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Demagnetization of Flat Uniaxial Thin Films
Under Hard Direction Drive

Abstract: The demagnetizing fields are derived for all points of flat uniaxial thin films under various drive fields. The derivation
is accomplished by breaking up the flat film into a number of sheets in superposition and integrating their individual contribu-
tions to the demagnetizing fields. The scheme is self-consistent in that the magnetization results as a consequence of the deri-
vation, and need not be assumed. Further, the accuracy does not depend on the position with respect to the edges, but rather

on the number of sheets.

The general approach to the problem is discussed briefly and the final equation for a rectangular geometry given. The discus-
sion is concerned with one-dimensional examples, demonstrating the somewhat unexpected form of the demagnetizing fields
under various hard axis drive conditions, Single bits as well as continuous films of Permalloy driven by uniform fields and
multiple strip lines are treated. The effect of registration on the demagnetization is also discussed.

Introduction

To properly understand the performance of a magnetic
device, it is necessary to be able to describe in detail the
magnetization in the magnetic medium. Certainly, we
cannot hope to describe all the fields and variations in
the magnetization; however, certain fields important to
the dynamic operation of the device may be derived.
One of these is the field resulting from the shape-influenced
pole distribution, that is, the demagnetizing field.

While the solution for demagnetizing fields of ellipsoidal
geometries may be found in the literature, the solution
for other geometries is not well known.! It is often custom-
ary, in solving for the demagnetizing fields, to assume the
magnetic medium to be uniformly magnetized, and to
argue that the result in the central region will be reasonably
accurate. The edges are expected to be very inaccurate.
Some authors’ reduce the edge inaccuracies by treating
them separately. However, where the length-to-thickness
ratio of the magnetized medium is small, serious errors
may result in the central region as well.

In our method of solution, the magnetized medium is
replaced by many coplanar thin sheets of different size
and magnetization. The contributions from all the sheets
are integrated to give the demagnetizing fields and hence
the magnetization. The accuracy of the solution is seen
to be dependent only upon the number of superposed
sheets and the rate of change of magnetization through
the point, and is independent of the relative position with
respect to the edge of the magnetized medium. The
solution is seen to be self-consistent in that the magnetiza-
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tion need not be assumed but results as a consequence of
the derivation.

We will consider here a uniaxial thin film which has
been initially set into one of the easy directions. It must
be noted that the derivation is concerned only with the
macroscopic “picture” of the magnetization and will not,
for example, give any insight into the ripple® structure
which may exist in the film. We ignore, then, any con-
tribution due to stray fields® and exchange coupling, which
may be shown to be negligible in our geometries.

Theory

A uniaxial thin film is generally operated by driving the
magnetization into the hard direction by means of an
applied field in that direction. When the field is relaxed,
the magnetization will return to an easy direction under
the influence of anisotropy forces. We will concern our-
selves only with the demagnetizing field during the rotation
into the hard direction, although the ensuing equations
and results may be directly applied under other circum-
stances.

As the film is driven into a hard direction, variations
will occur in the magnetization along both the hard
direction and the easy direction. The poles resulting
from the easy direction variation will appear at the
corners and be of minimal consequence along the central
hard axis. If we can be satisfied with the solution along
the central hard axis, the contribution to the hard direction
demagnetizing field of the poles resulting from the easy




direction variation may be ignored. (For a consideration of
the two-dimensional case, see Reference 5.)

The field, resulting from an elemental pole dm, and at
some distance r from that pole, may in general be ex-
pressed as:

dH = }idmr 1)

where r is the unit vector in the r direction.

Referring to Fig. 1a, the component of the demagnetizing
field in the hard-direction, due to that component of
magnetization directed in the hard direction, is given by

H; = f—;r dm. 2

Assuming the sheet to be indefinitely thin and the
magnetization to be uniform throughout,

dm = tAM dx’', x' = —;Zx, 3)

where AM is the difference in magnetization between the

Figure 1 (a) Uniformly magnetized sheet (b) Superposed
sheets.

(b)

magnetized sheet and air and x is the decimal part of the
half-width of the sheet, and

L2 =0 o, o L2014
" ’ 2 s ’

cos 6, =

where p is the decimal part of the half-length of the sheet.
Considering the poles at both ends, we have

tWLAM [ {1 — 1
< 3p+"+;3#p)dx
2

H =
? 4 -1 L1

(4)

where

rf=[f(1—pﬂ2+[%ﬂi

Now, let the flat film be made up of many coplanar
flat sheets (Fig. 1) of varying size, each with uniform
magnetization, in superposition, and identified by the
index n. The reader will recognize that we are, in essence,
using the familiar approach of “line charges” where the
line charges are determined from the magnetization of
the related sheet. The total demagnetizing field due to all
the superposed sheets (or line charges) is then

Hp = > Hy,, 1<n<N, (5)

where the solution to (4) is written with indices

For a uniaxial film,
AMn = Mn - Mn+]
M, T
Mn = ;I_K [Ha(p) + HD(p)J lf Ha + HD < HK

Mn= M, if Ha+HD__>_ HK

where H, is the applied field, Hx is the anisotropy field,
and M, is the saturation magnetization.
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We may, if we wish, express Eq. (6) succinctly in the
form of an integral:

Hole) = [ (Ko, 1) 9LMC) Vo) d @

where K is easily deduced from (6) and n = n/N.

It is immediately seen from Eqgs. (6) and (7) that as the
pole position, 5, nears the observer position, p, a singularity
exists in the expressions. However, it is evident (in the
true physical circumstance) that such a singularity does
not occur, since the sum of the components of the demag-
netization factor cannot exceed 4.

The singularity is removed by invoking the Cauchy
Principal Value Theorem,

() = P [ " LK(p, m) aM/on] dn

where P indicates the principal value of the integral.
If we consider the region within some arbitrarily small
radius of the observer, the contribution from that region
depends on the second derivative change in the magnetiza-
tion through the region, since a contribution to Hp can
occur only if the pole strength on one side of the singularity
differs from that on the other side. Generally, the second
derivative will be quite small, and the contribution to
the demagnetization may be ignored; that is, the principal
value tends to a small value.

The singularity is avoided in our solution by adopting
an observer position between the line charges, and ignoring
any contribution to the field that may have resulted from
the material in that region.

Applications

Equation (6) was applied to typical problems involving
rectangular flat-film geometries exhibiting a uniaxial
anisotropy. Only the results of the computer solution
will be discussed here. A discussion of the method of
computation may be found in Reference 1.

We shall limit the applications to finite memory bits
and continuous-sheet films which are driven by either a
uniform field or a muitiplicity of drive lines. Single-wire,
two-wire, and three-wire drive schemes are considered,
as well as a misregistration of a single-drive line. The
drive line will be considered to be a current sheet of finite
width and constant current density throughout its cross
section. The field from a current sheet is obtained by
integration of the contributions of elemental currents
across the sheet,

A2
H, = /;x/z il IhLdZ | ’ ®)
2wk{t(p + b) 5~ ZJ + h2}

where I is the total current of the sheet, \ is the width of
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Figure 2 Uniform field drive.

the drive line, % is the distance of the line from the plane,
p is the observer position in the plane, and b is the position
of the drive line referenced to the observer position, p = 0.
While the integral of Eq. (8) is easily obtained, it was
expedient for computer solutions to leave it in integral
form.

As a first example, typical memory bits are driven with
a uniform applied field for comparison with bits driven
by drive lines, Fig. 2. We note from the figures that the
demagnetizing fields are strongly dependent on the
geometry of the bit, but weakly dependent upon the
magnitude of the field, except at the edges. This result is
of course expected. Magnetization saturation is indicated
by the discontinuity in the curves, and the film is found
to be in saturation from the center of the bit to the position
of the discontinuity. The demagnetizing fields for typical
Permalloy films and bits are generally of the order of
one oersted at the center of the bit.

Turning to drive lines, we find a marked departure from
the uniform drive-field case, due to the rapid fall-off of
the field toward the edges of the bit. This is most pro-
nounced for a single drive line, as in Fig. 3a, where the
drive field H, is shown plotted along with the demag-
netizing field.
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Figure 3 Single-wire drive.

For fields of 18 oersteds at the center of the bit, the
magnetization is in saturation to only 509 of the bit, not
because of demagnetization, but because of the fall-off
of the field. We may extend the magnetization to 759, by
doubling the current (Fig. 3b), but this is inefficient; the
objective may be accomplished more effectively by using
two drive lines with half the current, as shown in Fig. 4a.
We may also increase the extent of magnetization by
increasing the current per drive line (Fig. 4b).

If we space the drive lines farther apart (Fig. 4c) we
find that the magnetization of the center drops below
saturation with a marked drop in demagnetizing field,
because of the formation of poles in the central region of
the bit. We note further that strong demagnetizing fields
occur in the central reaches of the bit as well as at the
edges, which could result in reverse domains upon the
removal of the hard direction drive. Figure 4d indicates
that the demagnetizing field is not appreciably altered
by a moderate change in geometry. Spacing the drive
lines farther apart (Fig. 4e) worsens the situation, but
this may be easily corrected, as expected, by increasing
the current in the drive lines (Fig. 4f).

If two drive lines are better than one, then three should
be better than two. That this is the case is shown in Fig. 5.
The central drive line prevents the formation of poles in
the central region of the bit. Moderate changes in geometry
do not materially alter the magnetization (Figs. 5b and 5c),
but increasing the current in the drive lines extends the
saturation nearly to the edges.

It will be of interest to investigate the demagnetizing
fields occurring when a continuous film is driven into its
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Figure 4 Two-wire drive.

hard direction by drive lines. To correlate the results
with the discrete bits previously discussed, the dimensions
are normalized against the bit dimensions. While one
should investigate continuous films using a variety of
drive lines, we shall consider the case with two drive lines,
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Figure 5 Three-wire drive.

since it is likely to give the least predictable results. We
see immediately from Fig. 6a that the demagnetizing field
changes sign as one proceeds from the central region of
the bit. This change in sign results in a larger bit size
than expected from the drive field alone. If we now weaken
the field in the center of the bit (Fig. 6b), we see that the
demagnetizing field in the central region also changes
sign and becomes positive, aiding in the magnetization
of that region. A comparison of Figs. 6a and 6c indicates
that moderate changes in geometry do not materially alter
the demagnetizing fields. It is found, however, that changes
in drive-line current (Figs. 6b and 6d) result in a markedly
changed bit size. It is quite evident that control of bit size
in continuous films will depend upon the field gradient of
the drive lines.

As a final point of interest, we consider the effect of
misregistration of a single-drive line on the demagnetizing
field for the case of discrete bits (Fig. 7). The demag-
netizing field is seen to drop off rapidly on one side and
increase on the other with a radical decrease in bit size
(magnetization saturation). The effects of misregistration
are in evidence with the onset of displacement of the
drive line,
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Figure 6 Two-wire drive; continuous film.

Figure 7 Registration.
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Summary

The demagnetizing field of a flat uniaxial thin-film memory
bit has been derived for various drive configurations by
breaking the bit into a large number of sheets in super-
position and integrating their individual contributions to
the field. It is seen that no a priori knowledge of the
magnetization or demagnetizing field is necessary and that
the magnetization is obtained as a consequence of the
calculation. The method of derivation is therefore said
to be self-consistent.

By studying both discrete bits and continuous sheets, we
find that the demagnetizing field is determined by the
distribution of poles and, therefore, is a consequence of
both the physical geometry of the film and the field
geometry of the drive lines. That is to say, the demag-
netizing field cannot be determined from the film geometry
alone. It is improper to speak of a demagnetization factor
for a film geometry; demagnetization is a point concept
and no single value may be assigned to a particular
geometry except in the case of ellipsoids of revolution.

While we usually think of demagnetizing fields as being
oppositely oriented to the magnetization (hence de-
magnetizing), we find that unique conditions may arise
where the fields are in fact oriented in the same direction
as the magnetization. These conditions exist where the
bit is very much larger in size than the actual area driven
by the drive lines and, again, where the fields at the
central region of the bit are lower in amplitude than those
in the adjacent regions.

Calculations developed by the method of superposed
sheets represent a second-order approximation and are by
no means exact. We assume a one-dimensional model
and are satisfied to obtain a solution along the central
hard axis. The accuracy of this model depends upon the
number of superposed sheets chosen (in this case, 41)
rather than upon the proximity of the observer position
to the edges of the film.
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