 
the unit circle. 

(3) Stress  components must vanish at  infinity. 

Let plain and prime  quantities  be  associated  with  half 

Solution 

We shall  be  concerned  with the two half spaces z 2 0 
and z 5 0 to which are assigned the potential  functions 

4 2 ,  +) and (4;, &, $'), respectively. We try  the following 
substitutions: 

41(r ,  8 ,  z l )  = -&(r, e,  -zJ 
2 - - 

(1 + k l ) C 4 4  
H ( r ,  8 ,  zl> 

+&, 8 ,  Z J  = --+Xr, e, -z2) 

2 = -  
( l  + k2)C44 

H ( r ,  0 ,  z2> (2 1) 

2 4; 
+(r, 8 ,  z3) = -+ ' ( r ,  e ,  -z3) = - G ( r ,  8 ,  z3) .  

H ( r ,  8, z) and G(r, 0, z) are  both harmonic  functions 
in ( I ,  0, z) space. It is observed that Eqs. (14), (15), (16), 
and (18) are now satisfied. 

The functions H and G are assumed to be of the  form: 

c 4 4  

H ( r ,  0 ,  z) = cos n e  u"h,(u)e-""J,(ru) du 
W 

n=O 1- 
W (22) 

G(r, 0, z) = sin n0 u"g,(u)e""Jn(ru) du. 

J,,(u) is a Bessel function of order n; h,(u) and g,(u) are 
yet to be determined. After Eq. (22) is substituted into 
Eqs. (21), (8), (l l) ,  and (12), the conditions in Eqs. (17), 
(19), and (20) become for n = 0: 193 
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It can be  verified that Eq. (29) also satisfies Eq. (28) 
[see  Luke: Eq. 13.4.2  (4)]. Hence, Eqs. (25) and (29) form 
the solution to  the particular  pair of simultaneous dual 
integral equations, Eqs. (26) to (28). 

With the knowledge of the solution to  the general pair 
of dual integral  equations, Eqs. (23b), the elasticity 
problem as stated between Eqs. (14) and (20) is solved. 
We shall now examine two simple physically interesting 
examples utilizing the general solution. 

Examples 

Uniform shear stress 

= -3[Mn(r)  + Nn(r)l 
Suppose there is a unit uniform shear stress acting  along 

radius. In Eqs. (19) and (20)  we shall have Ml(r)  = 
Nl(r) = 1, all other Mn(r) and N,,(r) vanish. From Eq. (29) 
we have 

(r 1) the  direction 0 = 0, on  the surface of this crack of unit 

lm u[Bhn(u) - gn(u)] Jn+l(ur) du 

= 3[Ma(r)  - Nn(r)l, (r < 1) 
where 

1/2 

(31)  

B = [z 1 - "-1. 1 
dZ 

and all  other pn(u) vanish. Equations (21),  (22),  (25), and 
(31) form  the solution to this particular elasticity problem. 

We shall evaluate the  strain energy associated with 
this crack of unit  radius  under  unit shear stress at its 

(24) 

Pairs of simultaneous dual integral equations of the 
above  type with n = 1, Ml(r)  = Nl(r) = 1, have been 

surfaces. We shall assume also that  it is stationary, i.e., 
pv2 = 0. We find that the energy is 

From the well-known relation, 

Lw urn+'-" J,(au) J,(bu) du = 0 (0 < a < b) 

where X and p are Lam& constants. This result may be 
shown to agree with the value of strain energy calculated 
from Westmann's results? 

(3 0) 
b"(a2 - b2)n--m-1 

2n-m-1 a T ( n  - m) ' 
- " - (0 < b < u) Linearly varying shear stress 

In this example the magnitude of the  shear stress varies - 

194 Re(n - m) > 0, Re(m) > -1. linearly with the distance along  the 0 = 0 direction 
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(say, the x direction). Hence at  z = 0, r < 1, 

a,, = x (34) 

or 

arr = $.(I + cos 29) 
(3  5 )  

-goz = 4r sin  29. 

From  the previous results contained between Eqs. (23) 
and (30), we find that 

and 

(37) 

and  all  other p,(u) vanish for n 2 1. 

elasticity problem specified by Eq. (34). 

ua, u,, are 

Equations (36) and (37) thus  form  the solution to  the 

When z = 0-, r < 1, the displacement components 

4 d; Ar(1 - r2)l/’sin 28 
Ug = - 

3T(A + Bk44 

2 4; Ar(1 - r2)l/’[( A + B) + 2B cos 291. 
u, = 

3T(A + W C 4 4  

(3 8) 

The  strain energy is found  to be 

(39) 

+ (1 + kl)(l + kz>(c13 + c44) dZ1 1. (40) 

In  the case of isotropy,  this expression reduces to 

The  solution to this elasticity problem seems to be 
new even for  the isotropic case. 

Conclusion 

The analysis provides the solution for  the elasticity 
problem of a circular flat crack in a transversely isotropic 
elastic solid under uniform or linear  shear  stress  distribu- 
tion at the crack surface. This analysis, together  with the 
published works”‘ on circular cracks  under  normal 
stress, solves the problem of a circular  crack  under any 
uniform stress  distribution at  large  distance from  the 
crack. The result  should  be of interest  in fracture me- 
chanics. It may be of interest to remark that  the solution 
presented here has provided  valuable  insight to solving 
the corresponding  problem for  the elliptical crack. 
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