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F. R. Hertrich

Average Motion Times of Positioners

in Random Access Devices

Abstract: An analysis is made of the average motion times of mechanical positioners based on trapezoidal velocity vs time
curves. The results are plotted in terms of dimensionless motion parameters. It is shown that average motion time
may be optimized by balancing acceleration and velocity in a proper way. The selection of optimum transmission ratios
between motor and load is discussed and demonstrated in an example.

Introduction

As the cycle time of digital computers approaches the
nanosecond range, the capability of processing large
volumes of data in a diminishingly short time period
correspondingly increases. Simultaneously, the capacity
requirements of storage devices are extending into the
billion-character range. Major design problems arise:
Core memory in the processor is still too expensive to be
used as storage of a large volume of information. On the
other hand, large capacity devices such as tape drives,
disk files, and card storage units have relatively long
access times compared to the speed of processors. It
remains a challenging engineering task to reduce these
access times, particularly in the area of random access
storage devices.

Most of the commonly known random access memories
are basically dependent on mechanical systems. Access to
particular information in storage is accomplished by
physically moving machine parts or storage media over
a distance of several inches or more. The distance to be
moved varies, depending on the particular storage location
at which the motion starts and where it ends. Hence, the
minimization of motions or access times cannot be attacked
by considering only a single distance within an array of
storage elements.

There is a wide range of actuator designs, power sources,
and transducers already in use for random access purposes.
However, there seems to be no general rule of how to apply
these actuators or positioners most efficiently in order to
obtain minimum average motion times. In the literature
some concern has been given to the optimization of
positioning servos subjected to random or statistically
representable control signals.' The presented analytical
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methods, however, are rather general and apply to more
or less continuous perturbations, e.g., those of radar
antennas under wind loads. In addition, the principle of
matching motor and load inertias has been considered for
maximum power transfer.” Finally, as a last resource, the
experimental approach was taken and positioners were
“tuned” for shortest average times. .

None of these methods, however, is practical or satis-
fying from a good engineering point of view. A more
general analytical way of predicting the average motion
times as a function of design parameters such as inertia,
driving force, maximum distance, and terminal speed must
be provided. An analysis is desirable which correlates
these parameters and which shows how a positioning
system may be built with minimum average motion time
as its objective.

A representation of average motion times as a function
of complicated transient response curves would hardly
yield any general and practical results. There are literally
thousands of possible combinations among force or torque
characteristics of motors, load inertias, and control
networks that influence the motion of any access system.
The analysis has to be restricted, therefore, to a mathe-
matical model which describes motion control in simplified
terms, yet closely represents reality. The model has to
show, at least on a comparative basis, the mutual influence
of characteristic motion parameters on average time. The
model should also provide design limits for optimization
of a positioner device.

In a search for an adequate motion model, it may be
found that most positioners have velocity vs time curves
which may be closely represented by triangles or trape-




(a)

(b)

Figure 1 (a) Velocity versus time curve of an access servo system using magnetic powder clutches (IBM 1405 Disk File).
(b) Velocity vs time curve of a hydraulic servo system (IBM 2321 Data Cell Drive).

zoids. In Fig. 1, two measured velocity traces illustrate this
form. “Velocity trapezoids,” therefore, appear as the
convenient tools to describe motion. They include, as
extremes, rectangles as well as triangles with time as the
base line.

Analysis

o Definition of basic motion parameters

In our basic positioning model we consider a linear array
of storage locations within a total length L. The number
of evenly distributed positions Y,, in the array should be
sufficiently large that it is possible to smooth the discrete
distances of travel by a continuous and variable length
X < L. For practical purposes, the previous assumption
yields satisfying results if the number of positions is
greater than ten.

The velocity triangles and trapezoids shown in Fig. 2
represent the motion characteristics of our model.* The
individual lines and the time axis enclose areas which
represent the following distances of travel:

Line 1-1: Maximum distance L in the storage array

Line 1-2: Any random distance X < L

Line 1-3: Largest distance b travelled in the “triangular
mode.”

Note that any random distance X can be expressed by
the integral

X = ft: v(?) dt. (1

In order to treat the velocity curves in Fig. 2 as generally
as possible, the following four parameters are defined.

Control factor v

In practical cases it cannot be expected that acceleration and
deceleration of a positioning system have equal magnitudes.
In addition, different settling times at the target points have to
be encountered, depending on the type of motion control.

* A list of nomenclature appears at the end of this article.

Figure 2 Mathematical model of velocity versus time
curves.

VELOCITY, v —

Therefore, we choose a variable factor v which modifies the
motion times in accordance with overshoots and sluggishness
encountered in the actual system. As Fig, 2 indicates, the
control factor 4 is multiplied by the corresponding acceleration
times f, = f(x). The resulting product ~¢, is added to the net
motion time obtained with the theoretical triangles or trape-
zoids. Practical experience proves that the latter assumption is
a good approximation from two points of view:

(1) Long acceleration periods, i.e., small driving forces,
generally result in a “sluggish” time response and longer
settling periods at the target point.

(2) High velocities which are reached in extended acceleration
times usually cause difficulties in obtaining perfect control over
the deceleration period. The resulting “overshoots” are not
likely to occur within the tolerable range. In addition, a higher
velocity implies a larger power source which inherently has
longer time constants compared with small sources.

Speed factor 8 = b/L

The particular type of motion model may be described by a
dimensionless speed factor:

B = b/L =vi/aL, (2

where 0 < g8 < 1.

This parameter represents the largest distance travelled in
the triangular mode divided by the maximum distance L of
the file array. Figure 2 illustrates g8 as the ratio of the two areas
b and L. The usefulness of such a definition is demonstrated by
the fact that in all possible motion trapezoids, 8 ties the terminal
velocity v, of the positioning device to the acceleration a and the
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maximum distance L, in the form of a dimensionless quantity.
Thus the following analysis will be greatly simplified.
Relative distance ¢ = X /L and storage location w = Y/L

In order to achieve dependency from the widely varying maxi-
mum distance L of different file arrays, the relative distance

£= X/L, where 0<¢<1, 3
and the relative storage location
n = Y/L, where 0< 9<1 (4)

are introduced. In these expressions, X represents the distance
between two randomly picked storage locations Y, and Y,,;.
As previously mentioned, X and Y, and hence ¢ and #, will be
treated as continuous variables.

o Probability of moving distances in storage array with
random reference activity

Any storage location in a file with truly random reference
activity has the same probability of being accessed. Hence,
the probability to move to any location 4 = Y/L can be
defined as

Pip) =1 for 0 9L 1, (5)

In a linear storage array the probability P, for moving
any distance £ between two discrete locations 7, and 7,4
may now be evaluated as the ‘““convolution” of P(z) with
itself,® which in our case may be defined as

Po= P ) = [ PPa-9dr (@

The probability P(n) of storage locations is zero outside
the positioning range. In addition, only absolute values of
distances ¢ are accepted. Hence, for 0 < 5 < 1

0<¢(<1
0<(n—9H=1
0<(n+H=< L

Figure 3 Probability P to move a variable distance ¢ = X/L
in a storage array.

2

P(é): 2(1-9)

£+ X/L
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Equation (6) may be solved in the form:

(1-§)

Pw=£PmMn—9w+j; P(n)P(n + &) dn

(M
and with Equation (6)

P, =2(1 —§). (8

Obviously, the probability to move any distance in the
array is a linear relationship in £. In Fig. 3 this relationship
is drawn. We note that the probability to move short
distances is highest, while the probability to move the
maximum distance L (§ = 1) approaches zero.

From the foregoing analysis we may easily obtain, as
an additional result, the average distance moved by the
positioner. We find

sav=foPssds=2f0 (l—pkdt=1/3. (9

Hence, the average distance of motion with random
reference activity is exactly 1/3 of the maximum distance.
o Derivation of average motion time

In general, average motion time of any series of accesses
may be precisely defined as

tay = ‘/(; Pft(s) dg’ (10)

where again the dimensionless relative distance ¢ = X/L
is used instead of the absolute distance of motion X.

For our basic motion model in Fig. 2 we obtain the
following kinematic laws:

For 0<X<bor 0L (L8,

HX) = (2 -I—'y)\/%( 0 < x< b, (11)

or with Eq. (3)

®) = 2 +7) Vi \ﬁ 0<:<p), (12)

where the previously defined variable control factor v takes
the influence of deceleration control and settling time into
account. Similarly we obtain:

For b< X< Lor 8L ¢<1,
bl +v) + X

= b< x< L), 13
1 X) ba b< x< 1) (13)
Or with Egs. (2) and (3)
= LENTE L g cecn. ay

VB a




Substitution of Egs. (8), (12), and (14) into Eq. (10)
results in the integral equation for average time:

8 _
tew = [2<2 + ) f VEL — §) dE

+ 2o [ B+ a0 -9 | \E as)

The above equation may be easily integrated for any
speed factor 8 and control factor  that are considered to
be constant within a given positioning device. We obtain:

1 5 ea
te = 15\/5[6(1+3v) 56°(1 + 2v)
+ 158(1 + v) + 5] \/% (16)

as average motion time.

In the next sections, Eq. (16) is discussed from several
practical points of view. In particular, the influence of
terminal velocity (see Fig. 2) at constant acceleration and
the optimum utilization of a power source are investigated.

Effect of terminal velocity at constant acceleration
Equation (16) may be abbreviated in the form
tw = 7.V L/a (17)

where, as a dimensionless “time constant,” the expression

1 3 2
a= — 1 3 —‘5 1 2
T 15\/B[B(+7) 81+ 2v)
+ 158(1 + ) + 5] (18)
is defined.

In the practical case now under consideration, the
maximum distance L as well as the acceleration a will
be constant. Hence, the average time, according to (17),
becomes strictly proportional to the time constant 7, =
1B, v). In addition, we find according to Eq. (2) that
the speed factor 3 is proportional to the second power of
the peak velocity v>. Hence

tey = [, 7). (19)

In Fig. 4 the time constant 7, is plotted versus the speed
factor 8 with the control factor vy as parameter. Note that
according to Eq. (2) the range of 3 is fixed for all practical
cases between 0 and 1. For 3 = 1 we have triangular
velocity vs time curves throughout the positioning range.
For # < 1, instead, the peak velocity is restricted. We
obtain trapezoidal velocity curves where the reduction of
peak velocity follows the proportionality

bn < /B (20)

Fig. 4 shows an interesting result: The average time
constant 7, is almost unaffected by a variation of the
speed factor 3 in the range 0.4 < 8 < 1. For a control
factor v = 0.5, the time constant shows even a minimum
at 8 = 0.4. Hence if the sum of deceleration and settling
time is approximately 509 larger than the acceleration
time, it is advantageous to select a motion program
characterized by 8 = 0.4.

An illustrative picture of the physical meaning of the
speed factor B in terms of peak velocity is given in Fig. 5.
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Figure 4 Time constant 7. versus speed factor g8
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Figure 5 Illustration of trapezoidal velocity versus time
curves for various speed factors g in case of maximum
travels L.
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Each velocity vs time curve depicts the motion over
corresponding maximum distances L in file arrays. The
individual peak velocities are expressed in percentages of
the extreme velocity obtained with 8 = 1 (= triangular
profile). Utilizing Eq. (20) the percentage is simply

p. = 1004/B. (21)

Accordingly, if we choose 8 = 0.4, the velocity is reduced
t0 63.29, of the peak velocity which we would obtain with
the triangular velocity program. On the other hand, the
kinetic energy involved in access is reduced to 409, which
means a saving of 609, compared with the extreme case of
triangular velocity curves throughout the positioning
range.

The practical implications of the foregoing results are
significant. Figures 4 and 5 prove that it is possible to
reduce peak velocity and thus kinetic energy of the system
without any appreciable change in the average motion
time. For a control factor of v = 0.5 the average time
even slightly decreases if the speed factor is reduced to
B =04

Of course, such a concept stands in contrast to the
engineer’s intuitive conclusions. How can it be explained?
First of all, there is the linearly decreasing probability to
move large distances. Hence, for most of the (shorter)
strokes the reduction of terminal velocity remains un-
noticed. In addition, a high peak velocity may involve
deceleration and settling time problems, which were
reflected in the analysis by the control factor . The
probability terms as well as the control factor are es-
sentially responsible for the results.

Let us consider now a positioning system which follows
a velocity program characterized by a speed factor 8 =
0.35 and a control factor ¥ = 0.4. From looking at
Fig. 4 we almost immediately may reject a proposal to
decrease average motion time by increasing the peak
velocity of the positioner. The gain in terms of random
access performance would be negligible,

In another example we may be inclined to select a
hydraulic servo valve which supplies sufficient flow such
that the maximum possible velocity is obtained by the
servo drive, Here we may also question whether a valve
with a lower flow rate may not perform as well, if not
better. Practical experience with a hydraulic servo system
indeed proved that a valve with lower flow rate and
subsequently lower peak velocity resulted in better over-all
performance, in terms of better positioning accuracy,
fewer stability problems (shorter settling times) and
shorter average motion times.

Optimum utilization of power

A drive source used for positioning purposes may be
applied in several ways: (1) for maximum velocity, (2) for
maximum acceleration, and (3) for combinations of
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acceleration and velocity within a limited range of magni-
tudes. Usually, a certain combination is intentionally
obtained by selecting a transmission ratio between motor
and load shaft. Another known method applies the
so-called ‘“hotshot” technique, which results in higher
force or torque output but not necessarily in an increase
of peak velocity. It may even be mandatory to decrease the
peak velocity in order to stay within the power and/or
heat dissipation design range of the drive source.

In the following analysis the above considerations are
taken into account by limiting the peak power of the
prime mover. First, for a better understanding, the as-
sumption is made that the total mass or inertia of the
system remains unchanged. Later, different load and
motor inertias are introduced and the average time is
studied in terms of variable transmission ratios.

o Average motion time with constant peak power and
constant inertia load

By definition we leave the total reflected mass M,,, on
the positioner output shaft a constant. Then the peak
power P is determined by the product

P =v,.aM,, (22)
From Egq. (2) we obtain

vn = /Lo (23)

and by combining Eqgs. (22) and (23)

3 P.‘Z
= ——— 4
“ MiotL B (2 )

Substitution of the last expression into Eq. (17) yields:

3 2
o = 7 /B [P (25)

Again, we may define a time constant
7, = 7./B  [r. according to Eq. (18)], (26)

which is proportional to the average motion time in a
positioning system with a given peak power (P = Force X
Terminal Velocity) and a given inertia load M,,,. Com-
bining Egs. (25) and (26) results in:

3 2
M...L
tew = T ———';; . (27)

It is interesting now to realize that the average motion
time is proportional to the cube root of the total mass
and of the maximum distance squared. Simultaneously,
the average time is also inversely proportional to the cube
root of the power. Hence, a reduction of average time by
one-half can only be done by applying 8 times (!) the
power. In many practical cases such a large increase
would already put us at the limits of available power
sources for positioning purposes—a fact which clearly




demonstrates the handicap of mechanical positioners in
conjunction with high speed computers.

Equation (27) also shows that a reduction of mass to
be moved or, even better, a simultaneous decrease of the
maximum travel must be a basic goal in reducing motion
time. Such considerations are not new to the engineer,
except perhaps the functional relationship as stated by
Eq. (27). However, there is still another factor: the time
constant 7, which may be modified by selecting a proper
velocity vs time curve in line with the basic motion-model
(Fig. 2) chosen for this analysis. A plot of the time constant
7, in Fig. 6 proves that there exist speed factors 8 in the
range 0.13 < 8 < 0.2, where the time constant reaches a
minimum. By operating a positioner at these speed factors,
we obtain optimum utilization of the available power.
Compared with the pure triangular velocity program,
where 8 = 1, the reduction of average motion time may
be as much as 309;. The same reduction, on the other
hand, could be achieved only with an increase of power
by factors 2.0 to 2.2, as Eq. (27) states. Thus, an engineer
who has to speed up a given positioning system for
minimum average motion time may have a good chance
to accomplish a portion of his task by designing for the
proper speed factor 8 (compare Fig. 6).

We may ask now what the mechanical implications are
in case the speed factor of a system is modified. The
question may be answered by inspecting Eq. (2) and
Eq. (22). According to definition, we left the peak power P
and the total mass M,,, a constant. Hence, according to
Eq. (22), the product of peak velocity and acceleration

Figure 6 Time constant 7, versus speed factor g8
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stays constant. Any increase of acceleration must neces-
sarily coincide with a proportional decrease of peak
velocity. Accordingly, the speed factor 8 = v2/(a L)
changes.

From a machine design point of view, a variation of
acceleration and terminal velocity is usually accomplished
by changing the transmission ratio i between the prime
mover and the actual load to be positioned. A second
method would consist of increasing the force output of
an actuator by ‘“hotshot” techniques while decreasing
acceleration time and peak velocity such that the power
peak and the average heat dissipation remains unchanged
within the permissible limits.

Of course, a change of transmission ratio between a
motor and a load generally affects the total inertia of the
moving parts, a phenomenon which is studied in detail in
the following section.

o Average motion time with constant peak power and
variable transmission ratio between motor and load

In concurrence with the preceding analysis, we choose
again a linear array of discrete positions. The positioned
load as well as the motor or actuator shall perform linear
motions. We shall see later how a rotary system may be
interpreted within the terminology of such a model.

In order to generalize as well as simplify the analysis,
the following dimensionless ratios are defined:

M,, Mass on motor shaft
AN= — = 28)
M, Mass on load shaft

ratio of motor and load inertias

. Uar Peak velocity of motor 29)
] = =
U Peak velocity of load

= transmission ratio

Note that the term “load” is used for the actual inertia
of the parts being positioned within the range 0 < X < L.
Consequently, the motor will move through a distance
0< xy <IiL.

With F, as average driving force of the motor, the
acceleration of the load may now be written in the form:

FMi

= . 30
T M. +D (30)
Substituting Eq. (30) in definition Eq. (2) and considering
Eq. (29) yields:

vuM, L+

b= T F 30

In the above equation the first term contains known

129

AVERAGE MOTION TIMES




130

parameters of the system. Therefore, we define a new and
dimensionless quantity:

v M
_ buMp
=57 load factor. Hence (32)
14\
B =gq 3 . (33)

i

Now we may substitute Eqgs. (30) and (31) in Eq. (16)
and obtain for the average motion time the equation

iL 3 2
tee = E[B(l + 3y) — 58°(1 + 2v)

+ 158(1 +v) + 5] (34)

In Eq. (34) the only variable not yet known or defined
is the optimum transmission ratio i*. Hence a possible
solution would be to plot the average time as a function of
the transmission ratio and to find out which ratio minimizes
time. We may arrive analytically at the same result, how-
ever, by solving the condition

dtuv _
di = 0. (35)
We obtain

B + 3v) — SB°(1 + 2y) + 158(1 +7) + 5

+ "Z_? [38°(1 + 3y) — 108(1 +2y) + 15(1 +v)] = 0

(36)
where, according to Eq. (33),
1+ A\
g = q__i;a l
. (37)
dg 34+
T = —q 3

From Eqgs. (36) and (37) the optimum transmission
ratio i* may be found for any given ratio N and load
factor g as defined by Egs. (28) and (32). In our case, an
IBM 7090 computer was used to solve the equations.
The results are depicted in Fig. 7.

With a known optimum gear ratio i* the corresponding
minimum average time may be computed according to
Egs. (33) and (34). Here we may save much of the nu-
merical work by writing Eq. (34) in an abbreviated form:

tnv = T L N (38)

Uar

where the new time constant
i * 3 2
r = U+ 3) — 561+ 29)

+ 158(1 4+ ) + 5], and (39)
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Figure 7 Optimum transmission ratios i* versus load factor
q for v = 0.25.

" 42
R (40)
can be demonstrated as a function of the dimensionless
quantities A, g and . Figure 8 shows a graph of the defined
time constant. Corresponding values may be read off this
graph and used for computing the average time by means
of the simple relation given in Eq. (38).

Note that Figs. 7 and 8 are precisely valid only for a
control factor y = 0.25. It was found, however, that
control factors of 0 and 0.5 insignificantly change the
results. In case of v = 0 the optimum gear ratios are
only 59, lower and in case of v = 0.5 the gear ratios are
59, larger compared with the plotted results for v = 0.25.
Hence, we are to some degree independent of the control
factor—a desirable result, considering the difficulty in
assessing its precise magnitude.

Applications of the analysis to rotary systems

In the foregoing analysis a linear positioning system was




selected as a basic motion model. Of course, actual 6 = maximum angle of the positioning device (rad)
positioners do not always comply with this configuration. w, = maximum angular velocity of the positioned load
They contain rotary elements or are built entirely on a (rad/sec)
rotary incrementing basis scanning a given segment of a a = angular acceleration of the load (rad/ sec’);
circular array. It is, however, quite simple to use the s
previous analysis by restating the individual parameters A= 7‘3 s (42)
in rotary notations. Thus we obtain L
here
¢ wn, W
B= =12, (41) _
a I,y = rotary inertia load on motor shaft
where I, = rotary inertia load on load shaft;
¢, = maximum angle moved in the triangular mode (rad), q = wyly (43)
Txlle ’
where

wy = peak angular velocity of the motor (rad/sec)
average torque of the motor.

N
.
I

By using the foregoing parameters the time constants 7,
1,, and 7,. remain unchanged. Hence, the average times
may be computed according to

Figure 8 Minimum time constants i« versus load factors
g for i = i* and v = 0.25.

tw = T+ L/0y,.

fur = 7.8/ 0/ (44)
A 0005 tuv = Tp 'e/(ltotez)/P (45)

15
tav = Ti*e/wllla (46)

0.01
10 / depending whether we have constant acceleration, constant
0 / power and total inertia, or constant power with variable
8 / total inertia, respectively.

/ It will be remembered that the foregoing analysis was

[3

derived for a finite array of positions which may be of a
; - linear as well as a circular order. A slightly different condi-
’ / / tion exists if we have a closed circular array and the
4 o8/l /1, positioner never moves through angles larger than 180
1 / degrees (7). In such a case the probability of moving
/A through any angle would be constant and equal to 1 with
7 random reference activity. Hence, Eq. (15) reduces to

=3

/ = letn [ via
L = Y vV
/ :

04
15 0.6 /

I +vi5f;[ﬁ<1+v>+£]ds]\@ (47)

0.8

A= 1.(7/
1o L This equation may be easily integrated. We obtain as a
time constant for the closed circular array similar to Eq. (18)

0.8

0 1 2
T, = ——= 3 68(1 — 2 Dj. 48
o 6\/B[+6(+7) B2y + 1)] (48)

The rest of the analysis follows exactly the same path as

£ o4 “ previously discussed. Note that for all closed circular
G.03 0.1 03 0610 3 6 10 30 60100 300 1000 .
WM el arrays the maximum angle of travel becomes a constant
R U T T which is equal to . 131
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Practical example

As an example, a combination of rotary and linear posi-
tioning elements was chosen. Figure 9 shows a scheme
of the device. By means of a cable drive, a load of 3.25 1b
has to be positioned to random locations within a maxi-
mum length of L = 20 inches. The problem consists of
finding an optimum drive capstan radius R* which
minimizes the average time.
The known quantities of the motor drive are

Ty = 18 in-1b (average)
Peak velocity wy = 105 rad/sec
Inertia on motor shaft Iy = 0.00505 in-lb-sec”
Control factor v =~0.25

Torque output

e Solution

The given motor torque T and peak velocity wj group
the example into drive systems with constant peak power
(P = Tywi). On the other hand, the selection of any
capstan radius R affects the reflected inertia on the motor
shaft. Hence, the phenomena discussed in conjunction
with variable transmission ratios have to be observed.

An immediate question arising now concerns the
definition of transmission ratio in the special case under
consideration. A simple trick may answer the question:
We define

i* = R,/R*, (49)

where R, is a fictitious or assumed capstan radius and R*
is the optimum radius we are looking for. Thus, we may
solve the problem for any fixed radius R, and obtain the
true optimum radius according to

R* = R,/i*. (50)

Of course, the choice of the radius R, is arbitrary. For

Figure 9 Example of a positioning drive.

LOAD = 3.25 LB

MOTOR
Ty = 18 IN-LB
wy = 105 RAD/SEC
Iy = 0.00505 IN-LB-SEC
y=025
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convenience, however, it is recommended to use R, = 1 if
the resulting motion parameters are not out of the range
of Figs. 7 and 8.

With an assumed radius R, = 1 inch, the rotary motor
may be interpreted as a linear actuator with the charac-
teristics:

Fy = 1;1 = 18 1b
I
My = [3- = 0.00505 Ib-sec’/in

vy = wyl = 105 in/sec.
Hence, the ratio of motor and load inertia amounts to
A= My,/M;, = 0.00505 X 386/3.25 = 0.6.
The load factor is

2 2
&M, 105X 325
9= F L T 18X 20 X 386 U7

From Fig. 7 we find i* = 1.085. Hence, according to
Eq. (48), R* = 1/1.085 = 0.922 inch.

With the optimum radius R* = 0.922 inch, the average
motion time is determined by Eq. (38): #,, = 7,-L/vu,
where according to Fig. 8§, .. = f(g, \) = 0.758. Hence,

taw = 0.758T2025 = 0.144 sec.

In the above example the inertia on the motor shaft
may be slightly affected by the variation of the capstan
size. It is possible to take this influence into account by
repeating the analysis with a corrected inertia, thus
iterating rapidly toward the accurate solution.

Summary and conclusions

The design of mechanical positioners for minimum
average motion time was attacked by defining a basic
motion model and describing the characteristic param-
eters in terms of dimensionless quantities. It was shown
that considerable amounts of power could be saved by
balancing load acceleration and peak velocity in a certain
way. Graphs were presented which illustrate the de-
pendency of average motion time on defined speed factors
and load characteristics. A method of optimizing trans-
mission ratios was discussed by means of a practical
example.

The author is aware that the numerical applicability of
the results depends largely on the compatibility of the
actual design with the chosen motion model. However,
from a qualitative point of view the analysis reveals, in
general, decisive information on the mutual merit of
design quantities such as speed and acceleration.

The statistical approach to average motion time demon-
strates that a given power source should be applied more
in favor of short motions rather than in favor of the




longest motions. The result is also of interest in cases
where a random access device is less used in a random
mode but more in a skip-sequential mode. There, even
more, the optimization of a positioner in favor of short
strokes has to be observed.

Nomenclature
Symbol Units
a Linear acceleration in/sec”
b Maximum distance travelled in

triangular mode in
Fy Force of linear motor 1b
i Transmission ratio motor/load
i* Optimum transmission ratio
1o, Total rotary inertia of system in-1b-sec’
Iy Rotary inertia on motor shaft in-1b-sec’
I, Rotary inertia on load shaft in-lb-sec®
L Maximum distance of travel in
M, Total moving mass of system 1b-sec” /in
My Mass on motor shaft lb-sec’ /in
M, Mass on load shaft 1b-sec’ /in
P; Probability density of &
P Power in-1b/sec
q Load factor = (v,; M)/(Fy L)
R Radius (example) in
t Variable time sec
tav Average motion time sec
Ty Torque of motor in-1b
v Variable velocity in/sec
U Peak velocity of load in/sec
Ut Peak velocity of motor in/sec
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Symbol

S 2R o~

Ta

Tp

Tix

0,

Wi

War

Variable distance of motion

Variable location to be accessed

Angular acceleration

Speed factor = b/L = v2/(aL)

Control factor

Relative location to be
accessed = Y/L

Maximum angle of positioned
rotary load

Inertia ratio = M, /M, =
L/I

Relative distance of motion =
X/L

Time constant with constant
acceleration

Time constant with constant
peak power and inertia load

Time constant with optimum
transmission ratio i*

Maximum angle travelied in
triangular mode

Peak angular velocity of load

Peak angular velocity of motor

Units
in
in
rad/sec’

rad

rad
rad/sec
rad/sec
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