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Fresnel Holograms: Their Imaging Properties 
and Aberrations 

Abstract: A simple  and unified treatment  is  given of the  properties of the  magnified  or  demagnified  images  reconstructed  from 
Fresnel  holograms.  The  resolution  attainable  in  wavefront  reconstruction is discussed  with particular  attention  to  the  aberra- 
tions of reconstructed  images.  Explicit  expressions  are given for the five primary wave aberrations,  viz.,  spherical  aberration, 
coma,  astigmatism,  curvature of field,  and  distortion. 

1. Introduction 

Holography is the science of producing  images by  wave- 
front reconstruction. In general no lenses are involved. 
The reconstructed  image  may  be either magnified or 
demagnified  compared to the object.  Three-dimensional 
objects can be  reconstructed as three-dimensional  images. 
The wavefronts which are recorded  photographically and 
later reconstructed are those due to diffraction of light 
by the object; thus, corresponding to the difference 
between  Fresnel and Fraunhofer diffraction,  one  may 
produce either Fresnel or Fraunhofer holograms.  This 
paper  will  deal  exclusively  with the properties  of  Fresnel 
holograms.  Although  some of the results  presented  here 
have  been stated previously,  they are derived  in a simple 
and unified  fashion  which  leads  naturally to the treatment 
of hologram aberrations. 

Wavefront  reconstruction was invented by Gabor and 
expounded by him in a series of classic  paper^."^ After 
the work of Gabor there were  few  contribution^^'^ un- 
til re~ently.~-l~ The decline  in  interest was doubtless 
due to two  difficulties. The !%st  difficulty  was that in 
Gabor's method of image  reconstruction the real image 
was superposed on a field emanating  from a virtual 
image. The second  difficulty  was that the light  sources 
suitable for producing  holograms were  of  very  low 
brightness 15 years  ago. The difficulty  of overlapping 
real and virtual images  was  removed  by the o b ~ e r v a t i o n ~ ~ ' ~  

that a high-spatial-frequency  carrier  wave  could  be  used 
in the hologram construction process  in  such a way that 
the real and virtual images  would  be  well separated in 
the reconstruction. The invention of the laser has overcome 
the difficulty of working  with  sources of  low  brightness. 

This paper  is  organized as follows. First we will  show 
how to calculate  in the Fresnel approximation the geo- 
metrical  properties of the magnified or demagnified 
images  reconstructed  from  holograms.  This will  be  done 
for arbitrary illumination of the object and for both 
two- and three-dimensional  objects. A discussion  will  then 
be  given  of the resolution attainable in wavefront  re- 
construction.  Finally we will  discuss the aberrations of 
the images  produced by wavefront  reconstruction. 

2. Geometrical  properties 

Consider the arrangements  shown  in  Fig. la for the 
construction of a hologram and in Fig. 1 b for the re- 
construction of the image. In construction, a two-dimen- 
sional  object of transmission T(x,) (typically, a film 
transparency) in the plane P, is  illuminated from behind 
by monochromatic  light of  wavelength hl ;  the diffraction 
field due to the object  is  superposed on a reference or 
carrier wave  with  which it interferes. The carrier wave 
has  plane  wavefronts and is derived  from the source that 
illuminates the diffuser. The resulting total field is  recorded 



Figure l a  Schematic  diagram of hologram  construction in 
light of wavelength XI. The object (of transmission T(x,)) is 
illuminated  with  diffuse  light  produced by scattering the 
monochromatic  plane wave from a diffusing  plate.  An opti- 
cal system  is  used to derive the plane-wave  reference  beam 
from the same  source  as the plane wave incident on the 
diffuser. 
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Figure l b  Diagram of image  reconstruction  using the holo- 
gram made as in  Fig. la. The reconstruction is carried out 
in light of  wavelength h2. The hologram is illuminated by a 
beam of divergent  monochromatic  light. The radius of curva- 
ture of the spherical  wavefronts is R.  

photographically  in  plane P2,  producing the hologram. 
The separation between object and hologram is shown 
in Fig. l a   a s  D l .  In reconstruction, the developed hologram 
is illuminated solely by a divergent beam of coherent 
light of wavelength X,, giving rise to a diffraction field 
containing  a real image in  the plane P3. The separation 
between hologram and real image is shown in Fig. l b  
as D,. For  the  sake of definiteness we use a plane wave 
as reference or carrier wave in  construction, and a divergent 
beam of radius of curvature R in reconstruction. 

The following properties will be derived: 

1) The quantities Dl,   D, ,  R ,  X1, and X2 are related by4 

(XZR)" = (XID1)-' - (XZDJ'. (1) 

2) The image is magnified laterally by an  amount M = 
(D2X,)/(D1X1) in all directions  parallel to the plane of 
the hologram, and longitudinally by an  amount (D2/Dl)M 
in the direction perpendicular to  the plane of the holo- 
gram.3 

3) The geometrical properties of the reconstructed image 
are independent of the  nature of the illumination of the 
object  provided  this  illumination is independent of time, 
and provided the coherence  length of the light is longer 
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4) The angle of reconstruction 0' is related to  the angle 
of incidence 0 of the reference beam on  the hologram 
by the condition  sin 0' = (X,/Xl) sin 0. 

Although all calculations to be made here will assume 
a  plane wave reference beam, the  methods used can be 
readily adapted  to  any  other configuration and in  fact 
constitute a general procedure for analyzing holographic 
problems. Properties (l), (3), (4), and  the expression for 
lateral magnification will be derived first, using two- 
dimensional objects. The expression for  the longitudinal 
magnification, which applies to three-dimensional objects, 
is then easily derived from Eq. (1). We will treat explicitly 
only transparent objects, but  it is known that holograms 
can be made  in the light scattered from  opaque objects.' 

Two-dimensional objects and images 

Let us consider now the calculation of the field in the 
plane of the hologram (the P, plane  in Fig. la)  when a 
two-dimensional object of complex amplitude  trans- 
mittance T(xl) is illuminated from behind with light of 
wavelength XI. We will take  the most general expression 
for this illumination, namely 

Here the quantity q!Jk refers to x-independent phases; the 
function f(k,) describes the decomposition of the field 
into plane waves. Henceforth the exp [- iwt] factor will 
be  omitted. We immediately write  down the diffraction 
field due  to  the object, illuminated as described, at  the 
hologram plane. 

E d i  f f  (X?) = 1 dxl / dkz f(kz) exP [iklzx~ + q!Jk(~1)] 
>7 .2 

illurninstion 

o b j e c t  W 
diffraction 

In this expression dl is the optical path  from a point x, in 
the object plane to a point x 2  in  the film plane. We have 
already made use of the so-called small angle  approxima- 
tion in writing Eq. (2) in place of the  more general form 
of the Fresnel-Kirchhoff diffraction formula.14 In  order  to 
proceed we must  expand dl in powers of x,  and x,; the 
Fresnel approximation consists in  cutting off this expansion 
after  the second order terms: dl = Dl + (x, - x1)'/2D,. 
The  total field at  the hologram is the diffraction field 
plus the field of the reference or carrier beam. The  total 
field may be written 

. P  ,. 
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X T ( x l )  exp [ikl Dl + ikl (x2 - X ~ ) ~ / ( ~ D , ) ] .  ( 3 )  

The film records the intensity EE* ; however, only the 
terms  in the intensity which are linear  in the diffracted 
field are of interest to us, since it is these terms which 
give rise to  the reconstructed images. We need assume 
only that  the properties of the film are such that when 
developed, there are terms  in  its  amplitude  transmittance 
which are linear  in EdirfEXf and EZiffEref. 

The subsequent  calculations will deal with the properties 
of the reconstructed  real image, corresponding to  the 
term E,*,, fEref and we will therefore use this latter 
product as  the analytical expression of the transmission 
of the hologram. In reconstructing the hologram we use 
the geometrical arrangement  shown  in Fig. lb.  The 
hologram is illuminated obliquely at  an angle 0' by a 
divergent beam whose spherical wavefronts have radius 
of curvature R. Thus  the field of the illumination, of 
wavelength X,, in the plane of the hologram P2 is 

- exp [ik,r] = -- exp [ik2R + ik2x;/(2R) A2 A2 

R R 

- ik, sin 0'x2] .  (4) 

The linear  variation of phase with x2 is due to the  non- 
normal incidence of the wave. Again using the Fresnel- 
Kirchhoff diffraction formula we calculate the field due  to 
diffraction of the field, Eq. (4), by the hologram E& Erei. 
This final field, which exhibits the reconstructed image, is 

E(X.) = ~ exp [ - & , D l  + ik,R] 
D1R Dz 

X /// dx,  dx, dk, f(k,) exp [ - ik l ,x l  - i4k] 
" 

illuminetion of o b j e c t  

ik2x3 x exp [x: - ik, sin O'xa 1 
illumination  of halosrwm 

X exp [ ik, D, + ik, 
2 - Dz x2r1. 

diffraction 

To obtain a useful expression we must do  the integra- 
tions over x1 and x, ;  the integration over x,  will be done 
first and will itself produce several useful results. We 
collect all  terms  in the exponentials in Eq. (5) that  are 
proportional  to xi and  to x,. The terms depending on 
x; are: (xg/2)[(k, /R)  + (k , /D,)  - (kl/Dl)l. Clearly 

we will be well advised to  make this coefficient of x;  
equal 0. For  it  to be so Eq. (1) must be satisfied;  this 
requirement relates the reconstruction  distance to  the 
construction distance, the divergence of the reconstructing 
beam, and  the two wavelengths involved. We can rewrite 
E q .  (1) in  a  form which allows a simple interpretation, 
( 1 / R )  + (l/D,) = (Xz /Xl ) ( l /Dl ) .  The distances R and 
0, are related by the simple thin-lens equation  for a lens 
of focal length (X,/X,)D,. The hologram is not, of course, 
a  real lens. It is, however, a Fresnel zone plate of equivalent 
focal length (X,,/X,)D,. The many similarities between 
thin lenses and zone plates are helpful in  understanding 
wavefront reconstruction. 

By choosing R,   D l ,  and D, to satisfy Eq. (1) we have 
simplified the integration over x ,  to  the point where it 
can be done explicitly; we have 

J: exp [ ixZ(kl sin 0 - k ,  sin 0' 

k l  sin 19 - k ,  sin 0' + -L x1 - - x . ) .  (6)  
k kz 
Dl DZ 

We see immediately that we should choose the angle 0' of 
reconstruction illumination so that sin 0' = (X,/Xd sin 0. 
With  this simplification we can rewrite the delta  function 
as follows : 

- 6(x1 - "lx.), " 
Dl 
k ,  

where we have put M Z E  (DZXZ)/(DIX1). It is now a trivial 
matter to do  the integration over x1 in w. ( 5 ) ;  it consists 
simply in replacing x,  everywhere it occurs by ("'x.). 
We can  therefore write down the final expression for 
the field in the reconstructed image in the plane P3:  

X exp [ ik ,M-1x3 + i4J X T * ( M - ' x ~ ) .  (7) 

Note  that since T*(xl) = T*(M"x3), the scale of the 
image in the x. plane is M times greater than  the scale 
of the object. That is, the factor M = (D,X,)/(D,X,) is 
the expression for  the magnification achieved during the 
reconstruction of the image. Note  that there is both 
geometrical and wavelength magnification.. Examination 
of Eq. (7) shows that  the image field is essentially the 
same  as the object field, except that  it has been magnified, 
its brightness altered, and phase  factor  added.  This latter 
factor, of course, in no way affects the intensity of the 
image, which is what one sees or records;  its quadratic 173 
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Figure 2 A simple  two-pinhole  object for illustrating  three- 
dimensional  image  reconstruction. 

dependence on x,  shows  simply that the light  is  divergent 
as it traverses the image  plane. 

Note also that the illumination of the image  is the 
same as  that of the object, apart from the fact that the 
illumination has undergone  magnification along with the 
object. The expression  used for the illumination  has  been 
completely  general and it is  clear that the details of the 
illumination enter in no way into the geometry of re- 
construction.8b 

Three-dimensional objects and images 

So far we have  been  discussing  two-dimensional  objects 
only. The extension of the discussion to three-dimensional 
objects  is straightforward and, as we shall see,  brings in 
in general a new magnification factor. Consider the 
extremely  simple  three-dimensional  object  shown in Fig.  2. 
We have  seen  in the previous  discussion that each point 
in the object a distance Dl from the hologram  produces  in 
effect a zone  plate of focal length (X1/Xz)Dl. Points 
located a distance D: from the hologram  produce  zone 
plates of focal length (Xl/X2)D:. For each  type of point 
we may  write Eq. (1). That is, 

-+-+) 1 1 x 2 1  

R Dz X1 Dl ' 

and 

R 

Subtracting these  two equations one  finds 

If Dl and D: are not too different we  may express Eq. (8) 
as  follows : 

From this expression we find the relation between the 
axial separation of the points in  image  space and their 

1 74 separation in the object  space: 
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Thus the axial  magnification  is D 2 / D 1  times the transverse 
magnifi~ation.~ This property is  exactly analogous to the 
situation which  exists  with  lenses,  where  if the object 
and image  distances are 0 and I ,  the transverse  magnifica- 
tion is Z/O, whereas the axial  magnification  is (Z/O)'. 
Hence, faithful three-dimensional  magnification  is 
clearly  possible, but it must  be  achieved  solely by a 
change  in  wavelength  between construction and re- 
construction.  With  this latter restriction it becomes 
necessary to recall that the process of changing wave- 
lengths  also  involves  changing the angle 8' which,  since 
Isin 8'1 I 1, may  limit the degree of three-dimensional 
magnification that is  practically  achievable. 

3. Resolution 

Another  hologram property of great  interest is the resolu- 
tion attainable in the reconstructed image. This resolution 
is determined by three factors: 

1 )  Ideally, the ultimate  resolution  is  determined by the 
hologram aperture, not by any property of the film  used. 
We  will therefore  indicate  explicitly the effects  of hologram 
size on resolution. 

2) In practical  cases the limit of resolution  may be set 
by the fact that presently  available films cannot record 
spatial frequencies  above a definite  limit. This is the 
problem treated in Refs. 1 1  and 13. We  will discuss this 
calculation but briefly. 

3) Finally, the resolution in the reconstructed  image 
depends on the aberrations of the hologram  itself. Wave 
aberrations of holograms are to be treated in Section 4. 

First, we consider the limit  imposed on resolution by 
hologram size.  We return to Eq. (6), omitting the irrelevant 
sine  terms, and allow the integration over the hologram 
coordinate xz to run only  from + L  to - L, where 2L is 
the extent of the hologram in the x2 direction. We find 

It will  be  recalled that for the hologram of unlimited 
aperture the integration over xz gave a delta  function. 
Consider the simple but sufficient illustration of an 
object T(xl)  which  is a single point: T(xl)  = 6(xl - a). 
The integration over x1 in Eq. ( 5 )  merely  replaces x1 in 
Eq. (9) by a. That is, the image of a point object  is 



This is the familiar sin (qx) /x  function. The interval in 
the x,  plane between the maximum and  the first zero 
in intensity of the image of a point is Ax, = (X2D2/2L). 
Now two object points  separated by a distance Axl will, 
from the discussion following Eq. (7), be reconstructed 
at a  separation M A X , .  For this  separation to be resolved 
we require that  it be greater than the  spread in the image of 
a point. That is, we require (D,X2/D,Xl)Ax, > (D2X2/2L). 
Clearly this is true only if Ax, > (D,X1/2L), which  is 
the  condition that  the object detail be resolved under the 
conditions of the construction. For the idealized holograms 
we are considering, the processes of magnification or 
demagnification do  not result in loss of detail provided 
the aperture of the hologram is large enough to resolve 
the object detail in the first place. It is again clear that 
there is a deep analogy between lenses and holograms. 
As far  as resolution is concerned, the hologram is equiva- 
lent, in the construction process, to a lens of f-number 
D,/2L,  and in the reconstruction process, to a lens of 
f-number D2/2L.  

Second, we consider the problem of the limited capacity 
of  photographic film to record high spatial frequencies. 
It is the most elementary result of diffraction theory that 
the smaller the object causing diffraction, the greater is 
the  angular  spread of the diffracted light. Diffracted 
light impinging on  the hologram at large angles with 
respect to the reference beam gives rise to interference 
fringes whose spacing may be far smaller than the resolu- 
tion limit of the film used to make the  hologram; if this 
is the case information concerning the small detail in 
the object will  be lost. 

A method  for sidestepping this limitation of the film  is 
given  in Refs. 11 and 13. (It is called “Fourier-transform 
holography” since a lens must be used during recon- 
struction to  take the  Fourier  transform of the field distri- 
bution emerging from the illuminated hologram). It is 
shown that information about small details can be recorded 
even though the spatial frequencies involved are too high 
to be recorded. Fourier-transform holography is  especially 
designed to function in the x-ray region, where the position 
of the diffracted beams is uniquely determined by the 
object being x-rayed and cannot be altered by the ex- 
perimenter. Thus in x-ray diffraction much of the infor- 
mation about the  structure of the object is contained in 
beams which make very large angles indeed with respect 
to  the hologram. The fact that these directions are fixed 
by the object is due to the periodic structure of the object 
in the z-dimension (perpendicular to the hologram plane) 
as well as in the x and y dimensions. There are objects 
(e.g., film transparencies) whose entire  information con- 
tent resides in  the x-y variation of the transparency. 
Although photographic images have finite thickness in 
the z-dimension, the location of developed grains in this 
dimension is purely random. Hence, transparencies and 

other objects whose diffracting centers in the z-direction 
are randomly distributed may be considered to be two- 
dimensional objects. When such an object has x-y details 
so fine as  to give rise to spatial frequencies that  are  not 
recordable on film, a simple remedy can be used: the object 
is illuminated in diffuse light,s’9‘12 causing diffracted 
beams to leave the object in all directions. (This is the 
property that is lost when the object has  non-random 
structure in the z-direction). Now  the small details will 
diffract light into a wide range of spatial frequencies; 
among these will be some that can be recorded on film. 
Thus high-resolution holograms of two-dimensional 
objects can be constructed using Fresnel diffraction alone; 
however, as  shown in Ref. 11, one  must use a lens-and 
hence Fraunhofer diffraction during reconstruction-to 
make high-resolution holograms of three-dimensionally 
periodic objects using x-rays. 

4. Hologram aberrations 

In Section 2 we presented a general and simple method for 
calculating the geometrical properties of holographically 
reconstructed magnified or demagnified images. The 
calculations were made in the Fresnel  approximation, in 
which the reconstructed images exhibit no aberrations. 
Since in real circumstances, however, magnified or 
demagnified images will suffer from aberrations, it now 
becomes our aim to evaluate the aberrations of holograms 
and  to discuss the circumstances under which they can 
be minimized. Clearly an understanding of the aberrations 
of holograms is vital to  the achievement of the high 
resolution we discussed in Section 3. 

Gabor,  in one of his papers: considered aberrations 
from  a  point of  view suggested by his interest in the 
imaging properties of holograms made with illuminating 
beams suffering from various aberrations, and his interest 
in the correction of aberrations as a means for distin- 
guishing between the real and  the virtual images. Instead, 
we consider the aberrations of the hologram itself, quite 
apart from these essentially unrelated problems. 

It will  be shown that, except for the case of unit magni- 
fication, images reconstructed from holograms exhibit 
the five primary wave aberrations of geometrical optics: 
viz., spherical aberration, coma, astigmatism, curvature 
of field, and distortion. It will be seen that by suitable 
choice of the constructing and reconstructing wavelengths, 
and of the constructing and reconstructing distances, 
any one of these five may be eliminated (in one case two 
can be eliminated simultaneously: astigmatism and 
curvature of field). Further,  it will  be shown explicitly 
that  the spherical aberration of the hologram can also be 
corrected by other means during the construction and 
reconstruction process.  We  will  give explicit expressions 
for all of the hologram aberrations in the uncorrected 
case; the  treatment of hologram aberrations will  be  seen 175 
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Figure 3 Diagram of the wavefront  reconstruction  process for use  in  discussing the aberrations of holographically  produced 
images.  Plane-wave illumination, plane-wave  reference,  and  divergent reconstruction beams are shown.  The  first  two are used 
to produce the hologram;  only  the  third is  used  in  reconstructing the image. 

to be very similar to  the treatment of lens aberrations, 
except that  the holographic case is vastly more simple. 
Explicit conditions will be given for  the simultaneous 
elimination of the  two most  serious  aberrations,  spherical 
aberration  and coma. 

Figure 3, like Figure 1 on page 172, identifies the 
essential elements of hologram  construction and re- 
construction, but includes additional details needed for 
the discussion of aberrations. The optical path  from  an 
arbitrary object point rl to  an  arbitrary hologram point 
p is dl ; the distance from  that hologram point  to  an 
arbitrary image point is dz. 

The  starting point for a calculation of the hologram 
aberrations is Eq. ( 9 ,  which is the analytic expression for 
the light field in  the reconstructed image in plane P3. 
We write it now explicitly for two-dimensional objects. 

X T*(r,) exp [-&,dl + ik, sin Ox2] 
v 

hologram 

X exp [ ( ikzpZ) / (2R)  - ik, sin 0'xz] 
Y 

hologram i l l u m i n a t i o n  

diffraction from hologram 

We have written  this equation  for plane-wave object 
illumination and have omitted  unimportant  constant 

176 amplitude  factors. The distances dl and d2 are given by 

1 
8 D f  

- -- 

dz = 0 2  1 c + (x3 - xJ2 + (Y3 - Y2) 

1'2 

0; 1 

When only terms of order D and D" are retained in the 
expansions, one  has  the Fresnel  approximation and 
Eq. (10) takes the explicit form of Eq. (5) .  It should  come 
as  no surprise that in discussing the  aberrations of the 
system we retain terms  up to order D-3. 

The  aberrations of the holographic process are  found 
solely by considering the integrations of xz and yz in 
E q .  (10). It was shown  in Section 2 that if the argument 
of the exponential is linear in x, (and yz) the reconstruction 
is a faithful magnified image of the object. In  the Fresnel 
approximation,  terms quadratic in x, or y ,  were eliminated 
by imposing the condition 

J. A. ARMSTRONG 



Here, as before, R is the radius of curvature of the spherical 
wave which illuminates the hologram. We of course 
continue to impose this  condition, but  it is no longer 
sufficient to cause all  terms  nonlinear in x, or y ,  to  drop 
out of the argument of the exponentials in  Eq. (10). These 
nonvanishing terms which are nonlinear in the hologram 
coordinates (or linear in the hologram coordinates and 
nonlinear in the object coordinates) constitute the waue 
aberrations of the hologram. Clearly the quantity we must 
investigate is k2d2 - k,dl = A. A  tedious but straight- 
forward algebraic computation gives 

In obtaining  this expression we have used Ekq. (12) and 
have dropped all terms  in k,d, - kldl that  are independent 
of x, or y ,  as well as  the terms linear in both rl and p 
that produce the delta  function  in the treatment of Sec- 
tion 2.  We have  introduced the  notation r: = x: + y; ,  
p2 = x: + yz, and K: = xlxz + y,y,; and we have also 
made use of the fact that a magnification M occurs 
between object and image. 

The first term in Eq. (13) is the spherical aberration; 
the second is the  coma;  the  third is the astigmatism; 
the  fourth is the curvature of field; and  the last is the 
distortion.  This identification is facilitated by com- 
parison of Eq. (13) with the generalized treatment of lens 
aberrations given in Section 5.3 of Ref. 14. It is clear that 
all the aberrations which are familiar in lens theory also 

Table 1 Aberrations and conditions for their correction. 

Aberration Condition 

Spherical aberration ( 4 ! ? ) 3 ?  = 1 

Coma ( $ 9 3  1 = M ;  Dl = D2 

Astigmatism, and M2; ?!? = D, 
Curvature of field XI DI 

Distortion ($$3 = M 3 ;  X, = X, 

occur in holography and  that these five primary aberrations 
account  for  all of the  aberrations of a  hologram up  to 
third  order (terms in A up to order D-3). Although the 
expressions in Eq. (13) for  the aberrations are written  in 
terms of the coordinates of the object and  the hologram, 
they could easily be  written  in  terms of the coordinates 
of the hologram and  the image. 

Consider now the problem of correcting for these 
aberrations of the reconstruction process. If we set  each 
expression equal to zero,  in turn, we obtain  the conditions 
under which each will  be corrected.  Thus, using M = 
(D,X,/D,X,), we have Table 1. 

From these relationships we  see that if one aberration is 
made  to vanish, the others generally cannot.  (There are 
two exceptions: if M = 1, all the  aberrations vanish 
together; if M # 1 astigmatism and  curvature of field 
can be simultaneously corrected.) If Dl = D, the image 
will not suffer from  coma; if X, = X,, there will be no 
distortion. Astigmatism and curvature of field are elimi- 
nated by scaling wavelength and distance the same way. 

It is useful to characterize the  aberrations  in terms of 
their dependence on  the dimensions of the hologram. 
If the linear dimensions of the hologram are of order L, 
then  according to Eq. (13) the spherical aberration varies 
as L4, the coma as L3, the astigmatism and curvature of 
field as L2, and  the distortion as L. Clearly the spherical 
aberration will under  most circumstances be the most 
serious aberration  and  the one for which it is most im- 
portant  to correct. The spherical aberration is the only 
hologram aberration  that is independent of the object or 
image coordinates.  This  feature  makes it possible to 
correct  for  spherical aberration by illuminating the 
hologram  in  a divergent beam that has built into  it  the 
amount of spherical aberration necessary to compensate 
that of the hologram. This  can be done by producing the 
reconstruction beam with  a simple lens of known  spherical 
aberration.  The  amount of this  spherical aberration is 
calculated as follows. To eliminate coma we take Dl = D,. 
The lens forming the illuminating beam must  introduce 
a  spherical aberration expressed as a  phase retardation  at 
the hologram of magnitude - ( l / D ; )  (k ,  - kl)p4. This 
aberration can  be  related to  the particular choice of 
lens by using standard formulae for  the spherical ab- 
errations of simple lenses. If desirable in a particular 
application, the correction for spherical aberration can 
be wholly or partially accomplished by predistorting the 
plane-wave reference beam used in  hologram  construction 
so that  it will have all  or  part of the required  spherical 
aberration. Note  that  the choice Dl = D, is also  the one 
which assures faithful three-dimensional magnification. 
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Since submission of this  manuscript the  author  has 
learned of treatments of hologram aberrations carried 
out by R. W. Meier and, independently, by E. N. Leith; 
their  papers are expected to  appear shortly in  the Journal 
of the  Optical  Society of America. 

It should  be emphasized in connection with Eq. (10) 
that  the beam used to illuminate the hologram during 
reconstruction is chosen to have parabolic rather  than 
spherical wavefronts. This has  the result of removing any 
image aberrations  that  are  due  to  the illumination rather 
than  to  the hologram itself. As discussed by Meier in  his 
forthcoming  paper, the use of a  truly  spherical  illuminating 
beam gives rise to  additional contributions to each  type of 
aberration. These aberrations  are, of course,  independent 
of the image or object  coordinates (as is the hologram 
spherical aberration discussed in the present paper). Thus 
all the  aberrations  due  to spherical  illumination  can  be 
corrected by choosing the parabolic wavefronts for which 
we have made our calculations. Since the illuminating 
beam is derived effectively from a point  source, it should 
not be difficult to predistort the beam to have parabolic 
shape modified by the  amount of spherical aberration 
calculated in  the present text. The  author is grateful to 
Dr. Meier for a discussion of these latter points. 
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