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Fresnel Holograms: Their Imaging Properties

and Aberrations

Abstract: A simple and unified treatment is given of the properties of the magnified or demagnified images reconstructed from
Fresnel holograms. The resolution attainable in wavefront reconstruction is discussed with particular attention to the aberra-
tions of reconstructed images. Explicit expressions are given for the five primary wave aberrations, viz., spherical aberration,

coma, astigmatism, curvature of field, and distortion.

1. Introduction

Holography is the science of producing images by wave-
front reconstruction. In general no lenses are involved.
The reconstructed image may be either magnified or
demagnified compared to the object. Three-dimensional
objects can be reconstructed as three-dimensional images.
The wavefronts which are recorded photographically and
later reconstructed are those due to diffraction of light
by the object; thus, corresponding to the difference
between Fresnel and Fraunhofer diffraction, one may
produce either Fresnel or Fraunhofer holograms. This
paper will deal exclusively with the properties of Fresnel
holograms. Although some of the results presented here
have been stated previously, they are derived in a simple
and unified fashion which leads naturally to the treatment
of hologram aberrations.

Wavefront reconstruction was invented by Gabor and
expounded by him in a series of classic papers.”™ After
the work of Gabor there were few contributions®® un-
til recently.®™*® The decline in interest was doubtless
due to two difficulties. The first difficulty was that in
Gabor’s method of image reconstruction the real image
was superposed on a field emanating from a virtual
image. The second difficulty was that the light sources
suitable for producing holograms were of very low
brightness 15 years ago. The difficulty of overlapping
real and virtual images was removed by the observation®®®

that a high-spatial-frequency carrier wave could be used
in the hologram construction process in such a way that
the real and virtual images would be well separated in
the reconstruction. The invention of the laser has overcome
the difficulty of working with sources of low brightness.

This paper is organized as follows. First we will show
how to calculate in the Fresnel approximation the geo-
metrical properties of the magnified or demagnified
images reconstructed from holograms. This will be done
for arbitrary illumination of the object and for both
two- and three-dimensional objects. A discussion will then
be given of the resolution attainable in wavefront re-
construction. Finally we will discuss the aberrations of
the images produced by wavefront reconstruction.

2. Geometrical properties

Consider the arrangements shown in Fig. 1a for the
construction of a hologram and in Fig. 1b for the re-
construction of the image. In construction, a two-dimen-
sional object of transmission T(x,) (typically, a film
transparency) in the plane P; is illuminated from behind
by monochromatic light of wavelength A, ; the diffraction
field due to the object is superposed on a reference or
carrier wave with which it interferes. The carrier wave
has plane wavefronts and is derived from the source that
illuminates the diffuser. The resulting total field is recorded

171

IBM JOURNAL * MAY 1965




172

Figure 1a Schematic diagram of hologram construction in
light of wavelength \;. The object (of transmission T(x,)) is
illuminated with diffuse light produced by scattering the
monochromatic plane wave from a diffusing plate. An opti-
cal system is used to derive the plane-wave reference beam
from the same source as the plane wave incident on the
diffuser.
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Figure 1b Diagram of image reconstruction using the holo-
gram made as in Fig. la. The reconstruction is carried out
in light of wavelength X.. The hologram is illuminated by a
beam of divergent monochromatic light. The radius of curva-
ture of the spherical wavefronts is R.

photographically in plane P,, producing the hologram.
The separation between object and hologram is shown
in Fig. 1a as D,. In reconstruction, the developed hologram
is illuminated solely by a divergent beam of coherent
light of wavelength \,, giving rise to a diffraction field
containing a real image in the plane P,. The separation
between hologram and real image is shown in Fig. 1b
as D,. For the sake of definiteness we use a plane wave
as reference or carrier wave in construction, and a divergent
beam of radius of curvature R in reconstruction.
The following properties will be derived:

1) The quantities D;, D,, R, A;, and A, are related by*
QR = (WD) — (Do) (1)

2) The image is magnified laterally by an amount M =

(D:2)5)/(D1\;) in all directions parallel to the plane of

the hologram, and longitudinally by an amount (D,/D,)M

in the direction perpendicular to the plane of the holo-
3

gram.

3) The geometrical properties of the reconstructed image
are independent of the nature of the illumination of the
object provided this illumination is independent of time,
and provided the coherence length of the light is longer
than any path difference from object to hologram.®”
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4) The angle of reconstruction ¢’ is related to the angle
of incidence 6 of the reference beam on the hologram
by the condition sin 8’ = (\,/\,) sin 6.

Although all calculations to be made here will assume
a plane wave reference beam, the methods used can be
readily adapted to any other configuration and in fact
constitute a general procedure for analyzing holographic
problems. Properties (1), (3), (4), and the expression for
lateral magnification will be derived first, using two-
dimensional objects. The expression for the longitudinal
magnification, which applies to three-dimensional objects,
is then easily derived from Eq. (1). We will treat explicitly
only transparent objects, but it is known that holograms
can be made in the light scattered from opaque objects.”

o Two-dimensional objects and images

Let us consider now the calculation of the field in the
plane of the hologram (the P, plane in Fig. 1a) when a
two-dimensional object of complex amplitude trans-
mittance 7(x;) is illuminated from behind with light of
wavelength \;. We will take the most general expression
for this illumination, namely

f dk, f(k.) exp [ikix, + ipe] exp [—iwt].

Here the quantity ¢, refers to x-independent phases; the
function f(k.) describes the decomposition of the field
into plane waves. Henceforth the exp [— iwf] factor will
be omitted. We immediately write down the diffraction
field due to the object, illuminated as described, at the
hologram plane.

Eyi¢ (x_,) = f dx, f dk, f(kz) eXp [ikux1 + ¢k(x1)]

illumination

exp [ikldl]
dy

diffraction

X T(x)- (2
——

object

In this expression d, is the optical path from a point x, in
the object plane to a point x, in the film plane. We have
already made use of the so-called small angle approxima-
tion in writing Eq. (2) in place of the more general form
of the Fresnel-Kirchhoff diffraction formula.'* In order to
proceed we must expand d, in powers of x; and x,; the
Fresnel approximation consists in cutting off this expansion
after the second order terms: dy = D, + (x, — x,)°/2D,.
The total field at the hologram is the diffraction field
plus the field of the reference or carrier beam. The total
field may be written

E(xy) = E,or + Egisr = A, exp [ik; sin Ox,]

+ Dil dx, f dk, f(k.) exp [ik,x: + iy




X T(x;) exp [ik, D, + iki(x, — x:)°/(2D)].  (3)

The film records the intensity EE*; however, only the
terms in the intensity which are linear in the diffracted
field are of interest to us, since it is these terms which
give rise to the reconstructed images. We need assume
only that the properties of the film are such that when
developed, there are terms in its amplitude transmittance
which are linear in Ey;;:E*; and E¥ . E,.;.

The subsequent calculations will deal with the properties
of the reconstructed real image, corresponding to the
term E¥E..: and we will therefore use this latter
product as the analytical expression of the transmission
of the hologram. In reconstructing the hologram we use
the geometrical arrangement shown in Fig. 1b. The
hologram is illuminated obliquely at an angle ¢’ by a
divergent beam whose spherical wavefronts have radius
of curvature R. Thus the field of the illumination, of
wavelength A,, in the plane of the hologram P, is

A A
Eg exp [ikyr] = 75 exp [iksR + ik.x3/(2R)

— ik, sin @'x,]. 4)

The linear variation of phase with x, is due to the non-
normal incidence of the wave. Again using the Fresnel-
Kirchhoff diffraction formula we calculate the field due to
diffraction of the field, Eq. (4), by the hologram E¥ ; E,.;.
This final field, which exhibits the reconstructed image, is

A A,

E(x) = b RD
1 2

exp [—ik, D, 4+ ik:R)]

X ff dxz dxl dk: f(kz) exp [_ikll‘xl - ld)k-]

illumination of object

iky(xs — x,)°

X T*(x,) exp (:— + ik, sin OXQ:I

2D,
hologram
ik,x5 .
X exp [1—2212;; — ik, sin 0’x2i|

“

™~
illumination of hologram

. g (x5 — xz)_Zjl
X exp [zk2 D, + ik, 2D, . (5)

-~
diffraction

To obtain a useful expression we must do the integra-
tions over x; and x,; the integration over x, will be done
first and will itself produce several useful results. We
collect all terms in the exponentials in Eq. (5) that are
proportional to x and to x,. The terms depending on
x; are: (x3/2)(k:/R) + (kz/D;) — (ka/Dy)]. Clearly

we will be well advised to make this coefficient of xj
equal 0. For it to be so Eq. (1) must be satisfied; this
requirement relates the reconstruction distance to the
construction distance, the divergence of the reconstructing
beam, and the two wavelengths involved. We can rewrite
Eqg. (1) in a form which allows a simple interpretation,
(1/R) + (1/Dy) = (A\,/\)(1/D,). The distances R and
D, are related by the simple thin-lens equation for a lens
of focal length (A, /\,)D,. The hologram is not, of course,
a real lens. It is, however, a Fresnel zone plate of equivalent
focal length (\;/A;)D,. The many similarities between
thin lenses and zone plates are helpful in understanding
wavefront reconstruction.

By choosing R, D,, and D, to satisfy Eq. (1) we have
simplified the integration over x, to the point where it
can be done explicitly; we have

f exp [ixz(k1 sin § — k, sin 6’

k k
+ -D)I Xy — sz3>] dxs
. . k k
= 27r6<k1 sin 6 — k, sin &' + 7)1: Xy — —Di x3>. (6)

We see immediately that we should choose the angle 6" of
reconstruction illumination so that sin 8 = (\,/\,) sin 6.
With this simplification we can rewrite the delta function
as follows:

5(161_%_ﬁx) &a(x _&k_zx)
Dl D2 8 k1 ! D2k1 :
D,
k1

where we have put M = (D,\,)/(D;)\,). It is now a trivial
matter to do the integration over x, in Eq. (5); it consists
simply in replacing x, everywhere it occurs by (M 'xy).
We can therefore write down the final expression for
the field in the reconstructed image in the plane P;:

M [ikzxi 3 ﬂ}f
E(x;) = &D. | 2D, (11— M) dk, f(k.)

i

X exp lik, M 'xs + i) X T*(M 'xs).  (7)

Note that since T*(x,) = T*(M 'xj), the scale of the
image in the x; plane is M times greater than the scale
of the object. That is, the factor M = (D,\,)/(D,\,) is
the expression for the magnification achieved during the
reconstruction of the image. Note that there is both
geometrical and wavelength magnification.” Examination
of Eq. (7) shows that the image field is essentially the
same as the object field, except that it has been magnified,
its brightness altered, and phase factor added. This latter
factor, of course, in no way affects the intensity of the
image, which is what one sees or records; its quadratic
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Figure 2 A simple two-pinhole object for illustrating three-
dimensional image reconstruction.

dependence on x; shows simply that the light is divergent
as it traverses the image plane.

Note also that the illumination of the image is the
same as that of the object, apart from the fact that the
illumination has undergone magnification along with the
object. The expression used for the illumination has been
completely general and it is clear that the details of the
illumination enter in no way into the geometry of re-
construction.®

o Three-dimensional objects and images

So far we have been discussing two-dimensional objects
only. The extension of the discussion to three-dimensional
objects is straightforward and, as we shall see, brings in
in general a new magnification factor. Consider the
extremely simple three-dimensional object shown in Fig. 2.
We have seen in the previous discussion that each point
in the object a distance D, from the hologram produces in
effect a zone plate of focal length (A;/A;)D;. Points
located a distance D] from the hologram produce zone
plates of focal length (\,/X\:)D}. For each type of point
we may write Eq. (1). That is,

1 L_&(_L>
R+D2_>\1 D./)’

Subtracting these two equations one finds

1) _ X (L)

A(Dz) =% Ao/ ®)
If D, and D] are not too different we may express Eq. (8)
as follows:

AD, _ X (ADI)
Dy M\DJ

From this expression we find the relation between the
axial separation of the points in image space and their
separation in the object space:
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D3\ (Dz
AD, = 32 AD, = |2
%) Vi D,

Thus the axial magnification is D,/D; times the transverse
magnification.” This property is exactly analogous to the
situation which exists with lenses, where if the object
and image distances are O and I, the transverse magnifica-
tion is I/0, whereas the axial magnification is (I/O).
Hence, faithful three-dimensional magnification is
clearly possible, but it must be achieved solely by a
change in wavelength between construction and re-
construction. With this latter restriction it becomes
necessary to recall that the process of changing wave-
lengths also involves changing the angle ¢’ which, since
|sin 6’| < 1, may limit the degree of three-dimensional
magnification that is practically achievable.

M)ADI.

3. Resolution

Another hologram property of great interest is the resolu-
tion attainable in the reconstructed image. This resolution
is determined by three factors:

1) Ideally, the ultimate resolution is determined by the
hologram aperture, not by any property of the film used.
We will therefore indicate explicitly the effects of hologram
size on resolution.

2) In practical cases the limit of resolution may be set
by the fact that presently available films cannot record
spatial frequencies above a definite limit. This is the
problem treated in Refs. 11 and 13. We will discuss this
calculation but briefly.

3) Finally, the resolution in the reconstructed image
depends on the aberrations of the hologram itself. Wave
aberrations of holograms are to be treated in Section 4.

First, we consider the limit imposed on resolution by
hologram size. We return to Eq. (6), omitting the irrelevant
sine terms, and allow the integration over the hologram
coordinate x; to run only from 4L to — L, where 2L is
the extent of the hologram in the x, direction. We find

+L
. (kw1 _ k2x3>:|
f~ . exp |:1x2<—D1 D, dx,
. k1x1 kgx;;) }[(k;xl k2X3)}—1
= 2 ( -_— i .
- [ p, ~ b,/ )L\'p, T b,

(9)

It will be recalled that for the hologram of unlimited
aperture the integration over x, gave a delta function.
Consider the simple but sufficient illustration of an
object T(x;) which is a single point: T(x;) = 8(x; — a).
The integration over x; in Eq. (5) merely replaces x; in
Eq. (9) by a. That is, the image of a point object is

5 sin [(k_a _ k_x)L][k_e _ kz.x_a]“
Dl D2 D1 D2 )




This is the familiar sin (gx)/x function. The interval in
the x; plane between the maximum and the first zero
in intensity of the image of a point is Ax; = (A.D,/2L).
Now two object points separated by a distance Ax; will,
from the discussion following Eq. (7), be reconstructed
at a separation MAx,. For this separation to be resolved
we require that it be greater than the spread in the image of
a point. That is, we require (Dy\o/ Dy M) Ax; > (Dohe/2L).
Clearly this is true only if Ax; > (D;A;/2L), which is
the condition that the object detail be resolved under the
conditions of the construction. For the idealized holograms
we are considering, the processes of magnification or
demagnification do not result in loss of detail provided
the aperture of the hologram is large enough to resolve
the object detail in the first place. It is again clear that
there is a deep analogy between lenses and holograms.
As far as resolution is concerned, the hologram is equiva-
lent, in the construction process, to a lens of f-number
D,/2L, and in the reconstruction process, to a lens of
f-number D,/2L.

" Second, we consider the problem of the limited capacity
of photographic film to record high spatial frequencies.
It is the most elementary result of diffraction theory that
the smaller the object causing diffraction, the greater is
the angular spread of the diffracted light. Diffracted
light impinging on the hologram at large angles with
respect to the reference beam gives rise to interference
fringes whose spacing may be far smaller than the resolu-
tion limit of the film used to make the hologram; if this
is the case information concerning the small detail in
the object will be lost.

A method for sidestepping this limitation of the film is
given in Refs. 11 and 13. (It is called “Fourier-transform
holography” since a lens must be used during recon-
struction to take the Fourier transform of the field distri-
bution emerging from the illuminated hologram). It is
shown that information about small details can be recorded
even though the spatial frequencies involved are too high
to be recorded. Fourier-transform holography is especially
designed to function in the x-ray region, where the position
of the diffracted beams is uniquely determined by the
object being x-rayed and cannot be altered by the ex-
perimenter. Thus in x-ray diffraction much of the infor-
mation about the structure of the object is contained in
beams which make very large angles indeed with respect
to the hologram. The fact that these directions are fixed
by the object is due to the periodic structure of the object
in the z-dimension (perpendicular to the hologram plane)
as well as in the x and y dimensions. There are objects
(e.g., film transparencies) whose entire information con-
tent resides in the x-y variation of the transparency.
Although photographic images have finite thickness in
the z-dimension, the location of developed grains in this
dimension is purely random. Hence, transparencies and

other objects whose diffracting centers in the z-direction
are randomly distributed may be considered to be two-
dimensional objects. When such an object has x-y details
so fine as to give rise to spatial frequencies that are not
recordable on film, a simple remedy can be used: the object
is illuminated in diffuse light,®*®'"* causing diffracted
beams to leave the object in all directions. (This is the
property that is lost when the object has non-random
structure in the z-direction). Now the small details will
diffract light into a wide range of spatial frequencies;
among these will be some that can be recorded on film.
Thus high-resolution holograms of two-dimensional
objects can be constructed using Fresnel diffraction alone;
however, as shown in Ref. 11, one must use a lens—and
hence Fraunhofer diffraction during reconstruction—to
make high-resolution holograms of three-dimensionally
periodic objects using x-rays.

4. Hologram aberrations

In Section 2 we presented a general and simple method for
calculating the geometrical properties of holographically
reconstructed magnified or demagnified images. The
calculations were made in the Fresnel approximation, in
which the reconstructed images exhibit no aberrations.
Since in real circumstances, however, magnified or
demagnified images will suffer from aberrations, it now
becomes our aim to evaluate the aberrations of holograms
and to discuss the circumstances under which they can
be minimized. Clearly an understanding of the aberrations
of holograms is vital to the achievement of the high
resolution we discussed in Section 3.

Gabor, in one of his papers,” considered aberrations
from a point of view suggested by his interest in the
imaging properties of holograms made with illuminating
beams suffering from various aberrations, and his interest
in the correction of aberrations as a means for distin-
guishing between the real and the virtual images. Instead,
we consider the aberrations of the hologram itself, quite
apart from these essentially unrelated problems.

It will be shown that, except for the case of unit magni-
fication, images reconstructed from holograms exhibit
the five primary wave aberrations of geometrical optics:
viz., spherical aberration, coma, astigmatism, curvature
of field, and distortion. It will be seen that by suitable
choice of the constructing and reconstructing wavelengths,
and of the constructing and reconstructing distances,
any one of these five may be eliminated (in one case two
can be eliminated simultaneously: astigmatism and
curvature of field). Further, it will be shown explicitly
that the spherical aberration of the hologram can also be
corrected by other means during the construction and
reconstruction process. We will give explicit expressions
for all of the hologram aberrations in the uncorrected
case; the treatment of hologram aberrations will be seen
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Figure 3 Diagram of the wavefront reconstruction process for use in discussing the aberrations of holographically produced
images. Plane-wave illumination, plane-wave reference, and divergent reconstruction beams are shown. The first two are used
to produce the hologram; only the third is used in reconstructing the image.

to be very similar to the treatment of lens aberrations,
except that the holographic case is vastly more simple.
Explicit conditions will be given for the simultaneous
elimination of the two most serious aberrations, spherical
aberration and coma.

Figure 3, like Figure 1 on page 172, identifies the
essential elements of hologram construction and re-
construction, but includes additional details needed for
the discussion of aberrations. The optical path from an
arbitrary object point r, to an arbitrary hologram point
p is d,; the distance from that hologram point to an
arbitrary image point is d,.

The starting point for a calculation of the hologram
aberrations is Eq. (5), which is the analytic expression for
the light field in the reconstructed image in plane P;.
We write it now explicitly for two-dimensional objects.

E(xs, y5) = f dr.dp

X \T*(r,) exp [—ik,d, + ik, sin 6x,]
holo\g’ram
X exp [(ik2p")/(2R) ~ ik, sin 0'x,)
hologram iTlumimation

X exp [lkgdg]
———

diffraction from hologram

(10)

We have written this equation for plane-wave object
illumination and have omitted unimportant constant

d, = Dl[l + ez = x1)° "‘; (y: — y1)2:]l/2
D;
= (xs — x)° + (¥, — y)°
= D, + e
—‘1—‘ - ’ - 712 DRE Y
—gpi [ = x)" + 0 — 2T +een (Ua)
§ 1/2
& = pf[1 4 G =)t 0 =)
D;
= D, + (xa — x)° 4+ (s — »)°

2D;
l 2 2 e
+ —gpi [0 — %)+ 2 = »)) +---.(11b)

When only terms of order D and D" are retained in the
expansions, one has the Fresnel approximation and
Eq. (10) takes the explicit form of Eq. (5). It should come
as no surprise that in discussing the aberrations of the
system we retain terms up to order D2,

The aberrations of the holographic process are found
solely by considering the integrations of x; and y, in
Eq. (10). It was shown in Section 2 that if the argument
of the exponential is l/inear in x, (and y,) the reconstruction
is a faithful magnified image of the object. In the Fresnel
approximation, terms guadratic in x, or y, were eliminated
by imposing the condition
| PR

1
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Here, as before, R is the radius of curvature of the spherical
wave which illuminates the hologram. We of course
continue to impose this condition, but it is no longer
sufficient to cause all terms nonlinear in x, or y, to drop
out of the argument of the exponentials in Eq. (10). These
nonvanishing terms which are nonlinear in the hologram
coordinates (or linear in the hologram coordinates and
nonlinear in the object coordinates) constitute the wave
aberrations of the hologram. Clearly the quantity we must
investigate is k.d, — k,d, = A. A tedious but straight-
forward algebraic computation gives

_ 1(/«2 _k1>4 L(Mgz__kl)m
A= —g\pz ~ ) Ta2\pr Tk
1(&2@__1@)4
2\ D} D} K
_1<Mﬁg__kl)pn
4\ D} piF
1<M3k2 k1>22
~ =2 — 2K 13

In obtaining this expression we have used Eq. (12) and
have dropped all terms in k.d, — k.d, that are independent
of x, or y, as well as the terms linear in both r; and p
that produce the delta function in the treatment of Sec-
tion 2. We have introduced the notation r; = x} 4 »?,
p’ = x24 % and K? = x;x, + »)»; and we have also
made use of the fact that a magnification M occurs
between object and image.

The first term in Eq. (13) is the spherical aberration;
the second is the coma; the third is the astigmatism;
the fourth is the curvature of field; and the last is the
distortion. This identification is facilitated by com-
parison of Eq. (13) with the generalized treatment of lens
aberrations given in Section 5.3 of Ref. 14. It is clear that
all the aberrations which are familiar in lens theory also

Table 1 Aberrations and conditions for their correction.

Aberration Condition
 Spherical aberration <23>3 A 1
D Al
D,\" A
Coma (——) 2= M; =D
L] D n M; D, 2
o Astigmatism, and < _Dg>3 A - X D,
& Curvature of field D/ N M Dy
3
s Distortion <D2> %\3 = M%N =\
l 1

occur in holography and that these five primary aberrations
account for all of the aberrations of a hologram up to
third order (terms in A up to order D”°). Although the
expressions in Eq. (13) for the aberrations are written in
terms of the coordinates of the object and the hologram,
they could easily be written in terms of the coordinates
of the hologram and the image.

Consider now the problem of correcting for these
aberrations of the reconstruction process. If we set each
expression equal to zero, in turn, we obtain the conditions
under which each will be corrected. Thus, using M =
(D;)\o/Di),), we have Table 1.

From these relationships we see that if one aberration is
made to vanish, the others generally cannot. (There are
two exceptions: if M = 1, all the aberrations vanish
together; if M # 1 astigmatism and curvature of field
can be simultaneously corrected.) If D, = D, the image
will not suffer from coma; if A\, = A,, there will be no
distortion. Astigmatism and curvature of field are elimi-
nated by scaling wavelength and distance the same way.

It is useful to characterize the aberrations in terms of
their dependence on the dimensions of the hologram.
If the linear dimensions of the hologram are of order L,
then according to Eq. (13) the spherical aberration varies
as L*, the coma as L%, the astigmatism and curvature of
field as L”, and the distortion as L. Clearly the spherical
aberration will under most circumstances be the most
serious aberration and the one for which it is most im-
portant to correct. The spherical aberration is the only
hologram aberration that is independent of the object or
image coordinates. This feature makes it possible to
correct for spherical aberration by illuminating the
hologram in a divergent beam that has built into it the
amount of spherical aberration necessary to compensate
that of the hologram. This can be done by producing the
reconstruction beam with a simple lens of known spherical
aberration. The amount of this spherical aberration is
calculated as follows. To eliminate coma we take D, = D,.
The lens forming the illuminating beam must introduce
a spherical aberration expressed as a phase retardation at
the hologram of magnitude —(1/D%) (k, — k)p*. This
aberration can be related to the particular choice of
lens by using standard formulae for the spherical ab-
errations of simple lenses. If desirable in a particular
application, the correction for spherical aberration can
be wholly or partially accomplished by predistorting the
plane-wave reference beam used in hologram construction
so that it will have all or part of the required spherical
aberration. Note that the choice D, = D, is also the one
which assures faithful three-dimensional magnification.
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Note added in proof

Since submission of this manuscript the author has
learned of treatments of hologram aberrations carried
out by R. W. Meier and, independently, by E. N. Leith;
their papers are expected to appear shortly in the Journal
of the Optical Society of America.

It should be emphasized in connection with Eq. (10)
that the beam used to illuminate the hologram during
reconstruction is chosen to have parabolic rather than
spherical wavefronts. This has the result of removing any
image aberrations that are due to the illumination rather
than to the hologram itseif. As discussed by Meier in his
forthcoming paper, the use of a truly spherical illuminating
beam gives rise to additional contributions to each type of
aberration. These aberrations are, of course, independent
of the image or object coordinates (as is the hologram
spherical aberration discussed in the present paper). Thus
all the aberrations due to spherical illumination can be
corrected by choosing the parabolic wavefronts for which
we have made our calculations. Since the illuminating
beam is derived effectively from a point source, it should
not be difficult to predistort the beam to have parabolic
shape modified by the amount of spherical aberration
calculated in the present text. The author is grateful to
Dr. Meier for a discussion of these latter points.




