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Some Numerical Experiments in the Theory of

Polynomial Interpolation

Abstract: An important unsolved problem in the theory of polynomial interpolation is that of finding a set of nodes which is
optimal in the sense that it leads to minimal Lebesgue constants. In this paper results connected to this problem are obtained,
and some conjectures are presented based upon numerical evidence garnered from extensive computations.

Introduction

o General

If the values of a function, f(x), are known for a finite
set of x values in a given interval, then a polynomial
which takes on the same values at these x values offers
a particularly simple analytic approximation to f(x)
throughout the interval. This approximating technique is
called polynomial interpolation. Its effectiveness depends
on the smoothness of the function being sampled (if the
function is unknown, some hypothetical smoothness must
be chosen), on the number and choice of points at which
the function is sampled, and on what measure is used to
determine how far the interpolating polynomial is from
the given function. In this paper we take as measure of the
error of approximation the greatest vertical distance
between the graph of the function and that of the inter-
polating polynomial over the entire interval under con-
sideration. We consider the problem of how to choose »
points at which to sample any function of given smoothness
in order that the error should be as small as possible.
In general, the location of optimal interpolation points is
unknown and we have made some numerical computations
which may indicate the direction in which such points
should be sought.
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o Particular

Foreachn=1,2,--- letx{™ , .-+, x{” be real numbers
which we call “nodes”, satisfying

—1 <P <xP < <X L.

The infinite triangular matrix of nodes

(1) 2y (2) (n) (n)
X1, X1 X g, " , X " Xy, """

is denoted by X. Let f(x) be a function defined on I:
—1 < x < 1. Then there exists a unique polynomial of
degree not exceeding » — 1 which agrees with f(x) at

x™ .o x!" foreachn = 1,2, --- . Given n we obtain
this polynomial by first forming the polynomials of
degree n — 1

IT G — *)
i=1
L(x) = 17 (x; X) = =

b
IT 7 ==
i=1

i#i

i=1,---,n 6))

(When n and X are fixed, and no ambiguity will arise, 187
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we drop the superscripts (#) and the node-identification X.)
It is clear from (1) that

Lix;) = {0’ el . 2
1,i=j

Now we put

L, X; %) = 2 e 1) (3)

Then L.(x) = L.f, X; x) is a polynomial of degree at
most n — 1 with the property that L.(x,) = f(x)), i =
1, .-+, n. (Moreover, if Q(x,)) = f(x;),i =1, --- , n
and Q(x) is a polynomial of degree not exceeding n — 1,
then Q(x) — L.(x) = 0for x = x;, -+ , x, and so O(x) =
L,(x), thus establishing the above-mentioned uniqueness.)
The polynomial L,(x) is called the Lagrange interpolating
polynomial of degree n — 1 to f(x) at x;, + -+ , Xx,.

1t is rather natural to expect, a priori, that the sequence
L, X; x), Lf, X; x), -~ , L(f, X; x), +-- should
converge uniformly to f(x) for x ¢ I, at least for a con-
tinuous f(x). That this expectation is illusory is the result
of the following theorem of G. Faber [1].

Theorem. Given X there exists a continuous function on
I, f(x), such that {L.(f, X; x)} does not converge uniformly
onl.

In contrast to this, if f(z) is an entire function then for
any X, L.(f, X; x) converges uniformly to f(x) in I.

The convergence properties of the Lagrange inter-
polating polynomials are closely connected to the behavior
of the Lebesgue functions

MG = MK ) = 216 @

and the Lebesgue constants

A, = A(X) = max A(x). (5)

—1<z<1

In general, the smaller the A, the better the convergence
(but see Erdos and Turan [2]). Erdos [3] has shown that
there exists a positive constant, C;, such that for any X

A, > @/x) logn — Cy. (6)

Moreover, according to Erdos [3], if we denote the matrix
of nodes whose nth row is cos (w/2n), cos (3r/2n), «-- ,
cos ((2n — 1)w/2n) (ie., the zeros of the Chebyshev
polynomial of degree n, T,(x) where T, (x) = cos né,
x = cos §,0 < 6 < 7) by T then there is a positive
constant C, such that

ALT) < (2/7) log n + C,. (7

It is clear from Eq. (6) and Eq. (7) that the matrix of
nodes T is an excellent choice for interpolation, as far
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as convergence properties are concerned. However, it can
be shown that there exists at least one matrix of nodes X*
such that A* = A (X*) < A,(X),n= 1,2, --- for any
matrix of nodes X. We shall call X* an extremal matrix
of nodes. The problem of finding an extremal matrix of
nodes is a famous unsolved problem of interpolation
theory. It is clear from Eq. (6) and Eq. (7) that

A",‘.—%_logn:O(l),n—) .

In this paper we wish to present some conjectures
based upon automatic digital computation, and some
proved results as well, in this circle of ideas. (Background
material mentioned above for which no reference is
given can be found in Natanson [4].)

Some general results

We want first to collect some elementary properties of
the Lebesgue functions. It is clear from Equation (4) that
the Lebesgue functions, \,(x), are piecewise polynomials.
More precisely, if I(k, n) denotes the interval [x{™, x{™1,
k=23,---,nwhile I1, n) is (x{”, ) and I(n + 1, n)
is (—o, x™), then A\ (x) is a polynomial of degree at
most n — 1 in each interval Ik, n), k = 1, -+ , n+ 1.
Let A(x) be the polynomial which coincides with M\.(x)
on I(k, n). The results given below as Assertions (A-1)-
(A-5) are easy consequences of the definitions of Egs. (1)
and (4).

(A-1) If x e I(k, n) thenfori =1, --- , n,

— i—k >
sgn [;(x) = {( D72k
(=D i < k.

(A M) = 3 (—D7G) = (<D
j=1,---,n

and
N, = Z (1" 1) = (=1,

j=1,-,n

Hence M\ (x) and AZ*'(x) each have exactly one simple
zero in each interval I(k, n), k = 2, 3, -+- , n, and no
other zeros. Consequently all derivatives of A.(x) and
A*(x) (which are not identically zero) have all their
zeros in (x,, Xi).
(A-3) Ai(x) is strictly increasing and convex in x > x{™,
and so the same is true of \,(x).
Also, A**(x) is strictly decreasing and convex in
x < x!, and so the same is true of A,(x).

n




(A-4) Since 1 = L,(1, X; x)

= S0 < 3 1] = M,

we see that

A(x) 2 1. (8)

Moreover, equality occurs in Eq. (8) for x = x{™,

i=1,:-+,nandfor n> 3 only for these values of x.

(A-5) If n > 3 there is exactly one point in I(k, n) at which
A(x), and hence \,(x), takes on its maximum
value on I(k, n).

To prove (A-5) it suffices to show, in view of (A-4), that
the derivative of A*(x) has at most one zero in I(k, n).
Suppose this to be false for some k among 1, - - - , n, then
the derivative of A(x) has three zeros in I(k, n) since
Mix) = 1 at the end points of I(k, n) and Ni(x) > 1
throughout I(k, n). But it is a consequence of (A-1) that
ME(x) has at least (k — 2) sign changes in (x;_;, x;) and
at least (n — k) sign changes in (x,, x;). Therefore the
derivative of A\:(x) has at least (k — 3) zeros in (x;_;, x;),
at least (n — k — 1) zeros in (x,, x;), and three zeros
in (x;, xx—1), hence a total of at least (n — 1) zeros for a
polynomial of degree at most n — 2. This leads to a
contradiction since for n > 3, M(x) £ 1, and (A-5) must
be true.

In summary then, for n > 3 the A\, (x) are piecewise
polynomials satisfying Eq. (8), taking the value 1 only
atx = x;,i= 1, -+, n, having a single maximum between
consecutive nodes, monotone decreasing and convex
in (—1, x,) and monotone increasing and convex in (x;, 1).

Next, suppose

M, (X) = max A(ZX, x).

Zpn<z<z)

And suppose
yi=ax; +bi=1-,n,

where a > 0and g, barechosensothaty, e ,i=1,--- ,n.
Such ordered pairs, (a, b), will be called “admissible”
(with respect to X).

Theorem 1. For an extremal matrix of nodes, X*,
A(X*) = M(X*),n=1,2,--- .

Proof. Suppose the theorem were false. Then M, (X*) <
A, (X*) for some n. Let x%, - -+ , x* be the n* row of X*,
Choose a, b to satisfy ax* + b = 1, ax* 4+ b = —1.
(a, b) is admissible. Put ax* 4+ b = y,,i= 1, --- , n
and let Y denote a matrix of nodes whose nt" row is
Yis "** 5 ¥x. Then

AY) = max 2 ]I u’-}

~1<y<1 3 i AYe —

f

| (ax + b) — (ax* + b)
s 211 l(ax* + b) — (axt + b)

= M, (X*) < A(X%),
contradicting the extremality of X*. The theorem is proved.
By (A-3) there exist { > 1 and n < —1 such that
M(X, 8 = N(X, m) = A(X).

Let a, b satisfyaf + b= 1, an + b = —1. (a, b) is ad-
missible. If ax; + b= z;,,i= 1, --- , n,and Z is a matrix
of nodes whose nth row is z;, --- , z, then

A(Z) = A(X)
and
N(Z, £1) = A(2).

Note that 4=1 are not included among z;, -+« , z, (n > 3).

Suppose A, (X) = M, (X). It is clear that M, (X) =
M(Z), hence M, (Z) = A, (Z). Now, any (a, b) satisfying
both

a>1,|p<a—1
and

azy + b < 1

az, + b > —1,

is admissible, and there exist infinitely many such (a, b).
Choose one such (a, b), put w; = az;+ b,i=1,--- ,n,
and let W be a matrix of nodes whose #* row is wy, -+ - ,
w,, then W = Z and A, (W) = A.(2).
In the course of this discussion we have proved, in view
of Theorem 1,

Theorem 2, An extremal set of nodes, X*, is not unique.

Some numerical results

In view of Egs. (6) and (7) it seems worthwhile to in-
vestigate the Chebyshev nodes, T, further. The 1BM 7094
was used to explore the behavior of N\ (7, x) for n =
3, .-+, 40. Since each row of T is symmetric with respect
to the origin, \,(T, x) is an even function of x and so its
behavior on I is determined by its behavior on [—1, 0].
We calculated AT, —1) and the (single) maximum of
M(T, x) on each subinterval between consecutive nodes
that contains points of [—1, 0]. The maximum on a
subinterval was calculated by evaluating A (7, x) at
points of successive bisection of the subinterval. After
each pass the largest value of A, (T, x) on the points of
the preceding subdivision was stored, and the process
was repeated on a bisected mesh until the difference
between two consecutive largest values became less
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than 107°. The current largest value of A (7, x).was then
taken to be the maximum of A, (7, x) on the subinterval
under consideration.

The computations suggest that A (T) = AT, 1)
and that A, (7, —1) is substantially larger than the maxima
on the subintervals. In addition the maxima are strictly
decreasing as we proceed into the interval [—1, 0] from
the left-hand end point.

We are thus led to

Conjecture 1. N (T, x) < A (T, 1) for —1 < x < 1.

This conjecture focuses attention on A, (7, 1) as a function
of n. We proceed next to determine the asymptotic be-
havior of this function as n — .

If we put

67 = (2j— Dr/2n,j=1, -, 9)

=

and
P =cos 07, j=1, ,mn=1,2,---, (10)

the resulting matrix of nodes is 7. Then

M) = M(T, %) = % > __ lcosno] o 8, (11)

|cos 8 — cos ;]

where

x = cos 6,0 S:O <. (12)
Theorem 3:

lim I:)\n(l) - (—2- log n 4 2 <log 8 + 'y))] = 0.

n—oo T ™ T

(13)

(v is Euler’s constant, v = .5772 -+-).

Proof. In view of Eq. (11) we have

1 ¢ sin 6; 1 < 0;
M) = = _smy o2 Yi,
( ) n 1Z=1 1 — cos 9:,‘ n 5= cot 2
Therefore,
T ~ 1 T~ 1
x" 1 — < =1 ____) —_ —_—
T ( ) n 3 cot 2 01/2 + n = 07‘ 2
But

LTS 6 1 _f( _@_L>
1ir:njz=;<cot 2 = 01/2>— S c:ot2 32 dd

= 2log—,
while since
n n 2n n
i SR R U S 4( 1_1 1)
n 1 6; im12i— 1 i=1 J 2737
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we obtain

lim <EE i—410g2n-{-210gn>
n—0Q n -1 0i

= 4(y — 3v) = 2v.
The theorem is established.

A consequence of Theorem 3 is that the constant C; of
Eq. (7) must satisfy

0222(10g§+7) = ,9625 --- .
T T

If we assume that Conjecture 1 is true we obtain in-
teresting results:

Theorem 4. If we assume Conjecture I then
AX*) < ALT) for n > 2.%

Proof. Conjecture 1 implies that M. (T) < A7) and
Theorem 4 then follows from Theorem 1.

Moreover, if x”, j =1, -+ , n is defined by Eq. (10)
and we put

e =ax?P +b,j=1,--+,n,

where (a, b) is the (necessarily admissible) solution of
ax® 4+ b=1

ax™ 4 b= —1,

we obtain a new matrix of nodes, E, the “expanded”

Chebyshev nodes. (The Chebyshev nodes have been
expanded as far as possible.) We obtain easily

Theorem 5. If we assume Conjecture 1 then
A(E) < A(T).

Proof. A, (E) = M,(T) and Conjecture 1 implies that
MT) < A(T).

The Fekete nodes

The problem of finding an extremal matrix of nodes, X*,
is that of determining an X* that minimizes

A(X) = max 2, |[IP@; X)|

—1<z<

among all choices of X. A similar problem, that of

t AAX*) < AyT) is easy to establish without Conjecture 1.
Also S. N. Bernstein has shown, without Conjecture 1, that
Af(X*) < A(T), in Sur la limitation des valeurs d’un polynome
P.(x) de degré n sur tout un segment par ses valeurs en n + 1
points du segment. Izvestia Akad. Nauk S.S.S.R., Classe des
Sciences Math, et Naturelles, 1931, pp. 1025-1050 (See page
1027).




determining a set of nodes that minimizes

®,(X) = max 2 [IP(x; X)T

—1<z<1

among all choices of X, was solved by Fejér [5]. An
extremal set of nodes is X = F, where F is the array of
Fekete nodes, which are defined as follows. The #tt row of
F consists of the zeros of (x> — 1) P! _,(x), where P,(x) is
the Legendre polynomial of degree n. It is clear that
these zeros all lie in 1. (We name these points after Fekete
since it can be shown that the nt* row of F consists of
the n points of I for which

H Ixs - x:‘!

i1<7

1,7=1

is greatest among all choices of x;, --- , x, € L Such

points are intimately connected with Fekete’s concept of

the “transfinite diameter” of a point set, in this case I.)
Fejér established that &,(F) = 1, which, since $,(X) > 1

is obvious for any X, proves the extremality of F. Further,

®,(F) = 1 in conjunction with Schwarz’ inequality gives

A(F) < n'2, (14)

Numerical evidence suggests that the bound in Eq. (14)

can be substantially improved. The computation of
A (F) for n = 3, +-- , 40 was similar to that of A(7) as
described earlier (page 189).

Conjecture 2. AJE) < A(F) < A(T), n > 3.

Conjecture 3. The relative maxima of N(F, x) on sub-
intervals between nodes increase in [— 1, 0). \.(F, x) attains
its maximum on I at x = 0 for even n and “near” x = 0
for odd n.
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