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Average  Motion  Times of Positioners 
in  Random  Access  Devices 

Abstract: An analysis is made of the  average  motion  times of mechanical  positioners based on trapezoidal  velocity  vs  time 
curves.  The  results  are  plotted  in  terms of dimensionless  motion  parameters. It is shown that  average  motion  time 
may  be  optimized by balancing  acceleration  and  velocity  in a proper way. The  selection of optimum  transmission  ratios 
between  motor  and  load  is  discussed and demonstrated in an  example. 

introduction 

As the cycle  time  of digital  computers approaches the 
nanosecond  range, the capability of processing  large 
volumes of data in a diminishingly short time  period 
correspondingly  increases.  Simultaneously, the capacity 
requirements of storage devices are extending into the 
billion-character  range. Major design  problems arise: 
Core memory in the processor is still too expensive to be 
used as storage of a large volume of information.  On the 
other hand, large  capacity  devices  such as tape drives, 
disk files, and card storage units  have  relatively long 
access  times  compared to the speed of processors. It 
remains a challenging  engineering  task to reduce  these 
access  times,  particularly in the area of random access 
storage devices. 

Most of the commonly  known random access  memories 
are basically  dependent on mechanical  systems.  Access to 
particular information in storage is  accomplished by 
physically  moving  machine parts or storage media  over 
a distance of several  inches or more. The distance to be 
moved  varies,  depending on the particular storage location 
at which the motion starts and where it ends.  Hence, the 
minimization of motions or access  times cannot be attacked 
by considering  only a single  distance  within an array of 
storage elements. 

There is a wide range of actuator designs,  power  sources, 
and transducers  already  in  use for random access  purposes. 
However, there seems to be no general rule of how to apply 
these actuators or positioners  most efficiently  in order to 
obtain minimum  average  motion  times. In the literature 
some  concern  has  been given to the optimization of 
positioning  servos  subjected to random or  statistically 
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methods,  however, are rather general and apply to more 
or less continuous perturbations, e.g.,  those of radar 
antennas under wind loads. In addition, the principle of 
matching motor and load inertias has been considered for 
maximum  power  transfer.' Finally, as a last resource, the 
experimental approach was taken and positioners were 
"tuned" for shortest average  times. 

None of these  methods,  however,  is practical or satis- 
fying  from a good  engineering point of  view. A more 
general  analytical way  of predicting the average  motion 
times  as a function of design  parameters  such as inertia, 
driving  force,  maximum  distance, and terminal speed  must 
be  provided.  An  analysis  is  desirable  which  correlates 
these  parameters and which  shows  how a positioning 
system  may  be  built  with  minimum  average motion time 
as its  objective. 

A representation of average motion times as a function 
of complicated transient response  curves  would  hardly 
yield any  general and practical  results.  There are literally 
thousands of possible  combinations  among  force or torque 
characteristics of motors, load inertias, and control 
networks that influence the motion of any  access  system. 
The analysis  has to be  restricted,  therefore, to a mathe- 
matical  model which  describes motion control in simplified 
terms, yet  closely represents  reality. The model  has to 
show, at least on a comparative  basis, the mutual influence 
of characteristic  motion  parameters on average  time. The 
model  should also provide  design  limits for optimization 
of a positioner device. 

In a search for an adequate motion model, it may  be 
found that most  positioners  have  velocity vs time  curves 
which  may  be  closely  represented by triangles or trape- 
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Figure 1 (a )  Velocity versus time curve of an access servo system using magnetic powder clutches (IBM 1405 Disk File). 
(b)  Velocity vs time curve of a  hydraulic servo system (IBM2321 Data Cell Drive). 

zoids.  In  Fig. 1, two  measured velocity traces  illustrate  this 
form.  “Velocity  trapezoids,”  therefore,  appear as the 
convenient tools to describe  motion.  They  include,  as 
extremes,  rectangles as  well as  triangles  with  time as the 
base line. 

Analysis 

Definition of basic motion parameters 

In  our  basic  positioning  model  we  consider a linear  array 
of  storage  locations  within a total length L .  The number 
of evenly distributed  positions Y,, in the array  should be 
sufficiently large that it is possible to smooth the discrete 
distances  of travel by a continuous  and  variable  length 
X 5 L. For practical  purposes, the previous  assumption 
yields  satisfying  results if the  number of positions is 
greater  than ten. 

The velocity  triangles  and  trapezoids  shown in Fig. 2 
represent the motion  characteristics  of our model.*  The 
individual  lines  and the time axis  enclose  areas  which 
represent  the  following  distances  of  travel: 

Line 1-1 : Maximum  distance L in the storage  array 
Line 1-2: Any  random  distance X 5 L 
Line 1-3: Largest  distance b travelled in the  “triangular 

mode.” 

Note  that  any  random  distance X can be expressed  by 
the integral 

LX 

x = J y  d t .  (1) 

In  order to treat  the  velocity  curves  in  Fig. 2 as generally 
as possible, the following  four  parameters  are defined. 

Control factor y 
In practical cases it cannot be expected that acceleration and 
deceleration of a positioning system have equal magnitudes. 
In addition, different settling times at  the target  points have to 
be encountered, depending on the type of motion control. 

* A  list of nomenclature  appears  at  the end of this  article. 

Figure 2 Mathematical  model of velocity versus time 
curves. 

---n “,”y 

Therefore, we choose a variable factor 7 which  modifies the 
motion times in accordance with overshoots and sluggishness 
encountered in  the actual system, As Fig. 2 indicates, the 
control  factor y is multiplied by the corresponding acceleration 
times ta = f(x). The resulting product y t ,  is added to the net 
motion time obtained with the theoretical triangles or trape- 
zoids. Practical experience proves that the  latter assumption is 
a good approximation from two points of view: 

(1) Long acceleration periods, i.e., small driving forces, 
generally result in a “sluggish” time response and longer 
settling periods at  the target point. 

(2) High velocities  which are reached in extended acceleration 
times usually cause difficulties in obtaining perfect control over 
the deceleration period. The resulting “overshoots” are not 
likely to occur within the tolerable range. In addition, a higher 
velocity  implies a larger power source which inherently has 
longer time constants compared with small sources. 

Speed factor f l  = b / L  
The particular type of motion model may be described by a 
dimensionless speed factor: 

/3 = b / L  = u:/aL,  ( 2 )  

where 0 5 p 5 1.  
This parameter represents the largest distance travelled in 

the  triangular  mode divided by the maximum distance L of 
the file array. Figure 2 illustrates 6 as  the  ratio of the two areas 
b and L. The usefulness of such a definition is demonstrated by 
the fact that  in all possible motion trapezoids, f l  ties the terminal 
velocity cm of the positioning device to the acceleration a and the 125 
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maximum  distance L, in  the  form of a dimensionless  quantity. 
Thus  the  following  analysis will  be  greatly  simplified. 

Relative  distance 5 = X / L  and storage  location q = Y / L  
In order to achieve  dependency  from the widely  varying  maxi- 
mum  distance L of different file arrays,  the  relative  distance 

f = X / L ,  where 0 5 f 5 1 ,  (3) 
and  the  relative  storage  location 

11 = Y / L ,  where 0 5 v 5 1 (4) 
are  introduced.  In  these  expressions, X represents  the  distance 
between  two  randomly  picked storage  locations Y, and Y,,+l. 
As previously mentioned, X and Y,  and hence .g and q. will  be 
treated as continuous  variables. 

0 Probability of moving  distances  in storage array  with 
random  reference  activity 

Any storage  location  in  a file with truly random reference 
activity has the same  probability of being accessed. Hence, 
the probability to move to any  location 7 = Y / L  can  be 
defined as 

P(v)  = 1 for O 5 7 5 1. ( 5 )  

In a linear  storage array  the probability P, for  moving 
any  distance f between two discrete locations 0, and v,+l 

may now be evaluated as  the “convolution” of P(v) with 
itself: which in our case may be defined as 

P, = P(v) * P(v) = 1, P(v)P(v - 0 dv 
t m  

(6) 

The probability P(v) of storage  locations is zero  outside 
the positioning range. In addition, only absolute values of 
distances f are accepted. Hence, for 0 < v 5 1 

05E51 
0 5 ( v - E ) < 1  

0 I (7 + 0 I 1. 

Figure 3 Probability P to move a variable  distance .$ = X /  
in a storage array. 
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X/L 

Equation (6) may be solved in the  form: 

p ,  = L1 fYv)P(v - f )  dv + J ( l+  P ( M v  + f )  dv 

(7) 

and with Equation (6) 

P ,  = 2(1 - f ) .  ( 8) 

Obviously, the probability to move any  distance in the 
array is a  linear relationship in f .  In Fig. 3 this  relationship 
is drawn. We note  that  the probability to move short 
distances is highest, while the probability to move the 
maximum distance L (f = 1) approaches zero. 

From  the foregoing analysis we may easily obtain,  as 
an additional result, the average distance moved by the 
positioner. We find 

,tav = I’ P, f df = 2 1’ (1 - [ ) E  df = 1/3. (9) 

Hence, the average distance of motion with random 
reference activity is exactly 1/3 of the maximum distance. 

Derivation of average  motion time 

In general, average motion  time of any series of accesses 
may be  precisely defined as 

t,, = l1 P&) 4 ,  (10) 

where again the dimensionless relative distance f = X / L  
is used instead of the absolute  distance of motion X. 

For our basic motion model in Fig. 2 we obtain  the 
following kinematic laws : 

For 0 5 X_< b or 0 5  f 5 ,B, 

L 

where the previously defined variable control  factory takes 
the influence of deceleration control  and settling time into 
account. Similarly we obtain: 

For b 5  X <  L or p i  I ,  

Or with Eqs. (2) and (3) 



Substitution of Eqs. (S), (12), and (14) into Eq. (10) 
results in  the integral equation  for average  time: 

The above equation may be easily integrated for any 
speed factor /3 and  control factor y that  are considered to 
be constant within a given positioning device. We obtain: 

+ 15/3(l + r> + 51 $ (16) 

as average motion time. 
In  the next sections, Eq. (16) is discussed from several 

practical points of view. In particular, the influence of 
terminal velocity (see Fig. 2) at  constant acceleration and 
the optimum utilization of a power source are investigated. 

Effect of terminal velocity at constant acceleration 

Equation (16) may be abbreviated in the  form 

t,, = 7, dL/a (17) 

where, as  a dimensionless “time constant,” the expression 

+ 15/3(1 f r> + 51 (1 8) 

is defined. 
In  the practical case now under consideration, the 

maximum  distance L as well as  the acceleration a will 
be constant. Hence, the average time, according to (17), 
becomes strictly proportional  to  the time constant T, = 
j(0, 7). In  addition, we find according to Eq. (2) that 
the speed factor /3 is proportional to the second power of 
the  peak velocity G,:. Hence 

ta, = f(L”K, 7). (19) 

In Fig. 4 the time constant 7, is plotted versus the speed 
factor /3 with the  control factor y as parameter. Note  that 
according to E q .  (2) the range of /3 is  fixed for all  practical 
cases between 0 and 1. For /3 = 1 we have triangular 
velocity vs time curves throughout  the positioning range. 
For /3 < 1, instead, the peak velocity is restricted. We 
obtain trapezoidal velocity curves where the reduction of 
peak velocity follows the proportionality 

Dm a di. (20) 

Fig. 4 shows an interesting result: The average time 
constant 7, is almost unaffected by a variation of the 
speed factor p in the range 0.4 < /3 < 1. For a control 
factor y = 0.5, the time constant shows even a  minimum 
at /3 = 0.4. Hence if the  sum of deceleration and settling 
time is approximately 50% larger than  the acceleration 
time, it is advantageous to select a motion program 
characterized by ,6 = 0.4. 

An illustrative picture of the physical meaning of the 
speed factor /3 in  terms of peak velocity is given in Fig. 5. 

3 6  0 8  1 0  

Figure 4 Time  constant T~ versus speed factor ,8 

t , ,  = = 

Figure 5 Illustration of trapezoidal  velocity  versus  time 
curves for various  speed factors p in  case of maximum 
travels L. 

TIME, t - 127 

AVERAGE MOTION TIMES 



Each velocity vs time  curve depicts the  motion over 
corresponding  maximum distances L in file arrays. The 
individual  peak velocities are expressed in percentages of 
the extreme velocity obtained with fl  = 1 (= triangular 
profile). Utilizing Eq. (20) the percentage is simply 

p .  = l O O Z / p .  (21) 

Accordingly, if we choose @ = 0.4, the velocity is reduced 
to 63.2% of the peak velocity which we would obtain with 
the triangular velocity program. On  the  other  hand,  the 
kinetic energy involved in access is reduced to 40%, which 
means  a saving of 60y0 compared  with the extreme case of 
triangular velocity curves throughout  the positioning 
range. 

The practical implications of the foregoing results are 
significant. Figures 4 and 5 prove that  it is possible to 
reduce  peak velocity and  thus kinetic energy of the system 
without any appreciable change in the average motion 
time. For a control factor of y = 0.5 the average time 
even slightly decreases if the speed factor is reduced to 
/3 = 0.4. 

Of course,  such  a  concept stands in  contrast to  the 
engineer’s intuitive conclusions. How can it be  explained? 
First of all,  there is the linearly decreasing probability to 
move large distances. Hence, for most of the (shorter) 
strokes the reduction of terminal velocity remains  un- 
noticed. In  addition, a high peak velocity may involve 
deceleration and settling time problems, which were 
reflected in  the analysis by the  control factor y. The 
probability  terms as well as  the  control  factor  are es- 
sentially responsible for  the results. 

Let us consider now  a  positioning system which follows 
a velocity program  characterized by a speed factor fl  = 
0.35 and a control  factor y = 0.4. From looking at 
Fig. 4 we almost immediately may reject a  proposal to 
decrease average motion time by increasing the peak 
velocity of the positioner. The gain  in  terms of random 
access performance would be negligible. 

In  another example we may be inclined to select a 
hydraulic  servo valve which supplies sufficient flow such 
that  the maximum possible velocity is obtained by the 
servo drive. Here we may also  question whether a valve 
with a lower flow rate may not perform as well, if not 
better. Practical experience with a  hydraulic  servo system 
indeed proved that a valve with lower flow rate  and 
subsequently lower peak velocity resulted in  better over-all 
performance,  in  terms of better  positioning  accuracy, 
fewer stability  problems  (shorter settling times) and 
shorter average motion times. 

Optimum utilization of power 

A drive source used for positioning purposes may be 
applied in several ways: (1) for maximum velocity, ( 2 )  for 
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acceleration and velocity within a limited range of magni- 
tudes. Usually, a  certain  combination is intentionally 
obtained by selecting a  transmission ratio between motor 
and  load shaft. Another known method applies the 
so-called “hotshot” technique, which results in higher 
force or  torque  output  but  not necessarily in  an increase 
of peak velocity. It may even be mandatory  to decrease the 
peak velocity in  order to stay within the power and/or 
heat dissipation design range of the drive source. 

In  the following analysis the above  considerations are 
taken  into  account by limiting the peak power of the 
prime mover. First,  for a better  understanding, the as- 
sumption is made  that  the  total mass or inertia of the 
system remains unchanged. Later, different load  and 
motor inertias are introduced and  the average time is 
studied  in  terms of variable transmission  ratios. 

Average motion time  with constant peak power and 
constant inertia load 

By definition we leave the  total reflected mass Mtot on 
the positioner output shaft  a  constant. Then  the peak 
power P is determined by the product 

P = v,aMtOt (22 )  

From Eq. ( 2 )  we obtain 

v, = d z  (23) 

and by combining Eqs. (22) and (23) 

Substitution of the last expression into  Eq. (17) yields: 

qjj 7 7 3 .  
t,“ = 7, (25 )  

Again, we may define a  time constant 

T, = T, q j  [T, according to Eq. (1 8)J , ( 2  6) 

which is proportional to the average motion time  in  a 
positioning system with  a given peak power (P = Force X 
Terminal Velocity) and a given inertia load Mtot. Com- 
bining Eqs. (25) and (26) results in: 

t,, = .,yq. (27) 

It is interesting now to realize that  the average motion 
time is proportional to the  cube  root of the  total mass 
and of the maximum  distance  squared. Simultaneously, 
the average time is also inversely proportional  to  the cube 
root of the power. Hence, a  reduction of average time by 
one-half can  only  be done by applying 8 times (!) the 
power. In many  practical cases such  a  large increase 
would already put us at  the limits of available power 
sources for positioning purposes-a fact which clearly 



demonstrates the handicap of mechanical positioners in 
conjunction  with high speed computers. 

Equation (27) also shows that a  reduction of mass to 
be moved or, even better,  a  simultaneous decrease of the 
maximum  travel  must  be a basic goal  in  reducing motion 
time. Such considerations are  not new to the engineer, 
except perhaps the functional  relationship as  stated by 
Eq. (27). However, there is still another  factor:  the time 
constant T, which may be modified by selecting a proper 
velocity vs time  curve  in line with the basic motion-model 
(Fig. 2) chosen for this analysis. A  plot of the time constant 
7p in Fig. 6 proves that there exist speed factors /3 in the 
range 0.13 < p < 0.2, where the time constant reaches a 
minimum. By operating  a positioner at these speed factors, 
we obtain optimum  utilization of the available power. 
Compared with the  pure triangular velocity program, 
where = 1, the reduction of average motion time may 
be as much as 30%. The same  reduction, on  the  other 
hand, could  be achieved only with an increase of power 
by factors 2.0 to 2.2, as Eq. (27) states. Thus,  an engineer 
who has to speed up a given positioning system for 
minimum average motion time may have a good  chance 
to accomplish a portion of his task by designing for  the 
proper speed factor  (compare Fig. 6). 

We may ask now what the mechanical implications are 
in case the speed factor of a system is modified. The 
question  may be answered by inspecting Eq. (2) and 
E q .  (22). According to definition, we left the peak power P 
and  the  total mass M,,, a constant. Hence, according to 
E q .  (22), the product of peak velocity and acceleration 

stays  constant. Any increase of acceleration must neces- 
sarily coincide with a proportional decrease of peak 
velocity. Accordingly, the speed factor p = u;/(a L)  
changes. 

From a  machine design point of view, a  variation of 
acceleration and terminal velocity is usually accomplished 
by changing the transmission ratio i between the prime 
mover and  the  actual  load  to be positioned. A second 
method would consist of increasing the force output of 
an  actuator by "hotshot" techniques while decreasing 
acceleration time and peak velocity such that  the power 
peak and the average heat dissipation  remains unchanged 
within the permissible limits. 

Of course, a  change of transmission ratio between a 
motor  and a load generally affects the  total inertia of the 
moving parts,  a  phenomenon which is studied  in  detail  in 
the following section. 

Average motion time  with constant peak power and 
variable transmission ratio between motor and load 

In concurrence  with the preceding analysis, we choose 
again a linear array of discrete positions. The positioned 
load as well as  the  motor  or  actuator shall  perform  linear 
motions. We shall see later how a rotary system may  be 
interpreted within the terminology of such a model. 

In  order to generalize as well as simplify the analysis, 
the following dimensionless ratios  are defined: 

M I ,  Mass on  motor shaft 
ML Mass on  load shaft 

= ratio of motor  and  load inertias 

E.,{ Peak velocity of motor 
Gm Peak velocity of load 

x = - =  

1 = - -  - 

= transmission ratio 

Figure 6 Time constant rP versus speed factor p 

Note  that  the term "load" is used for  the  actual inertia 
of the  parts being positioned within the range 0 5 X 5 L. 
Consequently, the  motor will move through a distance 

With F M  as average driving force of the  motor,  the 
acceleration of the  load may now be  written  in the  form: 

0 5 X ,  5 iL. 

Substituting Eq. (30) in definition E q .  (2) and considering 
Eq. (29) yields: 
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In  the above equation  the first term  contains  known 



parameters of the system. Therefore, we define a new and 
dimensionless quantity : 

4=-- - load  factor. Hence v% M L  
F.w L 

1 + Xi2 P = 4.3- 
I 

Now we may substitute Eqs. (30) and (31) in Eq. (16) 
and  obtain  for  the average motion time the  equation 

+ 15P( l  + r> + 51. 

In Eq. (34) the only variable not yet known or defined 
is the optimum  transmission ratio i*. Hence a possible 
solution would be to plot the average time as a function of 
the transmission ratio  and  to find out which ratio minimizes 
time. We may arrive analytically at  the same  result, how- 
ever, by solving the condition 

From Eqs. (36) and (37) the optimum  transmission 
ratio i* may be found for  any given ratio X and  load 
factor q as defined by Eqs. (28) and (32). In  our case, an 
IBM 7090 computer was used to solve the equations. 
The results are depicted in Fig. 7. 

With a known  optimum gear ratio i* the corresponding 
minimum average time may be  computed  according to 
Eqs. (33) and (34). Here we may save much of the nu- 
merical work by writing Eq. (34) in an abbreviated form: 

where the new time constant 
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Figure 7 Optimum  transmission ratios i* versus  load factor 
4 for y = 0.25. 

can be demonstrated as a function of the dimensionless 
quantities X, q and y. Figure 8 shows a graph of the defined 
time  constant.  Corresponding values may be read off this 
graph and used for computing the average  time by means 
of the simple relation given in Eq. (38). 

Note  that Figs. 7 and 8 are precisely valid only for a 
control  factor y = 0.25. It was found, however, that 
control factors of 0 and 0.5 insignificantly change the 
results. In case of y = 0 the optimum gear ratios  are 
only 5% lower and in case of y = 0.5 the gear ratios  are 
5oj, larger  compared with the plotted results for y = 0.25. 
Hence, we are  to some degree independent of the  control 
factor-a desirable result, considering the difficulty in 
assessing its precise magnitude. 

Applications of the analysis to rotary systems 

In the foregoing analysis a linear positioning system was 



selected as a basic motion model. Of course, actual 
positioners do  not always comply with  this configuration. 
They contain rotary elements or  are built entirely on a 
rotary incrementing basis scanning  a given segment of a 
circular array. It is, however, quite simple to use the 
previous analysis by restating the individual  parameters 
in rotary notations. Thus we obtain 

where 

(bb  = maximum angle moved in the triangular  mode  (rad), 

Figure 8 Minimum time  constants T , .  versus load  factors 
q for i i* and y = 0.25. 

fa%! = 7 , .  L / U l 1 .  
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0 = maximum angle of the positioning device (rad) 
w, = maximum  angular velocity of the positioned load 

CY = angular acceleration of the  load (rad/sec2); 
(rad/sec) 

where 

I,w = rotary  inertia load  on  motor shaft 
IL = rotary inertia load  on  load  shaft; 

(43) 

where 

w , ~  = peak  angular velocity of the  motor (rad/sec) 
TLVl = average torque of the  motor. 

By using the foregoing parameters the time  constants rm, 

T,, and T,* remain unchanged. Hence, the average times 
may be computed  according to 

depending whether we have constant acceleration, constant 
power and  total inertia, or  constant power with  variable 
total inertia, respectively. 

It will be remembered that  the foregoing analysis was 
derived for a finite array of positions which may be of a 
linear as well as a circular order. A slightly different condi- 
tion exists if we have  a closed circular array  and  the 
positioner never moves through angles larger than 180 
degrees (T). In such  a case the probability of moving 
through any  angle would be constant  and  equal  to 1 with 
random reference activity. Hence, Eq. (15) reduces to 

This  equation may be easily integrated. We obtain  as a 
time constant for the closed circular array similar to Eq. (18) 

T: = - [3 + 6/3(1 + 7) - @(2y + l)]. (48) 
1 

6 dS 
The rest of the analysis follows exactly the same path  as 
previously discussed. Note  that  for all closed circular 
arrays the maximum angle of travel becomes a constant 
which is equal  to K. 131 
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Practical example 

As an example, a combination of rotary  and linear posi- 
tioning elements was chosen. Figure 9 shows a scheme 
of the device. By means of a cable drive, a load of  3.25 lb 
has to be positioned to  random locations within a maxi- 
mum length of L = 20 inches. The problem consists of 
finding an optimum drive capstan  radius R* which 
minimizes the average time. 

The known  quantities of the  motor drive are 

Torque  output TM = 18 in-lb (average) 
Peak velocity aM = 105 rad/sec 
Inertia on motor  shaft ZM = 0.00505  in-lb-sec* 
Control factor y 3~ 0.25 

Solution 

The given motor torque TM and peak velocity wAf group 
the example into drive systems with constant  peak power 
(P = T,w,). On the other hand,  the selection of any 
capstan  radius R affects the reflected inertia on  the  motor 
shaft. Hence, the phenomena discussed in conjunction 
with variable transmission ratios have to be observed. 

An immediate question arising now concerns the 
definition of transmission ratio  in  the special case under 
consideration. A simple trick may answer the question: 
We define 

i* = R , / R * ,  (49) 

where R, is a fictitious or assumed capstan  radius and R* 
is the optimum  radius we are looking  for.  Thus, we may 
solve the problem for any fixed radius R, and obtain the 
true optimum  radius according to 

Of course, the choice of the  radius R1 is arbitrary. For 

Figure 9 Example of a positioning  drive. 

convenience, however, it is recommended to use R, = 1 if 
the resulting motion  parameters are  not  out of the range 
of Figs. 7 and 8. 

With an assumed radius R1 = 1 inch, the rotary motor 
may be interpreted as a linear actuator with the  charac- 
teristics : 

T,,, 
1 

F.,f = -- = 18 lb 

M ,  = ~~- I.’‘ - - 0.00505 lb-sec2/in 
l 2  

uM = wLWl = 105 injsec. 

Hence, the ratio of motor and load inertia amounts to 

X = MAC,”& = 0.00505 X 386/3.25 = 0.6. 

The  load  factor is 

From Fig. 7 we find i* = 1.085. Hence, according to 
E q .  (48), R* = 1j1.085 = 0.922 inch. 

With the  optimum radius R* = 0.922 inch, the average 
motion time is determined by Eq. (38): taV = r ,*L/uM,  
where according to Fig. 8, T ; *  = f(q, X) = 0.758. Hence, 

t , ,  = 0.758 __ = 0.144  sec. 20 
105 

In  the above example the inertia on  the motor  shaft 
may be slightly affected by the variation of the capstan 
size. It is possible to take this influence into account by 
repeating the analysis with a corrected inertia, thus 
iterating rapidly toward  the  accurate solution. 

Summary and conclusions 

The design of mechanical positioners for minimum 
average motion  time was attacked by defining a basic 
motion  model and describing the characteristic param- 
eters in terms of dimensionless quantities. It was shown 
that considerable amounts of power could be saved by 
balancing load acceleration and peak velocity in a certain 
way. Graphs were presented which illustrate the de- 
pendency of average motion  time on defined speed factors 
and  load characteristics. A method of optimizing trans- 
mission ratios was discussed by means of a practical 
example. 

The  author is aware that  the numerical applicability of 
the results depends largely on the compatibility of the 
actual design with the chosen motion model. However, 
from a qualitative point of view the analysis reveals, in 
general, decisive information on  the  mutual merit of 
design quantities such as speed and acceleration. 

The statistical approach to average motion  time demon- 
strates that a given power source  should be applied more 
in favor of short motions rather  than  in favor of the 132 
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longest motions. The result is also of interest in cases The presented method of analysis may be applied in 
where a random access device is less used in a random case of any reference frequency distribution different from 
mode but  more in a skip-sequential mode. There, even the random, i.e., the uniform  distribution selected in  this 
more. the optimization of a positioner in favor of short paper. Equation (7) may serve as a basic starting point in 
strokes has to be observed. such a case. 

Nomenclature 

Symbol 
a Linear acceleration 
b Maximum distance travelled in 

triangular  mode 
FM Force of linear motor 
i Transmission ratio  motor/load 
i* Optimum  transmission ratio 
It0 t Total  rotary inertia of system 
I,,{ Rotary inertia on  motor  shaft 
k Rotary inertia on load shaft 
L Maximum  distance of travel 
Mtot Total moving mass of system 
MM Mass on  motor shaft 
ML Mass on  load shaft 
PE Probability density of E 
P Power 
4 Load factor = (0: ML)/(F,vf L) 
R Radius (example) 
t Variable time 
t," Average motion time 
TM Torque of motor 
v Variable velocity 
V, Peak velocity of load 
OM Peak velocity of motor 

Units 
in/sec2 

in 
lb 

in-lb-sec' 
in-lb-se; 
in-lb-sec' 
in 
lb-sec2/in 
lb-sec2/in 
lb-sec2/in 

in-lb/sec 

in 
sec 
sec 
in-lb 
in/sec 
in/sec 
in/sec 

Variable distance of motion 
Variable location to be accessed 
Angular acceleration 
Speed factor = b /L  = v%/(a L) 
Control factor 
Relative  location to be 

accessed = Y / L  

rotary  load 
Maximum angle of positioned 

Inertia ratio = M,M/ML = 

Relative distance of motion = 
"L 

X / L  
Time constant with constant 

acceleration 
Time constant with  constant 

peak power and inertia load 

transmission ratio i* 
Time constant with  optimum 

Maximum angle travelled in 

Peak  angular velocity of load 
Peak  angular velocity of motor 

triangular  mode 

Units 
in 
in 
rad/sec2 

rad 

rad 
rad/sec 
rad/sec 
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