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On Plane Blazed Gratings

E. S. Barrekette
R. L. Christensen

Abstract: The Fraunhofer patterns of blazed gratings are derived on the basis of a scalar theory which includes the non-linear
dependence of the obliquity factor and the phase modulation on the spatial frequencies defining the positions of the source and
of the observer. The solution based on the usual ‘linear communications’ theory is compared with one based on the more gen-
eral non-linear theory; it is shown that the former is meaningful only in the neighborhood of the blaze wavelength. The
behavior of blazed gratings is examined in the light of non-linear theory in the region away from the blaze wavelength. It is
shown that the envelope function describing the amplitude distribution due to a single groove depends on the single parameter
defining half the phase difference between the two edges of a single diffracting facet. It is also shown that certain wavelengths
are missing from the zero order and that ‘dark’ lines exist into which no light of any order is transmitted. A useful maximum
for the aspect ratio is derived. The Littrow and spectrograph configurations are examined in some detail.

Introduction

The diffraction grating is a useful, versatile, and mature
tool of the optical profession, which has provided probably
the most prominent and lucid example of the “wave
interpretation™ of photo-optical phenomena. Basic experi-
mental and theoretical investigations of diffraction
gratings were conducted early in this century by Wood'™®
and Lord Rayleigh*. The former, for example, discovered
the well-known anomalies which bear his name, and the
latter investigated gratings theoretically and examined the
effects of polarization, achieving results in fairly good
agreement with observed values.

Numerous authors have discussed the principles of
diffraction gratings with varying degrees of rigor. Recently,
Madden and Strong® presented a theoretical analysis of
plane blazed gratings as well as of the aberrations of some
concave gratings. It is our purpose, however, to analyze,
in a paper of intermediate mathematical precision, the
basic phenomena underlying or attending the use of
blazed gratings and to explain the reasons for several
of the more prominent phenomena observed, giving
physical insight into the mathematical results. Specifically,
the ramifications of the blaze concept and the diffraction
patterns of plane blazed gratings are examined. The
accuracy of the usual linearizations of the communications
theory approach is easily tested in the case of gratings and
is therefore also examined in some detail. Similar tech-
niques have been used recently to describe finite sinusoidal
phase gratings.’
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It is instructive, as a first approximation, to consider a
blazed grating as one whose diffracting (i.e., causing wave
interference) surfaces are inclined so as to cause
specular reflection to occur in that direction wherein
occurs the desired maximum of constructive interference.
A simple geometrical analysis following that basic ap-
proach can extend the usual description of plane gratings’
to include blaze and give an approximation to actual
results. At the other extreme, a quantitatively rigorous
analysis of gratings would necessitate a solution of
Maxwell’s equations with appropriate boundary con-
ditions and would include the effect of polarization on
grating efficiency.

Our approach is based on Fraunhofer’s approximation
to the Kirchhoff diffraction theory and is thus subject
to the limitations of this approximation, including the
neglect of polarization effects.* In addition, the usual
assumptions are made: namely, the effects of shadowing
are neglected (so that our results are valid for those angles
of incidence or diffraction for which no point of any
groove is in the shadow of another groove); the effects
of multiple diffractions are neglected; and the source is
assumed to be a uniform and long line-source and the
grating grooves are assumed to be parallel to this source
and long (to permit a one-dimensional treatment, i.e., to

* Tt should be noted that polarization effects may prove important in
some cases.3-12 A complete treatment of the problem of energy distribu-
tion and efficiency in gratings will be found in Ref. 12.




Figure 1 Configuration of source, object, and field domains:
(a) reflection grating; (b) transmission grating.
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permit variation of light amplitude in the direction of the
grooves to be neglected). Finally although the contribution
of the minor facets is examined and its affect on the
over-all patterns evaluated, it is neglected in most of the
results.

Fraunhofer diffraction by blazed gratings

Consider the configuration shown in Fig. 1a. Let P, be a
generic point in the source and let P be a generic point in
the Fraunhofer diffraction field. Let the diffracting object
be defined by the surface z(x, y) which consists of 1) a
region A of uniform unit reflectance, and 2) an absorbing
screen everywhere outside of A. The source and field
points are in the focal plane of an aberration-free col-
limating lens whose aperture is greater than the region A.
(It should be noted that the following development also
applies to a configuration utilizing collimating mirrors).
According to Fraunhofer theory the amplitude distribu-
tion U(P) at the field point P due to light of wavelength A
emanating from the source at P, is given by” "

UP) ~ 1)

: [ ¥ exp {i2nlde + (u — wx + (@ — @)y]} d4,

Figure 2 Geometry for the definition of spatial frequency:
(a) reflection grating; (b) transmission grating.
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where integration is carried over the surface z(x, y) within
region A; the obliquity factor is ¢ = 3[cos (n, r,) +
cos (n, )]; the phase deviation is 27¢, where ¢ = (cos a, +
cos @)/A; and w, = (sin 8,)/\, u = (sin B)/\, w, =
(sin y.)/A\, @ = (sin y)/), are spatial frequencies.*
The quantities e, &, 8, B> ¥, Yes s Fo are geometrical
factors defined in Fig. 2a, and # is the outward normal to
the diffracting surface.

A transmitting phase-modulating object in the con-
figuration shown in Fig. 1b gives rise to a far-field ampli-
tude distribution which is also described'® by Relation (1)
but for which: ¢ = 1[N, cos (n, r.) — cos (n, r)]; ¢ =
(N, cos a. — cos @)/N; p, = (N, sin 8,)/\; u = (sin B)/\;
w, = (N, sin v,)/A; « = (sin )/\; N, is the index of
refraction of the object; and &, «., B, B:5 ¥, Yes T, Fe, aT€
as defined in Fig. 2b. The object in this case has a unit
transmittance in the region A and is opaque elsewhere.
(It should be noted that the above result is derived in
Ref. 15 subject to the approximation ¢ = 1 and also that
for strict rigor, the object, Fig. 1b, should be in collimated
light between two lenses such that the source and Fraun-
hofer field lie in their focal surfaces. The configuration
shown approaches the required geometry as the lens
approaches an infinite, thin, ideal lens.)
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If the source is assumed to be a long line parallel to
the y-axis and of uniform intensity, and if the object does
not have any variations along this axis, i.e., if z = z(x),
then variations of amplitude with y can be neglected. The
amplitude distribution is then such that

U~ L ¥ exp {i2n[pz + (. — »)x]} ds, 2

where integration is carried with respect to the distance s
along that portion of the line of intersection of the grating
with the xz plane which falls within the region A, and

v, = (sin a,)/\; v = (sin @)/A. (2a)
For the case of a transmitting object
v, = (N, sin a.)/\. (2b)

Let the grating consist of N grooves of blaze angle §
and aspect ratio e = a/d as shown in Fig. 3. Let the
narrower facets (for instance, BC in Fig. 3) absorb all
the light that is incident upon them. Thus, the amplitude
distribution can be expressed as

U= Ky fj’ o(x) exp [i2r(y, — v)x] dx, (3)

where K is a constant of proportionality which depends
on the blaze angle ; the intensity of the source; the distances
between the source, object, and field domains; and the
wavelength of the light emitted by the source. For a grating
centered at x = kd, and having N grooves each centered
at x = k,d [where, f Nisodd, k, = k+ n,n = 0, £1,
+2, - (N~ 1jor,if Niseven, k, = k+ 3+ n,
n= 0,1, --- &N — 1), —1N], the object function
o(x) is such that

exp (i2rp(x — k,d) tan §]

for |x — k.d| £ %a;
0 for }a < |x — k,d| £ 3d; (3a)
0 for N < |x — kd|.

o(x) =

The above expression for o(x) corresponds to the fact that
on the major facets |x — k,d| < 2a, while on the minor
facets, 1a < |x — k.d| < %d. In the regions beyond the
ends of the grating we have 3N < |x — kd|. The obliquity
factor y is, as can be seen from Fig. 3,

¥, = Ycos (e, + 3) + cos (a — b)) (3b)
(reflecting grating),

Y. = [N, cos (@, + 8) + cos (@ + 8)] (3¢)
(transmitting grating).

In the region [x — k.d| < %a where o(x) differs from
zero, ¥ is independent of x.
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Figure 3 Groove geometry in a blazed grating.

By integrating over a single groove and then summing
over the N grooves we obtain

U= KyIp)E@) exp [—i2nly — v.)kd], (4)

where I(»), the interference function, is simply the sum
of the geometric series

Z exp [—i2r(y — v )k, — k)d],

that is,

sin Nwd(y — »,)
sin 7d@p — »,)

1) = , (4a)

and where E(») is the envelope function describing the
amplitude distribution due to a single groove and given by

E@) = (asin§)/E, (4b)
in which
¢ = ma[é¢ tan & + v, — »]. (4¢)

Spectral content of the zero order

We shall examine the spectral content in the zero order
for a reflecting grating in both the spectrograph and the
Littrow configurations. The carrier frequency, »., is zero
in both configurations when this order is observed.




The zero order occupies that interval for which |»] < »,,
where v, is the smallest positive root of sin Nxdv = 0.
Thus, in the zero order [sin «| < N/Nd so that for large
N we have a < 1, sin a & «. It follows that ¢ (provided &
is not too large) and ¢ can be considered constant in this
interval; indeed ¥ & cos § and ¢ & 2/A. In view of
Egs. (4a-c), we have, for |a| < N/Nd

U= (5

sin (w N do/\) sin [ra(2 tan 6 —a)/A] pizraki
(7 da/N)[ra(2 tan §—a)/\]
We seek the normalized energy distribution as a function
of \, ie.,

Kacos

300 = @307 [ v U6 v,

where integration is carried over « with A fixed, where U*
is the complex conjugate of U, and where a convenient
normalizing factor, &, is the energy that would be
reflected into the zero order by a plane mirror of length
Na/cos & (equal to the total length of the diffracting facets
of the grating) inclined at an angle & to the optic axis and
otherwise placed in the same configuration as the grating.t
With some manipulation, we obtain

SM(A) = (6)

5 am vaer [T sin® M Esin® [w(FA—1)/A]
(2n* sim] ™ [ . T

where M = N/e = Nd/a and A = N\/(2a tan §).
As M — o the spectral content of the zero order ap-
proaches the form, Fig. 4,

Je(8) = [(A/m) sin (x/A)]". M

Obviously, . = 0 for some values of A; the wavelengths
A\, = (Qatan 8)/n, n = 1,2, --- , are missing from the
zero order, i.e., S-(\,) = 0. Also, Fo(») =

It is interesting to note that S is a good approximation
to Sy even for relatively short gratings. For instance, for
M = 100 (i.e., for a grating with no more than 100 grooves)
we find from Eq. (6) that $00(\,) < 1.12 X 107° while
[1 — S1p0(®)] = 4.1 X 107° so that to all intents the wave
lengths \, = (2a tan 8)/n are missing from the zero order
of a finite grating. In effect, then (as has been graphically
illustrated by Longhurst'®) and despite the fact that the

d¢

+ The Fraunhofer diffraction for such a mirror can be
abtained from Eq. (3) if o(x) becomes o((x) = exp (i2rdx tan 8)
if [x] < iNa and oi(x) = O elsewhere. Thus with », = 0;
Uyv) = KxﬁNa [sm xNa (¢ tan § — »)]/[wNa (¢ tan § — »)].
The zero order is in the interval Na |¢ tan § — »| < 1. For
large N this interval is narrow and (¢ tan & — ») = 0 so that
a = 24§. Thus ¢ (provided & is not too large) and ¢ can be
considered constant; indeed y = cos dand ¢ = (1 + cos 28)/A.
Integrating over o thh A fixed we get .

o = 2K2Na cos? § Si2x)/m where Si{x) = [q (sin § /£)d.
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Figure 4 Relative spectral content of the zero order as a
function of relative wavelength. Zeros appear at A — 1/n
(n=1,2,3, +-+); only four are shown.

width of the principal maxima is inversely proportional to
the number of grooves, the normalized power contained
in the principal maxima is relatively insensitive to the
number of grooves. Consequently, in the following sections
we shall concern ourselves only with the limiting case
N — < ; our results will then apply to most gratings since
generally a grating has so many -grooves that its diffraction
pattern is very closely approximated by that of a cor-
responding infinite grating.

Intensity distribution in the non-zero orders

From Eq. (4a) for the interference function we can see
that the m-th order of A is centered on v,, = »,,, + m/d or
a, = sin" [sin a,.(\) + (m\/d)], where a..(\) is the
angular position of the source. For an infinite grating (or,
to good approximation, for a long grating) the interference
function is simply the comb function @ _5o__, 8l — », —
(m/d)], where ¢ is the Dirac delta), so that the m-th order
of A is a discrete line at «,, whose intensity is proportional
1o

FuN) = [(¥ sin £,)/En]", (8)

where ¢,, and £, are as given by Egs. (3b) and (4c),
respectively, with « = «,, and a, = a,n.

The function &, is plotted in Figs. 5 and 6 for, respec-
tively, the spectrograph configuration (in which light is
incident along the normal to the grating and wavelength
selection is accomplished by varying the direction of
observation) and the Littrow configuration (in which
light is returned along the direction whence it came and
wavelength selection is accomplished by rotating the
grating) for m = 1, 2, 3 and 6§ = 15°, 30°, as a function
of the relative wavelength A, = m\/m,\, in a grating
blazed to the m, order of the wavelength \,. The aspect

Etjo e is so chosen as to make the adjacent facets (A_B and

BC in Fig. 3) perpendicular (which is approximately the
case for plane gratings).
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Figure 5 Relative intensity in the first, second, and third
orders as a function of relative wavelength, for the ‘spectro-
graph’ configuration. (The failure to obtain unity at the
maxima is explained on page 116.)

Figure 7 Relative intensity in the first, second, and third
orders as a function of relative wavelength, for the spectro-
graph configuration, according to linear theory.
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Comparison with linear theory

In the foregoing development, ¢ and y are kept as functions
of the spatial frequencies » and v, (or of « and «.). The
resultant diffraction pattern U(y) differs from O(»), the
Fourier transform of o(x); the diffraction and object
domains are thus not canonically conjugate. Furthermore,
¢ and ¢ are not functions of the difference v — ». and
thus the system is not space invariant (or isoplanatic).
These two non-linear effects are important if large values
of a and «, are of interest. In the linear theory we assume
that both ¢ and ¢ are independent of » and ».. This
assumption is valid only over a limited range of « and «,
(given 8). The usual assumption is ¢ = 2/X and ¢ = 1.
However, since in a blazed grating the region of observa-
tion is in the neighborhood of the blaze wave length, it is
more reasonable to chose ¢ = (cos a; + cos a.,)/N and
¥ = 3[cos (o, + 8) + cos (ap, — )], i.e., to assume that
¢ and ¥ do not vary from the values which they assume
when the blaze wave length is observed at «; when the
direction of incidence is a.;. The validity of these assump-
tions as they affect &,, will now be examined.
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Figure 6 Relative intensity in the first, second, and third
orders as a function of relative wavelength, for the Littrow
mount configuration.

Figure 8 Relative intensity in the first, second, and third
orders as a function of relative wavelength, for the Littrow
mount configuration, according to linear theory.
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In the spectrograph configuration, with § = 15° in a
grating whose facets are perpendicular, Y varies between
0.90 and 0.98 over the range of A, = m\/m,\, between
0.1 and 1.5; with § = 30°, y varies between 0.85 and 0.93
over the range of 0.1 < A, < 1.0. Thus, in the latter case,
the assumption that ¢ is constant may lead to a 209 error
in F,, while the assumption ¢ = 1 may lead to errors as
great as 289, for some wavelengths. In the Littrow con-
figuration with 6§ = 15°, y varies between 0.95 and 1.00 in
the range 0.1 < A, < 2.0; while with § = 30°, ¢ varies
between 0.89 and 1.0 in the range 0.1 < A; < 1.7. Thus,
to assume, ¥ = 1 in the latter case could lead to errors as
great as 209, at some wavelengths. .

To observe the combined effects of the usual lineariza-
tions, consider Figs. 7 and 8 where (sin £,/£,)°, with
tn=mm(AT'— 1) cos® 3, is plotted for the spectrograph
and Littrow configurations, respectively, with m = 1, 2, 3,
and & = 15° and 30°. These curves correspond to those
in Figs. 5 and 6. As can be seen, the linear theory leads
to very considerable errors outside relatively narrow




regions in the neighborhood of A; = 1, or A = m,\,/m.
Here, the higher the orders, the narrower the region of
validity of the linear theory. Furthermore, according to
linear theory, high efficiencies occur over wider regions of
wavelength than is actually the case; as a matter of fact,
linear theory predicts that the width of these regions in-
creases with blaze angle whereas the opposite is true.
It is clear then, that the rather simple expressions that
arise from the linear theory must be used with caution;
as would be expected, these expressions provide good
approximations only when the blaze angle and the angles
of incidence and diffraction are small. For a detailed
investigation of the diffraction patterns in the various
orders, we shall therefore concern ourselves only with
the more general non-linear theory.

Envelope function

The intensity distribution in any order, Eq. (8), is propor-
tional to the square of the envelope function, Eq. (4b).
This function depends on the single parameter {. It is of
interest to note that & represents half the phase difference
between the two edges of a single diffracting facet (A and
B in Fig. 3) for light arriving at an angle of incidence «,
measured from the grating normal and diffracted at an

a

fa)

angle « to this normal. This property (usually cited for
the case of a single slit or for a series of slits”) is easily
verified, even for blazed gratings, if Eq. (4c) is rewritten as

£ = (ra/\ cos 8)[sin (o, + 8) — sin (&« — 8)] (9a)

(reflecting grating);

= (ra/\ cos 8)[ N, sin (a, -+ 8) — sin {(a + 8)] (9b)

(transmitting grating).

£

From Figs. 9a-b, it can be seen that

t, = 7(AD — BE)/\; & = n(N,AD — BE)/\.

Indeed, ¢ is then half the phase difference between opposite
edges of a single diffracting facet.

In the spectrograph configuration the grating is fixed,
and incident light is parallel to the grating normal (a, = 0),
so that the parameter £ is simply

£, = (ra/\ cos 8)[sin § — sin (& — )] (10a)
(spectrograph).

In a monochrometer with an ideal Littrow mount the

(b)

Figure 9 Schematic for the phase relation between incident and diffracted light at the ends of a single facet: (a) reflection

grating; (b) transmission grating.
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light is returned along the directions whence it came
(¢ = —a,)* and wavelengths are selected by rotation
of the grating. Here the parameter £ is

& = (2ra/\ cos 8) sin (§ — ) (Littrow).  (10b)

As can be seen from Figs. 5 and 6 the envelope function
is such as to have its maximum value for all orders at
the same physical position A; = 1, i.e., at sin @ = n,\,/d.
Thus, for example, the wavelength \,, = m,\,/m (m =
1, 2, ---) will overlap the blaze wavelength. This is not
serious when gratings are blazed to the first order in the
visible range, since the shorter wavelength will either be
absent from the source or be absorbed by the optical
elements. However, in gratings blazed to a high order
(say m, > 10), this can be a serious shortcoming requiring
narrow band filters between the source and the grating
to eliminate light from orders in the vicinity of m,,.

Blaze angle

The blaze angle is chosen in such a way as to maximize
the relative transmission of a particular wavelength X\, in
a particular order m,, by causing the peak of the envelope
function and the desired maximum of the interference
function to coincide. As we can see from Egs. (4b, c¢), the
envelope function attains its maximum value when £ = 0O
and is thus centered on v = », + ¢ tan 4. (This is, of
course, as would be expected, since the incident plane
wave, described by exp (2wiv.x), can be considered as a
carrier of spatial frequency v, which is frequency-mod-
ulated by an object o(x) whose point frequency™ is ¢ tan §).
We wish this peak to coincide with the m,th principal
maximum of the interference function (which occurs at
v = »,+ (m,/d) or at sin @ = sin o, + (M,\;/d), as can
be seen from Eq. 4a). Thus, from the above development
we see that for a reflecting grating

my\; sin oy — sin o,
tan 8, = = ,
d(cos o, + cos ;) cos a, -+ cOS @

(11a)
and for a transmitting grating

mb7\b
d(N, cos e,, — cOs ;)

tan 8§, =

sin ay, — N, sin a;,
- ?
cos ay — N, cos a.p

(11b)

where «, and a., are, respectively, the directions of
observation and of incidence (measured from the grating
normal) when the grating is in a configuration leading to
the observation of the m, order of \,.

* Jt will be noted that by defining « and «. as in Figs. 2a, b
we employ a sign convention which differs from the usual one;
the positive direction for diffracted light is on the opposite
side of the grating normal from that for the incident light.
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Equations (11a) and (11b) can be rewritten as

sin (acb + 61’)’ (128)
N, sin (e, + 6.), (12b)

sin (o, — 6,) =
sin (ab + 5t) =

and thus the blaze wavelength will be observed at a
position defined by «, such that in the case of a reflecting
grating the angle of incidence is equal to the angle of
reflection, both angles being measured with respect to the
normal to the facet. The diffracting facets can thus be con-
sidered as mirrors tilted so as to cause specular reflection in
the direction where interference causes the desired principal
maximum. In a transmitting grating the blaze wavelength
appears in a position for which Snell’s law is satisfied.
It is interesting to note that Egs. (12a-b) define the con-
dition under which £, and £, are zero for all \ (see Eqgs.
(9a-b)). Thus the peak of the envelope function for all A
occurs at the position defined by geometric optics. How-
ever, only the blaze wavelength and certain other wave-
lengths, namely A,, = my\,/m, with (m = 1, 2, --+),
appear in this position, since only for these wavelengths
does a principal maximum of the interference function
coincide with the peak of the envelope function.

In a spectrograph «,; = 0 and «, is the position of the
m, order of \, defined by sin «, = m;\,/d. Thus from
Eq. (11a),

8, = ia, = 1sin”’ (my\,/d) (spectrograph). (13a)

Clearly, the blaze wavelength appears at a diffracted
angle (measured from the grating normal), which is
double the blaze angle.

In a Littrow configuration «,, = — a; so that from 11a

8, = a, = sin* (m\y/2d) (Littrow). (13b)

and the blaze wavelength appears at an angle equal to
the blaze angle as measured from the grating normal.

Aspect ratio

The aspect ratio, e = a/d, has appeared in the foregoing
discussion. It would be desirable to make this factor
unity, since then the minor groove facets contribute very
little to the diffraction pattern; this, however, is impossible.
In the case of non-blazed grating, i.e., with the blaze
angle zero, ¢ = 1 means that the diffraction grating is
a mirror. It is interesting, of course, to consider what
happens when this occurs. We then have specular reflection
from a mirror (of a dimension many times larger than
that of the wavelength) again described by (sin £/£)°.
Here, however, this term is very nearly zero in every
direction other than that defined by the law of reflection.

In the case where 6 is unequal to zero, it is clear that
if e = 1 then shadowing will affect the spectral efficiency




in all the higher orders for a large range of A\. How large
e can be in practice depends to a large degree on the
accuracy allowed by the diamond point of the ruling tool,
the mechanics of the ruling engine, etc. For our purposes,
however, we shall calculate a useful maximum value for
this parameter. :

Let o,,.. be the maximum angle of observation associated
with a principle maximum of the maximum wavelength
involved in the order of interest. The maximum value of e
occurs when the minor facets lie in this direction. If these
facets were oriented differently, either e would become
smaller, or a shadowing effect would occur for some of the
incident light; diffraction effects (Huygens wavelets) will
arise around this shadowing lip, and will contribute to the
over-all diffraction pattern. Under the above conditions
the value of e becomes, Fig. 10,

e=ala+ (d—a)] ' = (14 tan & -tan ame) . (14)

This expression defines a useful maximum aspect ratio
given a desired o.... Furthermore, given e, Eq. (14)
defines o5, the limiting direction for which no shadowing
occurs. In the special case of a grating whose grooves
consist of perpendicular facets a,,,. = & and e = cos’d.

Observations

1) Since the various wavelengths are not uniformly
distributed in the zero order, Fig. 4, this order does not
appear “white”. As we have observed, the wavelengths
N\ = (2a tan §)/n, with n = 1, 2, - -+ , are missing from
this order.

In the spectrograph and Littrow configurations, the
variable A = \/(2a tan §) appearing in Eq. (7) assumes
the values, see Egs. (13a-b),

A = (A\Jemy),) cos” & (spectrograph) (15a)
A = (Aemy\,) cos & (Littrow) (15b)

The blaze wavelength A, will thus be missing if, for
instance, ¢ = e, = cos’# in the spectrograph configuration,
or e = e; = cos 6 in the Littrow configuration.

If X\ < 2atan § (and thus if A < N\, in gratings blazed
to the first order and having e, < cos’8, or e;, < cos 8)
then §.(\) < .05 Su(x). The shorter wavelengths are
almost entirely diffracted into the higher orders while the
very long wavelengths are unaffected by the grating; the
latter appear in the zero order having been reflected back
along the grating normal whence they came.

2) In general, the higher orders do not have a uniform
transmission with respect to wavelength. As a matter of
fact, only in an unblazed grating—where £, = —mem is
independent of A and where ¢,, = 3(cos a,, + cos a,)
is a slowly varying function of A—is the intensity distribu-
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Figure 10 Geometry for determination of the useful maxi-
mum aspect ratio.

tion nearly constant with wavelength. A special case of
interest is the plane mirror (e = 1) for which §,,(A\) = 0 for
all A in all the non-zero orders, which is as would be
expected.

As the blaze angle is increased from zero, ¥,, becomes
more dependent on A. As we have seen above (sin £,,/£,)°
attains its peak for \,, = my\,/m, withm = 1,2, -+,
Furthermore, F,, has zero’s when £,, = k.

3) One property of blazed gratings is that all orders have
zeros at those geometric positions where the first order
has zeros; i.e., there are ‘dark’ lines into which no light
is transmitted in any order. This is easily verified when
we examine Eq. (9a), fixing the angles of observation and
of the source (a and «, respectively) at their values for
which the first order has zeros, namely «® and o¥
associated with \*’ for which £* = kr (k = 1,2, +-+)
and thus, EFI[)\('“) ] = 0. Then in the mth order at these

positions —i.e., at o' = o and oY = o¥—we
observe A\? = \*/m. But for these wavelengths (see
Eq. 92)) £7 = mg® = fr where £ = mk is an integer,

and thus ,[\‘“] = 0. We see then that at position a!*’

and ¥ all orders have zeros, as was to be shown.

4) It is convenient to use A; as the independent variable
(even though it is a function of m and thus leads to different
scales in the different orders) since the relative transmission
is then directly related to the actual position where the
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diffracted light appears. This follows from the fact that
Ay = m\/my\, = « sin a, where « defines the position at
which the various wavelengths A are observed with
k = Kk, = d/my\, in the spectrograph configuration, and
k = ki = 2d/my\, in the Littrow configuration. Thus the
abscissa in Figs. 5 and 6 (and Figs. 7 and 8 as well) is
proportional to sin a for all m, and we see the dark lines
at the zero’s of the relative transmission in the first order.

5) Each order has a different relative transmission since

the dependence of &,, on m arises from the dependence

on m of both A; and £,. The latter is given by

£, = trm[AT'(1 + /1 — A] sin® 26) — cos 26 — 1]
(spectrograph); (16a)

£, = wm(AT /1 — Al sin® 6 — cos 8) cos §
(Littrow). (16b)
6) The contribution of ¥ to the relative transmission &,
can be seen from the expressions
[A, sin® 264 (14 +/1—A{sin” 28)(1 + cos 28)]
24/2 /14 cos 26

(spectrograph); (17a)

Y. =

Y = A sin® 8 + cos 6\/1—:_ Al sin® &
(Littrow). (17b)

In the latter case ¥, (\;) = 1 for all é. This is not true in
the spectrograph configuration where at the blaze wave-
length ¢, is a function of 8. It is this factor which causes
the relative transmission in the spectrograph to be less
than 1.0 at the blaze wavelength, Fig. 5.

7) It should be noted that longer wavelengths can be
observed with the Littrow than with the spectrograph
configuration. This is due to the fact that in any order the
maximum observable wavelength must be such that the
quantity \m/d is 1 in the spectrograph configuration,
but 2 in the Littrow configuration. These wavelengths
correspond 10 « = 7/2 and are thus in the region where
shadowing and multiple diffraction effects become im-
portant.

Contribution of the minor facets

To include the contribution of the minor facets we must
replace U(x) by U; = U+ U’ where U'(x) can be obtained
from U(x) by replacing K, ¢, and o(x) in Eq. (3) by X',
¥, and 0'(x), respectively. The latter are simply ¥ and

E. S. BARREKETTE AND R. L. CHRISTENSEN

o(x) as given in Egs. (3a—c), with § replaced by — ¢, and
k by k', where ¢’ is the blaze angle of the minor facets

and k' = k4 1.
The intensity distribution is then

II(U)[K¢Eefi21r(V—Va)kd + K’\[/,E,e_i27r(y_”)kld]i2,

where I(») is the interference function as given in Eq. (4a)
and E’ is the envelope function associated with the minor
facets and having the form of E given in Eq. (4b) but
with a replaced by ¢’ = d — a and £ replaced by &,
obtained from £ as given in Eq. (4¢c) by replacing a and
6 by @’ and — &, respectively.

The peak of the envelope function E’ associated with
the minor facets will be at ¢ = 0. This is on the other
side of the normal from the peak in E. The two envelope
functions interfere, however, but the contribution of one
to the amplitude in the vicinity of the peak of the other
is quite small.

It should be noted that, subject to minor revision, the
foregoing observations apply to the present case as well.
Thus for example, the wavelengths missing from the zero
order of E’ are the same as those missing from FE since
n\, = 24’ tan & = 2atan & = n\, = 2h where A is the
groove depth. Also, to the extent that the interference of
E and E’ can be neglected (each contributes little to the
distribution on the opposite side of the grating normal
from that in which it attains its peak) the dark lines at
those locations where the first order is zero remain dark.
However, for certain values of the ratio o/’ some of the
zero’s of the first order of E’ will overlap those of E. Thus
for such a grating, dark lines will indeed exist. All such
ratios can be obtained from the constraint that & = m'w,
for some integer m’ will fall at the same geometric location
as £ = mr for some integer m.

Conclusions

We have shown that the linear theory (which neglects
the dependence of the phase deviation and obliquity
factor on spatial frequency) is valid only over a limited
range of angles of incidence and diffraction. It provides a
general picture of the relative transmission of a grating in
any order but leads to gross quantitative errors.

Several interesting properties of the relative transmission
of diffraction gratings in the various orders have been
examined on the basis of a scalar non-linear theory. It has
been shown that dark lines exist at the zero’s of the first
order and that certain wavelengths are essentially missing
in the zero order. We have also given a detailed description
of the diffraction fields of a blazed grating in the spectro-
graph and Littrow configurations.
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