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Some Numerical Experiments in the  Theory of 
Polynomial Interpolation 

Abstract: An important unsolved  problem  in the theory of polynomial interpolation is that of finding a set of nodes  which is 
optimal in the sense that it  leads to minimal  Lebesgue  constants. In this  paper  results  connected to this  problem are obtained, 
and  some  conjectures are presented  based  upon  numerical  evidence  garnered from extensive  computations. 

Introduction 

General 

If the values of a function, !(x), are known for a finite 
set of x values in a given interval, then a polynomial 
which takes on the same values at these x values offers 
a particularly simple analytic  approximation to f(x) 
throughout  the interval. This approximating technique is 
called polynomial interpolation. Its effectiveness depends 
on the smoothness of the function being sampled (if the 
function is unknown,  some  hypothetical  smoothness  must 
be chosen), on  the number and choice of points at which 
the function is sampled, and  on what measure is used to 
determine  how far  the interpolating  polynomial is from 
the given function. In this  paper we take  as measure of the 
error of approximation the greatest vertical distance 
between the graph of the function and  that of the inter- 
polating  polynomial over the entire  interval  under  con- 
sideration. We consider the problem of how to choose n 
points at  which to sample  any  function of given smoothness 
in order that  the  error should  be as small as possible. 
In general, the location of optimal  interpolation  points is 
unknown and we have made some numerical computations 
which may  indicate the direction in which such points 
should be sought. 

University of Arizona, Tucson, Arizona. 

Particular 

For each n = 1,2, * let xjn) , - - , X:’ be real  numbers 
which we call “nodes”, satisfying 

- 1 I X?) < x:’l < * - < X:n) 5 1 .  

The infinite triangular  matrix of nodes 

x(l) x ( 2 )  12) x ( ; )  . . . x ( ; ) ,  . . . 
1 ,  1 x 2 ,  * * * ,  

is denoted by X .  Let f(x) be a function defined on I :  
-1 5 x I 1. Then  there exists a unique  polynomial of 
degree not exceeding n - 1 which agrees with f(x) at 
x:”) , * , x:) for each n = 1,2, . . . Given n we obtain 
this polynomial by 6rst forming the polynomials of 
degree n - 1 

n 

JJ (x  - X I ; ’ )  

JJ - .I;’) 

, =1 
i # i  

l , ( X )  = I(:’ ( x ;  x) = 

i f i  
i = l  

j = 1 ,  . a .  , n. (1) 

(When n and X are fixed, and  no ambiguity will arise, 187 
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I- 
we drop the superscripts (n) and the  node-identification X.) 
It is  clear from (1) that 

Z i ( X i )  = 
0 , i Z j  

1 , i =  j 

Now  we put 
n 

Ln(f ,  X ;  X> = f(xt)~i(x)* (3) 
2 = 1  

Then L,(x) = L,(f, X ;  x) is a polynomial of degree at 
most n - 1 with the property that L,(xi) = f ( x i ) ,  i = 
1, - , n. (Moreover, if Q ( x i )  = j (x%),  i = 1, ... , n 
and Q(x) is a polynomial of degree not exceeding n - 1, 
then Q(x) - L,(x) = 0 for x = x l ,  * , x ,  and so Q(x)  = 
L,(x), thus establishing the above-mentioned  uniqueness.) 
The polynomial Ln(x) is  called the Lagrange  interpolating 
polynomial of degree n - 1 to f(x) at x l ,  , x,. 

It is rather natural to expect, a priori, that the sequence 

converge  uniformly to f(x) for x E I ,  at least for a con- 
tinuous f(x). That this expectation  is  illusory is the result 
of the following  theorem of G. Faber [l]. 

Theorem.  Given X there exists a continuous function on 
I ,  f(x), such that { Ln(f, X ;  x ) ]  does not converge uniformly 
on 1. 

L,(f, X ;  X ) ,  L&, X ;  X ) ,  . * * , L,(f, X ;  X ) ,  . . . should 

In contrast to this, if f(z) is an entire function  then for 
any X ,  Lncf, X ;  x )  converges  uniformly to f ( x )  in 1. 

The convergence properties of the Lagrange inter- 
polating  polynomials are closely connected to the behavior 
of the Lebesgue  functions 

= L(X9 x )  = c I4(x)l7 
i = l  

and the Lebesgue constants 

A, = An( X )  = max X,(x). 
" l < Z < l  

In general, the smaller the A, the better the convergence 
(but  see Erdos and Turan [2]). Erdos [3] has shown that 
there exists a positive constant, C1, such that for any X 

An > (2/7r) log n - C1. (6) 

Moreover,  according to Erdos [3], if  we denote the matrix 
of nodes  whose nth row  is  cos (7r/2n), cos (3~/2n), - , 
cos ((2n - 1)7r/2n)  (i.e., the zeros of the Chebyshev 
polynomial of degree n, Tn(x) where T,(x) = cos ne, 
x = cos 0, 0 5 0 5 T )  by T then there is a positive 
constant C, such that 

L ( T )  < (2,'~) log n f C,. (7) 

It is  clear  from Eq. (6) and Eq. (7) that the matrix of 
188 nodes T is an excellent  choice for interpolation, as far 

F. W. LUTTMANN AND T. J. RIVLIN 

as convergence  properties are concerned.  However, it can 
be  shown that there exists at least one matrix of nodes X* 
such that A*, = An(X*) I &,(x), n = 1, 2, * for any 
matrix of nodes X .  We shall call X* an extremal matrix 
of nodes. The problem of finding an extremal  matrix of 
nodes  is a famous unsolved  problem of interpolation 
theory. It is  clear from Eq. (6) and Eq. (7) that 

A*, - - log n = 0(1), n + m .  
L 
7r 

In this paper we  wish to present  some conjectures 
based upon automatic digital computation, and some 
proved  results as well, in this  circle of ideas.  (Background 
material  mentioned  above for which no reference  is 
given can be found in Natanson [4].) 

Some general results 

We want  first to collect  some  elementary  properties of 
the Lebesgue  functions. It is clear from Equation (4) that 
the Lebesgue functions, Xn(x), are piecewise  polynomials. 
More precisely, if I(k, n)  denotes the interval [ x p ) ,  x:"_:], 
k = 2, 3, , n while  Z(1, n)  is (X?) ,  m) and I(n 4- 1, n) 
is (-a, x:'), then Xn(x) is a polynomial of degree at 
most n - 1 in  each interval I(k, n), k = 1, 0 . .  , n i- 1. 
Let XE(x) be the polynomial which  coincides  with X,(x) 
on I(k, n). The results given  below as Assertions (A-1)- 
(A-5) are easy  consequences  of the definitions of Eqs. (1) 
and (4). 

(A-1)  If x E Z(k, n )  then  for i = 1, . , n, 

sgn Zi(x) = 
(-l)'-k, i 2 k 

(- l ) k - i - l ,  i < k .  

n 

(A-2) X ; ( X ~ )  = ( - l ) i - l Z i ( x i )  = (-l)'-', 
,=1  

j = 1 ,  - 1 -  , n  

and 
n 

X","(Xi)  = (- l)n-dZi(xi) = (-l),-f, 
1=1 

j =  1, , n .  

Hence Xi(x) and X~"(x) each  have  exactly  one  simple 
zero  in  each  interval I(k, n), k = 2, 3, , n, and no 
other zeros.  Consequently all derivatives of Xi(x) and 
Xz"(x) (which are not identically  zero)  have all their 
zeros  in (x,,  xl). 

(A-3) XA(x) is strictly  increasing and convex  in x 2 X:"),  
and so the same is true of X,(x). 
Also, Xz"(x) is strictly  decreasing and convex  in 
x 5 X:), and so the same is true of X,(x). 



(A-4)  Since 1 = Ln(l, X ;  x )  

= 2 l<(x> I 2 I li(x) I = Xn(x> 9 

i = l   i = l  

we see that 

X,(x) 2 1 (8) 

Moreover, equality occurs  in E q .  (8) for x = X:"),  
i = 1, - . , n, and for n 2 3 only for these  values  of x.  

(A-5) If n 2 3 there is  exactly  one point in Z(k, n) at which 
Xt(x), and hence X,(x), takes on its maximum 
value on Z(k, n). 

To prove  (A-5) it suffices to show, in view  of (A-4), that 
the derivative of X:(x) has at most one zero in Z(k, n). 
Suppose this to be false for some k among 1, - , n, then 
the derivative of Xf(x) has three zeros  in Z(k, n) since 
Xt(x) = 1 at the end points of Z(k, n) and X:(x) 2 1 
throughout Z(k, n).  But it is a consequence of (A-1) that 
Xt(x) has at least (k  - 2) sign  changes in ( x ~ - ~ ,  x l )  and 
at least (n - k)  sign  changes in (x,, X J .  Therefore the 
derivative of X:(x) has at least (k - 3) zeros  in ( x ~ - ~ ,  xl), 
at least (n - k - 1) zeros in (x,,  xk), and three zeros 
in (xk ,  x ~ - ~ ) ,  hence a total of at least ( n  - 1)  zeros for a 
polynomial  of  degree at most n - 2. This leads to a 
contradiction since for n 2 3, X:(x) $ 1, and (A-5) must 
be true. 

In summary then, for n 2. 3 the X,(x) are piecewise 
polynomials  satisfying E!q. (8), taking the value 1 only 
at x = x i ,  i = 1, - * , n, having a single  maximum  between 
consecutive  nodes, monotone decreasing and convex 
in (- 1, x,) and monotone increasing and convex  in (x1,  1). 

Next, suppose 

M,( X) = max X,( X ,  x ) .  

And suppose 

y i  = axi + b ,  i = 1, , n ,  

where a > 0 and a, bare chosen so that y i  e Z ,  i = 1, . . . , n. 
Such ordered pairs, (a, b), will  be called  "admissible" 
(with  respect to X). 

Z l % < Z < Z l  

Theorem I .  For an extremal  matrix of nodes, X * ,  
A,(X*) = M,(X*) ,  n = 1, 2, . 

Proof. Suppose the theorem were  false. Then M,(X*) < 
A,(X*) for some n. Let x*,, - - , x*, be the nth row of X * .  
Choose a, b to satisfy ax*, + b = 1, ax*, + b = - 1. 
(a, b) is  admissible. Put ax: + b = yi, i = 1, * - , n 
and let Y denote a matrix of nodes  whose nth row is 
Yl, ... , yn. Then 

= M,( X*)  < A,( X * ) ,  

contradicting the extremality of X*. The theorem isproved. 

By (A-3) there exist { 2 1 and 17 5 - 1 such that 

X,( X, S-) = X,( X, 7) = A,( X). 
Let a, b satisfy a t  + b = 1, a7 + b = - 1. (a, 6) is ad- 
missible. If axi + b = z i ,  i = 1, . . - , n, and 2 is a matrix 
of nodes  whose nth row  is z l ,  . . . , z, then 

An(Z) = L ( X )  

and 

X,(Z, f 1) = A,(Z). 

Note  that f l  are not included among zl, . , z ,  (n 2 3). 
Suppose A,(x) = M,(X). It is clear that M,,(X) = 

M,(Z), hence M,,(Z) = A,(Z). Now,  any (a, b) satisfying 
both 

a >  1, lbl  l a -  1 

and 

a21 + b I 1 

U Z ~  4- b 2 -1, 

is admissible, and there exist  infinitely  many such (a, 6). 
Choose one  such (a, b), put wi = azi + b, i = 1, - , n, 

and let W be a matrix of nodes  whose nth row is wl ,  . , 
w,, then W # Z and A,( W )  = A,(Z). 

In  the course of this discussion we have proved, in view 
of Theorem 1, 

Theorem 2. An extremal  set of nodes, X*, is not unique. 

Some numerical results 

In view  of Eqs. (6) and (7) it seems  worthwhile to in- 
vestigate the Chebyshev  nodes, T, further. The IBM 7094 

was  used to explore the behavior of Xn(T, x )  for n = 
3, - , 40.  Since  each  row of T is  symmetric  with  respect 
to the origin, X,(T, x )  is an even function of x and so its 
behavior on Z is determined by its behavior on [- 1, 01. 
We calculated X,(T, -1) and  the (single)  maximum  of 
X,(T, x )  on each subinterval between  consecutive  nodes 
that contains points of [-1, 01. The maximum on a 
subinterval was  calculated by evaluating X,(T, x )  at 
points of  successive  bisection  of the subinterval. After 
each pass the largest  value of X,(T, x )  on  the points of 
the preceding  subdivision  was stored, and  the process 
was  repeated on a bisected  mesh until the difference 
between  two  consecutive  largest  values  became  less 189 
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than lo-'. The current largest value of Xn(T, x)' was then 
taken to be the maximum of X,(T, x) on  the subinterval 
under  consideration. 

The computations suggest that A,(T) = X,(T, f l )  
and  that X,(T, - 1) is substantially larger than  the maxima 
on  the subintervals. In  addition  the maxima are strictly 
decreasing as we proceed into  the interval [-1, 01 from 
the left-hand end point. 

We are  thus led to 

Conjecture I .  X,(T, x) < Xn(T, 1) for -1  < x < 1. 

This  conjecture focuses attention  on X,(T, 1) as a function 
of n. We proceed next to determine the asymptotic be- 
havior of this  function as n + w . 

If we put 

e':) = (23' - 1)a/2n, j = I ,  * , n ,  (9) 

and 

x(:' = cos o':), j = 1, , n ;  n = I ,  2 ,  , (10) 

the resulting matrix of nodes is T .  Then 

where 
- 

X = COS e, o <-e  lr. 

Theorem 3:  

(7 is Euler's constant, y = S772 e). 

Proof. In view of E q .  (11) we have 

Therefore, 

But 

= 2 l o g - ,  L 

U 

while since 

we obtain 

= 4(7 - 37) = 27. 

The theorem is established. 

A consequence of Theorem 3 is that  the constant C ,  of 
Eq. (7) must satisfy 

If we assume that Conjecture 1 is true we obtain in- 
teresting results : 

A,(X*) < An(T) for n 2 2.t 

Proof. Conjecture 1 implies that Mn(T) < A,(T) and 
Theorem 4 then follows from Theorem 1. 

Moreover, if X:"), j = 1, - , n is defined by Eq. (10) 

Theorem 4 .  If we assume Conjecture I then 

and we put 

e':) = ax':) + b ,  j = 1, - , n* 

where (a, b) is the (necessarily admissible) solution of 

ax';' + b = 1 

+ b = - 1 ,  

we obtain a new matrix of nodes, E, the "expanded" 
Chebyshev nodes. (The Chebyshev nodes have been 
expanded  as far  as possible.) We obtain easily 

Theorem 5. If we assume Conjecture I then 
An(@ < An(T)* 

Proof. An(@ = M,,(T) and Conjecture 1 implies that 
MAT) < UT). 

The Fekete nodes 
The problem of finding an extrema1 matrix of nodes, X * ,  
is that of determining an X* that minimizes 

among all choices of X .  A similar problem, that of 

t nz(X*) < Az(T)  is  easy to establish  without  Conjecture 1. 
Also S. N.  Bernstein has  shown,  without  Conjecture 1, that 
A,(X*) < A3(T), in Sur la limitation des  valeurs Sun polynome 
P,(x) de  degrd n sur  tout un segment par ses valeurs en n i- I 
points du segment. Izvestia  Akad.  Nauk S.S.S.R., Classe  des 
Sciences  Math. et Naturelles, 1931, pp. 1025-1050 (See  page 
1027). 
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determining a set of nodes that minimizes 

among all choices of X ,  was solved by FejCr [5] .  An 
extrema1 set of nodes is X = F, where F is the  array of 
Fekete nodes, which are defined as follows. The nth row of 
F consists of the zeros of (xz  - 1) P ~ - , ( x ) ,  where P,(x) is 
the Legendre  polynomial of degree n. It is clear that 
these zeros all lie in Z. (We name these points  after Fekete 
since it can  be  shown that  the nth row of F consists of 
the n points of Z for which 

i . j = l  

is greatest among all choices of x,, . . . , x, E I .  Such 
points are intimately connected with Fekete’s concept of 
the “transfinite  diameter” of a point set, in this case I . )  

FejCr established that @.,(F) = 1, which, since @.,(X) 2 1 
is obvious for any X ,  proves the extremality of F. Further, 
@.,(F) = 1 in conjunction with Schwarz’ inequality gives 

A,(F) 5 nl”, (14) 

Numerical evidence suggests that  the  bound in Eq. (14) 

can  be substantially improved. The computation of 
A,(F) for n = 3, * , 40 was similar to that of A,(T) as 
described earlier (page 189). 

Conjecture 2. A,(E) < A,(F) < A,(T),  n > 3.  

Conjecture 3. The relative  maxima of X,(F, x )  on sub- 
intervals  between  nodes increase in [- I ,  01. X,(F, x )  attains 
its maximum on Z at x = 0 for  even n and “near” x = 0 
for odd n. 
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