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Demagnetization of Flat  Uniaxial  Thin Films 
Under  Hard  Direction  Drive 

Abstract: The demagnetizing  fields are derived for all  points of flat  uniaxial  thin  films  under  various  drive  fields. The derivation 
is accomplished by breaking up the flat  film into a number of  sheets  in superposition and integrating their  individual contribu- 
tions to the demagnetizing  fields. The scheme  is  self-consistent  in that the magnetization  results  as a consequence of the deri- 
vation,  and  need  not  be  assumed. Further, the accuracy  does  not  depend  on the position with  respect to the edges, but rather 
on the number of sheets. 
The general approach to the problem is  discussed  briefly and the final equation for a rectangular geometry  given. The discus- 
sion  is  concerned  with  one-dimensional  examples,  demonstrating the somewhat  unexpected form of the demagnetizing  fields 
under  various hard axis  drive  conditions.  Single  bits as well as continuous films  of Permalloy  driven by uniform fields and 
multiple strip lines are treated. The effect of registration  on the demagnetization is also  discussed. 

introduction 

To properly understand the performance of a magnetic 
device, it is necessary to  be  able  to describe in  detail the 
magnetization  in the magnetic medium. Certainly, we 
cannot  hope to describe all  the fields and variations  in 
the magnetization; however, certain fields important to 
the dynamic operation of the device may  be derived. 
One of these is the field resulting from  the shape-influenced 
pole distribution, that is, the demagnetizing field. 

While the solution for demagnetizing fields of ellipsoidal 
geometries may be found  in  the literature, the solution 
for  other geometries is not well known: It is often  custom- 
ary, in solving for  the demagnetizing fields, to assume the 
magnetic  medium to be  uniformly magnetized, and  to 
argue  that  the result in  the  central region will be reasonably 
accurate. The edges are expected to  be very inaccurate. 
Some authors’ reduce the edge inaccuracies by treating 
them separately. However, where the length-to-thickness 
ratio of the magnetized medium is small,  serious errors 
may  result in  the  central region as well. 

In  our  method of solution, the magnetized medium is 
replaced by many coplanar thin sheets of different size 
and magnetization. The contributions from all the sheets 
are integrated to give the demagnetizing fields and hence 
the magnetization. The accuracy of the  solution is seen 
to be  dependent  only  upon the number of superposed 
sheets and  the  rate of change of magnetization through 
the point, and is independent of the relative position  with 
respect to the edge of the magnetized medium. The 
solution is seen to be self-consistent in that  the magnetiza- 

tion need not be assumed but results  as a consequence of 
the derivation. 

We will consider  here a uniaxial thin film which has 
been initially set  into  one of the easy directions. It must 
be  noted that  the derivation is concerned only  with the 
macroscopic  “picture” of the magnetization and will not, 
for example, give any insight into  the ripple3 structure 
which may exist in  the film. We ignore, then,  any con- 
tribution  due to stray fields3 and exchange coupling, which 
may  be  shown to be negligible in our geometries. 

Theory 

A uniaxial thin film is generally operated by driving the 
magnetization into  the  hard direction by means of an 
applied field in  that direction. When the field is relaxed, 
the magnetization will return to  an easy direction  under 
the influence of anisotropy forces. We will concern our- 
selves only with the demagnetizing field during  the  rotation 
into  the  hard direction, although  the ensuing equations 
and results  may  be directly applied  under other circum- 
stances. 

As the film is driven into a hard direction,  variations 
will occur  in the magnetization  along both  the  hard 
direction and  the easy direction. The poles resulting 
from  the easy direction  variation will appear at the 
corners and be of minimal consequence along the central 
hard axis. If we can be satisfied with the  solution  along 
the central hard axis, the  contribution  to  the  hard direction 
demagnetizing field of the poles resulting from  the easy 

IBM JOURNAL ’ MARCH 1965 



direction  variation  may  be ignored. (For a  consideration of 
the two-dimensional case, see Reference 5.) 

The field, resulting from  an elemental pole dm, and  at 
some  distance r from  that pole, may in general be ex- 
pressed as : 

where r is the unit vector in the r direction. 
Referring to Fig. la,  the component of the demagnetizing 

field in the hard-direction,  due to that component of 
magnetization directed in the  hard direction, is given by 

Ha = / 27$? d m .  (2) 

Assuming the sheet to be indefinitely thin  and  the 
magnetization to be uniform throughout, 

where AM is the difference in  magnetization between the 

Figure 1 (a) Uniformly  magnetized  sheet (b) Superposed 
sheets. 

magnetized sheet and  air  and x is the decimal part of the 
half-width of the sheet, and 

where p is the decimal part of the half-length of the sheet. 
Considering the poles at  both ends, we have 

where 

Now, let the flat film be made  up of many coplanar 
flat sheets (Fig. 1) of varying size, each  with  uniform 
magnetization, in superposition, and identified by the 
index IZ. The reader will recognize that we are,  in essence, 
using the familiar approach of “line charges” where the 
line charges are determined from  the magnetization of 
the related sheet. The  total demagnetizing field due  to all 
the superposed sheets (or line charges) is then 

H D  = H a ,  1 < n < N ,  
n 

where the solution to (4) is written with indices 

and 

For a uniaxial film, 

1’ + [;I2. 

where Ha is the applied field, HK is the anisotropy field, 
and M ,  is the  saturation magnetization. 119 
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We may, if  we wish, express Eq. (6) succinctly in the 
form of an integral: 

HdP) = /’ I K(P, 11) a[M(d.l/avl ds (7) 

where K is easily deduced from (6) and r]  = n / N .  
It is immediately seen from Eqs. (6) and (7) that as the 

pole position, q,  nears the observer position, p ,  a singularity 
exists in  the expressions. However, it is evident  (in the 
true physical circumstance) that  such a singularity  does 
not occur,  since the  sum of the components of the demag- 
netization  factor cannot exceed 4 ~ .  

The singularity is removed by invoking the Cauchy 
Principal Value Theorem, 

H D ( P >  = p /’ [ G ,  7) ah.rlaril dq 

where P indicates the principal  value of the integral. 
If we consider the region within some  arbitrarily  small 
radius of the observer, the  contribution  from  that region 
depends on  the second derivative change  in the magnetiza- 
tion  through  the region, since a contribution to HD can 
occur only if the pole strength on  one side of the singularity 
differs from  that  on  the other side. Generally, the second 
derivative will be  quite small, and  the  contribution to 
the demagnetization  may  be ignored;  that is, the principal 
value tends to a small value. 

The singularity is avoided in our solution by adopting 
an observer position between the line charges, and ignoring 
any  contribution  to  the field that may  have resulted from 
the material in  that region. 

Applications 

Equation (6) was applied to typical  problems involving 
rectangular flat-film geometries exhibiting a uniaxial 
anisotropy. Only the results of the computer  solution 
will be discussed here. A discussion of the  method of 
computation may be found in Reference 1. 

We shall limit the applications to finite memory bits 
and continuous-sheet films which are driven by either a 
uniform field or a multiplicity of drive lines. Single-wire, 
two-wire, and three-wire drive schemes are considered, 
as well as a misregistration of a single-drive line. The 
drive line will be considered to be a current  sheet of finite 
width and  constant  current density throughout its cross 
section. The field from a current  sheet is obtained by 
integration of the  contributions of elemental currents 
across the sheet, 

120 where I is the  total current of the sheet, X is the width of 
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Figure 2 Uniform field drive. 

the drive line, h is the distance of the line from  the plane, 
p is the observer position  in the plane, and b is the position 
of the drive line referenced to the observer position, p = 0. 
While the integral of Eq. (8) is easily obtained, it was 
expedient for computer  solutions to leave it in integral 
form. 

As a first example, typical  memory  bits are driven  with 
a uniform  applied field for comparison  with  bits  driven 
by drive lines, Fig. 2. We note  from  the figures that  the 
demagnetizing fields are strongly  dependent on  the 
geometry of the bit, but weakly dependent upon  the 
magnitude of the field, except at  the edges. This result is 
of course expected. Magnetization saturation is indicated 
by the discontinuity in  the curves, and  the film is found 
to be  in saturation  from  the center of the bit to  the position 
of the discontinuity. The demagnetizing fields for typical 
Permalloy films and bits are generally of the order of 
one oersted at  the center of the bit. 

Turning  to drive lines, we find a marked  departure  from 
the uniform drive-field case, due to the  rapid fall-off of 
the field toward  the edges of the bit. This is most  pro- 
nounced for a single drive line, as  in Fig. 3a, where the 
drive field Ha is shown  plotted  along  with the demag- 
netizing field. 
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Figure 3 Single-wire drive. 
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For fields  of 18 oersteds at the center of the bit, the 
magnetization is in saturation to only 50% of the bit, not 
because of demagnetization, but because of the fall-off 
of the field.  We  may extend the magnetization to 75%  by 
doubling the current (Fig. 3b), but this is inefficient; the 
objective may be  accomplished more effectively  by  using 
two drive lines with  half the current, as shown in Fig.  4a. 
We may also increase the extent of magnetization by 
increasing the current per drive line (Fig. 4b). 

If we space the drive lines farther apart (Fig. 4c)  we 
find that the magnetization of the center drops below 
saturation with a marked drop  in demagnetizing  field, 
because of the formation of poles in  the central region of 
the bit. We note further that strong demagnetizing  fields 
occur in  the central reaches of the bit as well as at the 
edges,  which could result in  reverse domains upon the 
removal of the  hard direction drive. Figure 4d indicates 
that the demagnetizing  field  is not appreciably altered 
by a moderate change in geometry. Spacing the drive 
lines farther apart (Fig. 4e) worsens the situation, but 
this may  be  easily corrected, as expected, by increasing 
the current in the drive lines  (Fig. 40. 

If two drive lines are better than one, then three should 
be better than two. That this is the case  is shown in  Fig. 5. 
The central drive line prevents the formation of poles  in 
the central region of the bit. Moderate changes in geometry 
do not materially alter the magnetization (Figs. 5b and 5c), 
but increasing the current in the drive lines extends the 
saturation nearly to the edges. 

It will be of interest to investigate the demagnetizing 
fields occurring when a continuous film  is driven into its 
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Figure 4 Two-wire drive. 
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hard direction by drive lines. To correlate the results 
with the discrete bits previously  discussed, the dimensions 
are normalized against the bit dimensions.  While one 
should investigate continuous films  using a variety of 
drive lines, we shall consider the case  with two drive lines, 121 
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Figure 5 Three-wire drive. 

since it is likely to give the least  predictable results. We 
see immediately from Fig. 6a that  the demagnetizing field 
changes sign as one proceeds from  the central region of 
the bit.  This change in sign results in a larger bit size 
than expected from the drive field alone. If we now weaken 
the field in  the center of the bit  (Fig. 6b), we see that  the 
demagnetizing field in the central region also changes 
sign and becomes positive, aiding  in the magnetization 
of that region. A comparison of Figs. 6a and 6c indicates 
that  moderate changes in geometry do  not materially alter 
the demagnetizing fields. It is found, however, that changes 
in drive-line current (Figs. 6b  and 6d) result  in a markedly 
changed bit size. It is quite evident that control of bit size 
in  continuous films will depend  upon the field gradient of 
the drive lines. 

As a final point of interest, we consider the effect of 
misregistration of a single-drive line on  the demagnetizing 
field for  the case of discrete bits  (Fig. 7). The demag- 
netizing field is seen to  drop off rapidly on one side and 
increase on  the  other with a radical decrease in  bit size 
(magnetization saturation). The effects of misregistration 
are  in evidence with the onset of displacement of the 

122 drive line. 
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Summary 

The demagnetizing field of a flat uniaxial thin-film memory 
bit has been derived for various drive configurations by 
breaking the bit into a large  number of sheets in  super- 
position and integrating  their  individual  contributions to 
the field. It is seen that  no a priori knowledge of the 
magnetization or demagnetizing field  is necessary and  that 
the magnetization is obtained as a consequence of the 
calculation. The  method of derivation is therefore said 
to be self-consistent. 

By studying both discrete bits and continuous sheets, we 
find that  the demagnetizing field is determined by the 
distribution of poles and, therefore, is a consequence of 
both  the physical geometry of the film and  the field 
geometry of the drive lines. That is to say, the demag- 
netizing field cannot be determined from  the film geometry 
alone. It is improper to speak of a demagnetization  factor 
for a film geometry;  demagnetization is a point concept 
and  no single value may be assigned to a  particular 
geometry except in  the case of ellipsoids of revolution. 

While we usually think of demagnetizing fields as being 
oppositely oriented to the magnetization (hence de- 
magnetizing), we find that unique  conditions  may  arise 
where the fields are in  fact  oriented in  the  same direction 
as  the magnetization. These  conditions exist where the 
bit is very much larger in size than  the  actual  area driven 
by the drive lines and, again, where the fields at  the 
central region of the bit are lower in  amplitude than those 
in the adjacent regions. 

Calculations developed by the method of superposed 
sheets represent a  second-order  approximation and  are by 
no means exact. We assume a one-dimensional model 
and  are satisfied to obtain a solution  along the  central 
hard axis. The accuracy of this  model  depends upon  the 
number of superposed sheets chosen (in  this case, 41) 
rather  than  upon  the proximity of the observer position 
to the edges of the film. 
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