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Analysis of the Impurity Atom Distribution Near the
Diffusion Mask for a Planar p-n Junction

Abstract: Presented here are the results from a mathematical investigation of the impurity atom distribution within a planar
p-n junction. Two fundamentally different diffusion processes are considered: In the first, a constant impurity atom con-
centration is maintained at the semiconductor surface; in the second, a fixed quantity of impurity atoms is involved in the
entire diffusion process. The results of this investigation show than a one-dimensional approximation inadequately character-
izes the impurity atom distribution within a planar junction, and that in theory, the planar junction is not at a constant
distance from its impurity atom source. Instead, the junction is closer to its source at the semiconductor surface than deep
within the bulk material. Further, it is shown that when diffusion takes place from a source of constant concentration
density, the junction impurity atom gradient is maximum at the semiconductor surface. In contrast, this junction impurity atom
gradient is shown to exhibit a minimum at the semiconductor surface when the total number of impurity atoms is time

invariant throughout the entire semiconductor material.

Introduction

Modern p-r junction fabrication techniques are directed
toward the formation of planar-type structures. The
planar junction, unlike the mesa junction, requires several
spatial variables to fully characterize its impurity atom
distribution; this analytical problem has not been solved
in a rigorous fashion. The purpose of this paper is to
present two fundamentally different solutions for the im-
purity atom distribution in a planar junction: one which
applies when a constant impurity atom concentration is
maintained at the semiconductor surface, and another
for the case in which a fixed quantity of impurity atoms is
involved in the entire diffusion process. The first solution,
assuming a constant surface concentration, involves mixed
boundary conditions that restrict the analysis to two
spatial variables. This particular solution is applicable to
circular junctions and to regions of a rectangular junction
that are far removed from the corners. The second solu-
tion of this problem, assuming a fixed number of im-
purity atoms, is presented in its full three-dimensional
form for a rectangular junction configuration.

Analysis

Figure 1 illustrates the type of junction considered in this
analytical investigation. Except for that portion of the
surface from which diffusion takes place, the entire semi-
conductor surface is assumed to be covered with a diffu-
sion mask. It should be emphasized that this analysis

is based upon an idealization of surface masking tech-
niques, and also upon an idealization of impurity atom
diffusion within a semiconductor. The diffusion mask is
presumed to be an impenetrable barrier for impurity
atoms, thereby reducing to zero the impurity atom flux
normal to the semiconductor surface. This idealization
also implies that the semiconductor-diffusion mask
interface does not offer an easy path for impurity atom
diffusion in a direction tangent to the surface. In addition,
an isotropic diffusion process is assumed within the semi-
conductor material, thus permitting the use of a single
impurity atom diffusion constant.

The first analysis (for constant surface concentration)
is conducted for a two-dimensional model (Fig. 2) rep-
resenting a cross section of Fig. 1 in a region far removed
from the diffusion mask corner. Because of its mathe-

Figure 1 Illustration of the diffusion mask for a planar
junction of rectangular geometry.
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matical simplicity, the configuration of Fig. 2 has semi-
infinite geometry; this has little influence upon the applic-
ability of the model. In a practical planar junction the
depth of diffusion is small when compared with the
dimensions of a diffusion mask orifice, and the region of
interest is therefore adequately characterized by a model
of semi-infinite geometry. A similar approach is used to
establish the characteristics of a planar junction when
a constant number of impurity atoms is maintained
throughout the entire diffusion process. In this particular
analysis, the semiconductor surface is located upon the
plane y = 0 (Fig. 3), while diffusion takes place from the
region (0 < x < o ;y = 0;0 < z < »), The remaining
surface in this analytical model is assumed to be covered
by an ideal diffusion mask.

For simplicity, the two diffusion processes considered in
this analysis are called, respectively, the constant-C,
process and the instantaneous-source process. The
constant-C, process represents the diffusion of impurity
atoms into a semiconductor material when a constant
impurity atom concentration (C,) is maintained upon
its surface. In a one-dimensional analysis, the constant-C,
process yields the familiar complementary error-function
type of impurity atom distribution. An instantaneous-
source process represents the diffusion of impurity atoms
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Figure 2 Two-dimensional analytical model for a planar
junction.

Figure 3 Three-dimensional analytical model for a planar
junction of rectangular geometry.
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into a semiconductor material when the total number of
impurity atoms remains time-invariant. Prior to diffusion,
a given number of impurity atoms is deposited upon each
unit area of the semiconductor surface, thereby approxi-
mating the idealized mathematical concept of an instan-
taneous plane source. In one dimension, diffusion from
an instantaneous plane source yields the familiar Gaussian
type of impurity atom density distribution.

e Two-dimensional analysis: constant C,

For analytical purposes the configuration of Fig. 2 has
been replaced by an infinite wedge of semiconductor
material' of angle ,, as shown in Fig. 4. The region
surrounding this infinite wedge (8, < 8 < 27) is assumed
to contain a constant impurity atom density (C,) through-
out the entire diffusion process. Furthermore, the wedge
itself (0 < 6 < 8,) is assumed to be characterized by an
initial condition (at ¢ = 0) that renders it free of impurity
atoms of this particular species. After solving this infinite
wedge problem, the wedge angle 6, is set equal to 2w,
thereby solving the particular problem under consideration.
The reason for using this analytical technique is to
permit us to solve the difficult mixed boundary value
problem of a planar junction with a minimum of mathe-
matical complication. The geometrical symmetry of a
wedge provides a boundary at § = 6,/2 that effectively
insulates each half of the wedge. The impurity atom flux
originating at the wedge face 6§ = 6, will be equal in
magnitude, but opposite in direction, to the flux origi-
nating at the wedge face § = 0; this means that the
net flux crossing the boundary 8 = 6,/2 is always zero.
After increasing the wedge angle 6, to 2r we obtain an
impurity atom source upon the line (0 < x < w;y = 0),
and the resulting diffusion is into both the upper half-
plane and the lower half-plane. An insulating barrier
again appears at § = 6,/2, thus representing the masked
semiconductor surface (—» < x < 0; y = 0) in Fig. 2.

Figure 4 An infinite wedge of semiconductor material used
in the analysis of a two-dimensional planar junction.
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In Cartesian coordinates, the two-dimensional diffusion
of impurity atoms in a homogeneous medium is charac-
terized by the relation

9°c | 9" _ 1aC )
ay> D or’

while in polar coordinates this expression has the form
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Because the semiconductor wedge (Fig. 4) has the initial
condition C(r, §) = 0, a Laplace transform of Eq. (2)
yields the subsidiary equation
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which is satisfied by the relation
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where J,(ur) is a Bessel function of order #, and

= (2n 4+ Dr/6b,. (5)

After taking the inverse Laplace transform of Eq. (4)
we have
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The integral in Eq. (6) can be expressed in terms of
hypergeometric functions,’
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and therefore when 8, = 2=, Eq. (6) has the form
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The symbol 1F,[#/2; (h + 1); —r°/4D1] in Eq. (7) is the
hypergeometric series given by
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where «, and 3, represent expressions of the form
ko= k(k + )k + 2)k +3) - (k+n+ 1),
ko = 1. (10)

An important quantity derivable from Eq. (8) is its
gradient (®,) in a direction normal to the surfaces of
constant impurity atom concentration density; this
quantity partially determines the avalanche breakdown
voltage of the resulting p-n junction.® The gradient @, is
given by*

, _oc*  (14C
@ = (r 80> ’ (1

and therefore, after substituting the derivatives of Eq. (8)
into Eq. (11), we obtain
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& Three-dimensional analysis: instantaneous plane source

The solution of this second problem is based upon an
assumption that prior to diffusion a given number of
impurity atoms is deposited upon the semiconductor sur-
face. This situation is mathematically approximated by
an instantaneous plane source located upon the surface
O<x< w;y=0;0< z < «) in Fig. 3. From the
three-dimensional impurity atom diffusion equation,

181

IMPURITY DISTRIBUTION IN p-i2 JUNCTION




182

s
ax’®

2 2
Qc_l_?_g:.l__a_g (14)

+ ay: T 9z

a solution is obtained for two instantaneous point sources
located symmetrically about y = 0,

G(x,y,z,t; x',y',2)

— (WDgt)_j {exp [_(y;Dyt') ] + exp [_(y:—Dyt’) jl}
= )+ (z — z’)2_
4Dt

- exp (15)
Equation (15) is the Green’s function solution for this
boundary value problem.” The symmetrical distribution
of this Green’s function about the plane y = 0 results
in a normal flux of zero upon the plane y = 0 when
0<t< .

The initial conditions (¢ = 0) of this problem require
an impurity atom density of zero throughout the entire
semiconductor material, except at the surface y = 0; this
condition is satisfied if y’ = 0 in Eq. (15). In addition,

Figure 5 Calculated contours of constant impurity atom
density at the mask edge in a two-dimensional planar struc-
ture: (a) Constant-C, diffusion process: C = C(r, 4, t)/Co;
(b) Instantaneous-source diffusion process, C = C(x, y, o, )
\/1!' Dt/Co-
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at + = 0 any surface element dx dz upon the plane
0< x< w;y=0;0< z< »)must contain a constant
number of impurity atoms. From Eq. (15), the impurity
atom distribution at a surface element dx dz is given by

CoG(x, y,z, t; x',2') dx'dz’. (16)
If we now assume that identical impurity atom sources

reside upon every element of the surface (0 < x < o«
y=0;0< z < ®), we obtain

Clx, y,z,t) = {ﬂifl‘—]q} exp ‘:—4yDt:|
RV TR [ 4Dt]{1 e (z\/m)}
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which is the three-dimensional impurity atom distribution
resulting from an instantaneous-source type of diffusion
process.

As before, we can establish the density gradient (Go)
of impurity atoms in a direction normal to the surfaces
of constant impurity atom density; this, again, is directly
related to the avalanche breakdown voltage of a resulting
p-n junction.? From Eq. (17) we have

2 _ (3C) , (acY’ (@9)2 _C&xy,20
Qo = (8x> + (8y> + Jdz B w Dt

{_ﬁ_ exp (—x°/2Dt)
4Dt ' [1 + erf (x/2V DO

exp (—2°/2D1)
(1 + erf (x/2\/3t)]2}' (18)

Discussion

Figure 5 illustrates the calculated contours of constant
impurity atom concentration density for both a constant
C, diffusion process, Eq. (8), and an instantaneous-
source diffusion process, Eq. (17). Assuming a constant
doping level within the semiconductor material prior to
diffusion, this figure illustrates the families of p-n junctions
resulting from various levels of bulk doping. It should be
noted that Fig. 5 presents a comparison between the two-
dimensional impurity atom distribution for these two
types of diffusion processes. Although Eq. (17) describes
a three-dimensional impurity atom distribution, this ex-
pression has been reduced to two spatial variables by
setting z = o. Figure 5b therefore shows the impurity
atom distribution resulting from an instantaneous-source
type of diffusion process, as seen on an infinite plane
locatedat (—o < x < 0;— <y < 0;z= «).




Figure 5 illustrates an important difference between the
conclusions derived from a one-dimensional analysis and
those from a more rigorous mathematical solution of this
diffusion problem. A one-dimensional analysis is based
upon an assumption that identical impurity atom dif-
fusion characteristics exist under the diffusion mask edge
and in a direction perpendicular to the semiconductor
surface. This assumption implies that the transition point
of a resulting p-n junction will be everywhere equidistant
from the exposed semiconductor surface (Fig. 1). Rigorous
mathematical solutions of these diffusion problems show,
as in Fig. 5, the inadequacy of a one-dimensional approxi-
mation; both types of diffusion processes (constant C,
and instantaneous plane source) exhibit a greater penetra-
tion of impurity atoms in a direction perpendicular to
the semiconductor surface. In Fig. 5, for example, the
junction termination at the diffusion mask (y = 0) is
closer to the exposed semiconductor surface than the
junction location deep within the bulk material. This
characteristic is particularly evident in shallow structures.

Figure 5a implies the possibility that a constant C, dif-
fusion process yields an increased junction impurity atom
density gradient (®,) beneath the diffusion mask, thereby
decreasing its avalanche breakdown voltage. Further-
more, Fig. 5b indicates that an instantaneous-source
diffusion process yields an impurity atom density gradient
that extends well across the surface containing the im-
purity atom source. It is difficult to estimate from this
type of illustration the resulting gradient at the semi-
conductor surface.

To investigate these questions relating to the density
gradient in a planar p-n junction, Eqs. (8) and (17) were
first used to calculate the impurity atom distributions
at the semiconductor surface (Fig. 6). For a constant
C, diffusion process, a large impurity atom gradient
is found near the diffusion mask edge. At a distance of
less than one diffusion length (2 \/ D_t) from the mask
edge, this gradient decreases in magnitude, and will be
shown to become approximately equal to the gradient
established by a one-dimensional solution of this diffusion
problem. In contrast, Fig. 6 illustrates substantially
different surface characteristics for an instantaneous-
source diffusion process. The impurity atom gradient
(@,) is everywhere less than the magnitude obtained from
a one-dimensional solution; a decreased junction depth
results from the modified impurity atom concentration
density upon the exposed semiconductor surface.

In addition, the derivatives of Eq. (12) and Eq. (18)
have been investigated in an attempt to locate a region
of maximum impurity atom density gradient, ®,; this
consists of finding the extremum, subject to restraint by
means of a Lagrange multiplier.® The results of this in-
vestigation clearly indicate the semiconductor surface
as a region where @, assumes either a maximum or a

minimum value. For a constant-C, diffusion process, the
derivative of @, is zero at the semiconductor surface and,
from Fig. 6, this surface is therefore a region of maximum
@¢. Similarly, in two dimensions, the instantaneous-
source diffusion process yields a zero derivative for @,
at the semiconductor surface. In three dimensions this
diffusion process yields a zero derivative for @, along a
line bisecting the diffusion mask corner at the semicon-
ductor surface (y = 0, x = z2).

Figure 7 presents a comparison between the calculated
impurity atom density gradient (®,) at the semiconductor
surface, as illustrated in Fig. 6, and that in a direction per-
pendicular to the semiconductor surface (Gaussian and
erfc). It should be noted that this calculation is for a two-
dimensional approximation of the diffusion process. In
Fig. 7, the magnitude of &, is plotted against the impurity
atom density, thereby permitting an evaluation of @, at
two points along a junction transition surface (transition
from n-type to p-type material): at the semiconductor
surface, and at a location that is far removed from the
diffusion mask.

Figure 6 Calculated impurity atom distribution at the sur-
face of a two-dimensional planar structure: (a) Constant-C,
diffusion process, C = C(r, =, t)/Co; (b) Instantaneous-
source diffusion process, C = C(x, 0, o0, t) \/m Dt/Co.
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Figure 7 Calculated impurity atom density against the den-
sity gradient normal to the constant density surfaces in a
two-dimensional planar structure. (a) Constant-C, diffusion
process, C = (7, 6, t)/Co; £ = 206 \V/Dt/Cy; (b) Instantane-
ous-source process, C = C(x, y, o, t) \/r Dt/Co; § =
4ay(Dt) /Co.

From Fig. 7 we conclude that a constant-C, diffusion
process yields a substantially larger impurity atom density
gradient (®,) at the semiconductor surface than at regions
far removed from the diffusion mask (erfc). It should be
noted that this increased gradient has little influence upon
a practical p-n junction. An increased gradient can occur
in the junction transition region only when the bulk
material doping, C,, is less than an order of magnitude
below the surface concentration, C,. A situation of this
type is seldom encountered in practical semiconductor
devices.

An instantaneous-source diffusion process yields a sub-
stantially different impurity atom density gradient than
does a constant-C, diffusion process. From Fig. 7, it is seen
that an instantaneous-source diffusion process results in a
minimum impurity atom gradient, ®@,, at the semicon-
ductor surface, in a region far removed from the corners
of a diffusion mask. This gradient, in fact, is less than the

Figure 8 Calculated contours of constant impurity atom
density at the surface of a planar junction fabricated by an
instantaneous-source diffusion process. This illustration can
also be interpreted as a map of the surface C = 10~ where
y/2\/Dt is the penetration depth: C = C(x, y, z, f)
\/ « Dt/Co.
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gradient one would calculate from a one-dimensional
analysis of this same problem. It should be noted that a
two-dimensional form of Eq. (17) is not applicable in the
vicinity of a diffusion mask corner. In this region the
impurity atom concentration density, and its gradient,
must be established from three-dimensional forms of Egs.
(17) and (18), respectively.

Figure 8 illustrates contours of constant impurity
atom density in the immediate vicinity of a diffusion
mask corner. This illustration has two interpretations.
The contours in Fig. 8 could represent a family of lines
upon which surfaces of constant impurity atom density
terminate at the semiconductor surface. If, therefore, a
constant bulk doping level exists within semiconductor
material, this Figure could illustrate the families of p-r
Jjunctions resulting from various levels of bulk doping. A
second interpretation of Fig. 8 is obtained if each contour
is associated with a specific normalized depth from the
semiconductor surface (y/2 \/E). In this fashion, a

topographical map is obtained for the constant density
surface C = 107 resulting from an instantaneous-source
diffusion process.

The impurity atom density gradient @, normal to the
contours of Fig. 8 exhibits either a maximum or minimum
along the line (x = z; y = 0). Figure 9 shows that G,
has, in fact, a minimum value at this location. Two regions
have been plotted in Fig. 9 for purposes of comparison.
The curve marked “surface” provides normalized values
of @, vs normalized concentration density of impurity
atoms along a line bisecting the diffusion mask corner
(x = z; y = 0). The curve marked “Gaussian” illustrates
the normalized values of ®, along this same line, but
in a direction normal fo the semiconductor surface
(x =z= o; —o < y < 0). Figure 9 shows that an
instantaneous diffusion process yields a minimum value
of @, at the semiconductor surface, although this minimum
will have a negligible influence upon most practical semi-
conductor devices.

Figure 9 Calculated impurity atom density vs density gradient normal to the surface of a p-n junction—instantaneous-source
diffusion process. This illustration describes the impurity atom gradient along a line bisecting the diffusion mask corner
(x = z; y = 0). The Gaussian distribution is obtained at infinite distance from this corner along a line directed into the mate-

rial (x =z =o0; —c0 <y £ 0).
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Conclusions

The foregoing analysis has shown that the location of the
p-n junction in a planar device cannot be accurately deter-
mined from a one-dimensional solution of the diffusion
equation. It is established that the transition surface of a
planar junction (transition from n-type to p-type material)
is not equidistant from its impurity atom source in the
vicinity of a diffusion mask edge. This situation is en-
countered when diffusion takes place from a source of
constant impurity atom density, and also when a constant
number of impurity atoms is involved in the entire dif-
fusion process.

The results of this analysis imply that the theoretical
avalanche breakdown voltage of a planar p-n junction is
the same as the theoretical breakdown voltage of an
equivalent one-dimensional structure. A constant-C,
diffusion process introduces an increased impurity atom
gradient at the semiconductor surface (immediately under
the diffusion mask), although when the bulk semiconductor
doping, C,, is substantially below the surface concentra-
tion C,, this increased gradient will not appear in the
junction transition region. In addition, it is shown that
diffusion from an instantaneous plane source yields junc-
tions with a maximum impurity atom gradient deep within
the semiconductor material, and far removed from the

D. P. KENNEDY AND R. R. O'BRIEN

diffusion mask. This maximum gradient is equal to the
gradient determined from a one-dimensional solution of
this same problem.
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