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dependence of the obliquity factor and the phase modulation on the spatial frequencies  defining the positions of the source  and 
of the observer. The solution  based  on the usual  ‘linear  communications’  theory  is  compared with one based on the more gen- 
eral non-linear theory; it is  shown that the former is  meaningful  only  in the neighborhood of the blaze  wavelength.  The 
behavior of blazed  gratings  is  examined in the light of non-linear theory in the region  away from the blaze  wavelength. It is 
shown that the envelope function describing the amplitude distribution  due to a single  groove  depends on the single parameter 
defining  half the phase difference  between the two edges of a single  diffracting facet. It is also  shown that certain wavelengths 
are missing from the zero order and that ‘dark‘ lines  exist  into  which no light of any order is transmitted. A useful  maximum 
for the aspect ratio is derived. The Littrow and spectrograph  configurations are examined  in  some detail. 

Introduction 

The diffraction grating is a useful, versatile, and  mature 
tool of the optical profession, which has provided probably 
the most  prominent and lucid example of the “wave 
interpretation” of photo-optical  phenomena. Basic experi- 
mental and theoretical investigations of diffraction 
gratings were conducted early in this century by Wood”3 
and  Lord Rayleigh4. The former,  for example, discovered 
the well-known anomalies which bear his name, and  the 
latter investigated gratings theoretically and examined the 
effects of polarization, achieving results in fairly good 
agreement with observed values. 

Numerous authors have discussed the principles of 
diffraction gratings  with varying degrees of rigor. Recently, 
Madden  and Strong‘ presented a theoretical analysis of 
plane blazed gratings as well as of the  aberrations of some 
concave gratings. It is our purpose, however, to analyze, 
in a paper of intermediate  mathematical precision, the 
basic phenomena underlying or attending the use of 
blazed gratings and  to explain the reasons for several 
of the  more prominent  phenomena observed, giving 
physical insight into  the mathematical results. Specifically, 
the ramifications of the blaze concept and  the diffraction 
patterns of plane blazed gratings are examined. The 
accuracy of the usual  linearizations of the communications 
theory approach is easily tested in  the case of gratings and 
is therefore also examined in some detail. Similar tech- 
niques  have been used recently to describe finite sinusoidal 

108 phase gratings.‘ 

It is instructive, as a first approximation, to consider a 
blazed grating as  one whose diffracting (i.e., causing wave 
interference) surfaces are inclined so as to cause 
specular reflection to occur in  that direction wherein 
occurs the desired maximum of constructive interference. 
A simple geometrical analysis following that basic ap- 
proach can  extend the usual  description of plane gratings7 
to include blaze and give an  approximation  to  actual 
results. At  the  other extreme, a quantitatively  rigorous 
analysis of gratings would necessitate a solution of 
Maxwell‘s equations with appropriate  boundary con- 
ditions and would include the effect of polarization an 
grating efficiency. 

Our  approach  is based on Fraunhofer’s  approximation 
to the Kirchhoff diffraction theory and is thus subject 
to  the limitations of this  approximation, including the 
neglect of polarization effects.* In  addition,  the usual 
assumptions are  made: namely, the effects of shadowing 
are neglected (so that our results are valid for  those angles 
of incidence or diffraction for which no  point of any 
groove is in  the  shadow of another groove); the effects 
of multiple diffractions are neglected; and  the source is 
assumed to be a uniform and long line-source and  the 
grating grooves are assumed to be  parallel to this source 
and long  (to  permit a one-dimensional treatment, i.e., to 
-__ 

* I t  should be noted  that  polarization effects may  prove  important  in 

tion  and efficiency in  gratings will be found  in  Ref. 12. 
some cases.8-12 A complete treatment of the problem of energy  distrtbu- 
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Figure 1 Configuration of source,  object, and field domains: 
(a) reflection  grating; (b) transmission  grating. 
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Figure 2 Geometry for the  definition of spatial frequency: 
(a) reflection grating; (b) transmission  grating. 
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permit variation of light  amplitude in  the direction of the 
grooves to be neglected). Finally although  the  contribution 
of the  minor facets is examined and  its affect on  the 
over-all patterns evaluated, it is neglected in  most of the 
results. 

Fraunhofer diffraction by  blazed  gratings 

Consider the configuration  shown  in Fig. la.  Let PC be a 
generic point in the source and let P be a generic point in 
the  Fraunhofer diffraction field. Let the diffracting object 
be defined by the surface z(x, y )  which consists of  1) a 
region A of uniform unit reflectance, and 2) an absorbing 
screen everywhere outside of A. The source and field 
points are in the focal  plane of an  aberration-free col- 
limating lens whose aperture is greater than  the region A. 
(It should  be  noted that  the following development also 
applies to a configuration utilizing collimating mirrors). 

According to Fraunhofer theory the amplitude  distribu- 
tion U(P) at the field point P due  to light of wavelength h 
emanating from  the source at  PC is given by5s13 

U ( P )  M (1) 

.S, + exp { i2g[+z + (PC - p)x + (m. - U ) ~ I  1 d ~ ,  

where integration is carried over the surface z(x, y )  within 
region A; the obliquity factor is 3. = *[cos (n, r , )  + 
cos (n, r ) ] ;  the phase  deviation is 2 ~ 4 ,  where 4 = (cos a, + 
cos a)/X; and p, = (sin PC)/X, p = (sin P)/h, w ,  = 
(sin y c ) f k ,  w = (sin y ) / ~ ,  are spatial frequencies.14 
The quantities a, a,, P, PC, y, y,, I, rC are geometrical 
factors defined in Fig. 2a, and n is the  outward  normal to 
the diffracting surface. 

A transmitting  phase-modulating object in  the con- 
figuration  shown in Fig. l b  gives rise to a far-field ampli- 
tude distribution which is also de~cribed'~ by Relation (1) 
but  for which: 3. = ;[N, cos (n,  r,) - cos (n, r ) ] ;  4 = 
(N,  cos aE - cos a)/X; pc = (N,  sin &)/X; p = (sin @)/X; 
w, = (Ne sin rc)/h; w = (sin ?)/A; N, is the index of 
refraction of the object; and a, ac, 0, PC, y, yc, r, I,, are 
as defined in Fig. 2b. The object in this case has a unit 
transmittance  in the region A and is opaque elsewhere. 
(It should be noted that  the  above result is derived in 
Ref. 15 subject to the approximation + 1 and  also  that 
for strict  rigor, the object, Fig. lb, should be in collimated 
light between two lenses such that  the source and  Fraun- 
hofer field lie in their focal surfaces. The configuration 
shown  approaches the required geometry as  the lens 
approaches an infinite, thin,  ideal  lens,) 
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If the source is  assumed to be a long  line  parallel to 
the y-axis and of uniform  intensity, and if the object  does 
not have  any  variations  along this axis,  i.e., if z = z(x), 
then variations of amplitude with y can be  neglected. The 
amplitude distribution is  then  such that 

U M # exp { i2a[4z + (v, - v)x] ] ds, (2) 

where integration is  carried  with  respect to the distance s 
along that portion of the line of intersection of the grating 
with the xz plane which falls  within the region A, and 

v, = (sin a,)/X; v = (sin a ! ) / X .  ( 2 4  

For the case of a transmitting object 

v, = ( N ,  sin aC)/X. (2b) </ rc 

Let the grating  consist of N grooves of blaze ande 6 
and aspect ratio e = a / d  as shown in Fig. 3. Let the 
narrower  facets  (for  instance, in Fig. 3) absorb all 
the light that is incident upon them. Thus, the amplitude 
distribution can  be  expressed as 

U = K #  1 .(x) exp [i2a(v, - v)x] d x ,  (3) 

where K is a constant of proportionality which  depends Figure 3 Groove geometry in a blazed  grating. 
on  the blaze angle; the intensity of the source; the distances 
between the source,  object, and field domains; and the 
wavelength of the light  emitted by the source. For a grating By integrating  over a single  groove and then  summing 
centered at x = kd, and having N grooves  each  centered Over the N grooves we obtain 
at x = k,d [where, if N is odd, k,  = k + n, n = 0, &I,  
f2 ,  . - .  f i ( N  - 1); or, if N is even, k,  = k + 3 + n, u = K#I(v)E(v)  exP [- i 2 d v  - v&d1, (4) 

o(x) is  such that of the geometric  series 

00 

-m 

n = 0, f l y  + * f (aN - l), the object function where [(v), the interference function, is  simply the sum 

exp [ i 2 ~ 4 ( x  - knd) tan 61 exp [- i27r(v - v,)(k, - k ) d ] ,  
n 

for Ix - kndl 5 $a; 
o(x) = that is, 

for $a 5 /x - k,d] 5 id; (3a) 

for 3 N  < / x  - k d ( .  
sin N d ( v  - v,) 

I(v) = sin sd(u - v,) ’ 

The above  expression for o(x) corresponds to the fact that and where E( v) is the envelope function describing the 
on the major facets Ix - k,dl 5 $a, while on the minor amplitude distribution due to a single  groove and given  by 
facets, $a 6 Ix - k,dl 5 ad. In  the regions  beyond the 
ends of the grating we have $N < ( x  - kdl. The obliquity 
factor # is, as can be  seen from Fig. 3, in which 

E(v) = (a sin t ) / t ,  (4b) 

#, = $[cos (a, + 6) + cos (a! - S ) ]  (3b) 4 = m[+ tan 6 + v, - v]. (4 c) 
(reflecting  grating), 

# t  = + [ N e  cos (ac + 6) + cos (a + 611 (3 c> Spectral  content of the zero order 

(transmitting grating). We shall  examine the spectral content in the zero order 
for a reflecting grating in both the spectrograph and the 

In the region [x - k,d[ 5 $a where o(x) differs  from Littrow configurations. The carrier frequency, v,, is zero 
110 zero, J/ is  independent of x. in both configurations when this order is  observed. 
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The zero order occupies that interval for which I v [  5 vo, 
where vo is the smallest positive root of sin N r d v  = 0. 
Thus,  in the zero order lsin a1 5 X/Nd so that  for large 
N we have a << 1, sin a NN a. It follows that # (provided 6 
is not  too large) and 4 can be considered constant  in this 
interval; indeed $ NN cos 6 and 4 NN 2/X. In view  of 
Eqs. (4a-c),  we have, for 1.1 I X/Nd 

U =  (5) 

Ka cos 6 sin ( r N d a / X )  sin [ ra(2  tan 6"a)/X] 
(T da/X)[ra(2 tan 6-0()/X] 

We seek the normalized energy distribution as a function 

e 

of X, i.e., 
" 0  

3@) = (.30>-1 s_.. w U*(V) dv, 

where integration is carried over a, with X fixed, where U* 
is the complex conjugate of U, and where a convenient 
normalizing  factor, So, is the energy that would be 
reflected into  the zero order by a plane mirror of length 
Na/cos 6 (equal to the  total length of the diffracting facets 
of the grating) inclined at an angle 6 to the optic  axis and 
otherwise placed in the  same configuration as  the grating.? 
With  some  manipulation, we obtain 

where M = N / e  = Nd/a and A = X/(2a tan 6). 

proaches the form, Fig. 4, 

3 J A )  = [ ( A / r )  sin (?r/A)]'. (7) 

Obviously, 3- = 0 for some values of A; the wavelengths 
X, = (20 tan 6)/n,  n = 1, 2, - a  , are missing from the 
zero order, i.e., = 0. Also, 3 J m )  = 1. 

It is interesting to note  that 3- is a good approximation 
to 3M even for  relatively  short  gratings. For instance, for 
M = 100 (i.e., for a grating  with no  more  than 100 grooves) 
we find from Eq. (6) that 3100(X,) 5 1.12 X while 
[l - 3100(m)] = 4.1 X so that  to all  intents the wave 
lengths X, = (2a tan 6) /n are missing from the zero order 
of afinite grating. In  effect, then (as has been graphically 
illustrated by Longhurst16) and despite the fact that  the 

As M 4  m the spectral  content of the zero order  ap- 

obtained from Eq. (3) if o(x) becomes oo(x) = exp (&+x tan 6) 
t The Fraunhofer diffraction for such a mirror  can  be 

if 1x1 5 +Nu and oo(x) = 0 elsewhere.  Thus  with v e  = 0; 
UO(V) = KGNa [sin r N a  (4 tan 6 - v)]/[?rNa (4 tan 6 - v)] .  
The  zero  order  is  in the interval Nu (4  tan 6 - V (  5 1. For 
large N this  interval  is  narrow  and (4 tan 6 - V )  = 0 so that 

considered constant; indeed fi = cos 6 and 4 = (1 + cos 26)/X. 
01 = 26.  Thus + (provided 6 is  not too large)  and 4 can be 

Integrating over 01 with X fixed we get 
3o = 2K2Na cos2 6 Si(Zr) / r  where Si(x) = Jo (sin f / ( ) d r .  

101 

(RELATIVE  WAVELENGTH A = - 2 ,  

Figure 4 Relative  spectral content of the zero order as a 
function of relative  wavelength.  Zeros appear at A = l /n 
( n  = 1, 2, 3, -); only four are shown. 

width of the principal  maxima is inversely proportional to 
the number of grooves, the normalized power contained 
in the principal maxima is relatively insensitive to the 
number of grooves. Consequently, in  the following sections 
we shall  concern ourselves only with the limiting  case 
N +  a ; our results will then apply to  most gratings since 
generally a grating has so many grooves that  its diffraction 
pattern is very closely approximated  by that of a cor- 
responding infinite grating. 

Intensity distribution in the non-zero  orders 

From Eq. (4a) for  the interference function we can see 
that  the m-th order of X is centered on v, = vcm f m/d or 
a, = sin-' [sin a,,(X) + (mX/d)], where a,,(X) is the 
angular position of the source. For  an infinite grating (or, 
to  good approximation, for a long grating) the interference 
function is simply the  comb function (x:=-- 6[v - vc - 
(m/d)], where 6 is the  Dirac delta), so that  the m-th order 
of X is a discrete line at am whose intensity is proportional 
to 

where #m and Em are  as given by Eqs. (3b) and (4c), 
respectively, with a = a, and ac = a,,. 

The function 5 ,  is plotted  in Figs. 5 and 6 for, respec- 
tively, the spectrograph  configuration (in which light is 
incident  along the  normal to the grating and wavelength 
selection is accomplished by varying the direction of 
observation) and  the  Littrow configuration (in which 
light is returned along the direction whence it came and 
wavelength selection is accomplished by rotating  the 
grating) for m = 1, 2, 3 and 6 = 15", 30°, as a function 
of the relative wavelength Al = mX/mbXb in a grating 
blazed to  the m b  order of the wavelength X,,. The aspect 
ratio e is so chosen as to make  the adjacent facets (AB and 
BC in Fig. 3) perpendicular (which is approximately the 
case for plane gratings). 

- 
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Figure 5 Relative  intensity in the first,  second,  and third 
orders as a function of relative  wavelength, for the 'spectro- 
graph' configuration. (The failure to obtain unity at the 
maxima is explained on page 116.) 

Figure 7 Relative  intensity  in  the  first,  second,  and third 
orders as a function of relative  wavelength, for the spectro- 
graph  configuration,  according to linear theory. 

Comparison  with  linear  theory 

In  the foregoing development, #I and + are kept  as  functions 
of the  spatial frequencies v and v, (or of a and ac). The 
resultant diffraction pattern U(v) differs from O(v), the 
Fourier  transform of o(x) ;  the diffraction and object 
domains are  thus  not canonically conjugate. Furthermore, 
4 and J. are  not functions of the difference v - v, and 
thus  the system is not space  invariant (or isoplanatic). 
These two non-linear effects are  important if large values 
of a! and ac are of interest. In  the linear  theory we assume 
that  both #I and + are independent of v and vc. This 
assumption is valid only over a limited range of a! and a, 
(given 6). The usual  assumption is #I = 2/X and + = 1. 
However, since in a blazed grating the region of observa- 
tion is in  the neighborhood of the blaze wave length, it is 
more reasonable to chose #I = (cos f f b  + cos aCb)/X and 
+ = $[cos (acb + 6) + cos (ab - S)], i.e., to assume that 
#I and + do  not vary from  the values which they assume 
when the blaze wave length is observed at  f f b  when the 
direction of incidence is aCb. The validity of these assump- 

112 tions as they affect 5,  will now be examined. 

Figure 6 Relative  intensity in the first,  second,  and third 
orders as a function of relative  wavelength, for the Littrow 
mount  configuration. 

Figure 8 Relative  intensity in the first,  second, and third 
orders as a function of relative  wavelength, for the Littrow 
mount  configuration,  according to linear theory. 
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In  the spectrograph configuration, with 6 = 15" in a 
grating whose facets are perpendicular, $ varies between 
0.90 and 0.98 over the range of A, = mX/mbkb between 
0.1 and 1.5; with 6 = 30°, + varies between 0.85 and 0.93 
over the range of 0.1 < A, < 1.0. Thus, in the  latter case, 
the assumption that + is constant may lead to a 20% error 
in 5,  while the assumption + = 1 may  lead to errors  as 
great as 287, for some wavelengths. In  the  Littrow con- 
figuration with 6 = 15", + varies between 0.95 and 1.00 in 
the range 0.1 < A, < 2.0; while with 6 = 30", + varies 
between 0.89 and 1.0 in  the  range 0.1 < A, < 1.7. Thus, 
to assume, + = 1 in  the  latter case could  lead to errors as 
great as 20% at some wavelengths. 

To observe the combined effects  of the usual lineariza- 
tions, consider Figs. 7 and 8 where (sin .&J&,,)', with 
tm = mn (A;' - 1) cos2 6, is plotted for  the spectrograph 
and Littrow configurations, respectively, with m = 1, 2, 3, 
and 6 = 15' and 30". These curves correspond to those 
in Figs. 5 and 6. As can be seen, the linear  theory leads 
to very considerable errors outside relatively narrow 
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regions in the neighborhood of A, = 1, or X = mbXb/m. 
Here, the higher the orders, the narrower the region of 
validity of the linear theory. Furthermore, according to 
linear theory, high eficiencies occur over wider regions of 
wavelength than is actually the case;  as a  matter of fact, 
linear theory predicts that the width of these regions in- 
creases  with  blaze angle whereas the opposite is  true. 
It is clear then,  that  the  rather simple expressions that 
arise from  the linear  theory  must be used with caution; 
as would be expected, these expressions provide  good 
approximations only when the blaze angle and  the angles 
of incidence and diffraction are small. For a  detailed 
investigation of the diffraction patterns  in the various 
orders, we shall  therefore  concern ourselves only  with 
the  more general non-linear theory. 

Envelope function 

The intensity  distribution  in  any order, Eq. (8), is propor- 
tional  to  the  square of the envelope function, Eq. (4b). 
This  function depends on  the single parameter l. It is of 
interest to note that f represents half the phase difference 
between the two edges of a single diffracting facet (A and 
B in Fig. 3) for light arriving at  an angle of incidence a, 
measured from  the grating  normal and diffracted at  an 

angle a to this  normal.  This  property (usually cited for 
the case of a single slit or for a series of slits7) is easily 
verified, even for blazed gratings, if l3q. (4c) is rewritten as 

[T = (aa/X cos S)[sin (a, + 6)  - sin (a - S)] (sa) 

(reflecting grating); 

= (../X cos S)[N,  sin (ac f S) - sin (a + S)] (9b) 

(transmitting grating). 

From Figs. 9a-b, it can be seen that 

tT  = a(% - %)/X; t t  = a ( N , X  - z)/X. 

Indeed, { is then half the phase difference between opposite 
edges of a single diffracting facet. 

In  the spectrograph  configuration the grating is fixed, 
and incident  light is parallel to  the grating normal (a, = 0), 
so that  the parameter f is simply 

[? = (.../X cos S)[sin 6 - sin (a - S)] (1 oa> 

(spectrograph). 

In a  monochrometer  with an ideal  Littrow mount  the 

i 1 

Figure 9 Schematic for the phase relation between  incident and diffracted  light at the ends of a single facet: (a) reflection 
grating; (b) transmission  grating. 113 
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light is returned along the directions whence it came 
( a  = -a,)* and wavelengths are selected by rotation 
of the grating.  Here the parameter E is 

f r  = (2?ra/X  cos 6) sin (6 - a) (Littrow). (lob) 

As can be  seen from Figs. 5 and 6 the envelope function 
is such as to have its maximum  value for all orders at 
the same  physical  position hl = 1, i.e., at sin a = m,Xb/d. 
Thus, for example, the wavelength X, = m,X,/m  (m = 
1, 2, -) will overlap the blaze  wavelength. This is not 
serious when gratings are blazed to the first order in the 
visible  range,  since the shorter wavelength  will either be 
absent from the source  or  be absorbed by the optical 
elements.  However, in gratings  blazed to a high order 
(say mb > lo), this can be a serious  shortcoming  requiring 
narrow band filters  between the source and the grating 
to eliminate  light from orders in the vicinity of mb.  

Blaze angle 

The blaze  angle  is  chosen in such a way as to maximize 
the relative  transmission of a particular wavelength X b  in 
a particular order mb, by causing the peak of the envelope 
function and the desired  maximum of the interference 
function to coincide. As we can see from Eqs.  (4b,  c), the 
envelope function attains its maximum  value  when f = 0 
and is thus centered on v = v, + @ tan 6. (This  is, of 
course, as would  be  expected,  since the incident  plane 
wave, described by exp (2aiv,x), can be  considered as a 
carrier of spatial frequency v, which  is  frequency-mod- 
ulated by an object o(x) whose  point  frequency14  is 6 tan 6). 
We  wish this peak to coincide  with the mbth principal 
maximum of the interference function (which occurs at 
v = v, + (m, /d )  or at sin a = sin a, + ( m b X b / d ) ,  as can 
be  seen from Eq. 4a). Thus, from the above  development 
we  see that for a reflecting  grating 

tan 6, = 
m b X b  - - sin a,, - sin 

d(coS a b  + cos CYc,,) cos a b  + cos f f c b  ' 

( 1  1 4  

and for a transmitting grating 

tan 6, = m b X b  __ 
d( N ,  COS (Y,b - COS a b )  

- 
" 

sin a b  - N,  sin a& 
(1 1b) 

COS a b  - N c  COS ' 

where a b  and f f c b  are, respectively, the directions of 
observation and of incidence  (measured from the grating 
normal) when the grating  is in a configuration  leading to 
the observation of the mb order of A b .  

we employ a sign convention  which differs from the usual one; 
* It will  be  noted that by defining LY and 0 1 ~  as  in  Figs.  2a, b 

114 
the positive  direction  for  diffracted  light  is  on  the  opposite 
side  of  the  grating  normal  from that  for  the  incident  light. 
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Equations (1 la) and (1 1 b) can be  rewritten as 

sin (a,, - 6,) = sin (a,,, + S,), 
sin ( a b  + 6 , )  = N ,  sin (a,,, + S,), ( 1  2b) 

and thus the blaze  wavelength  will  be  observed at a 
position  defined by f f b  such that in the case of a reflecting 
grating the angle of incidence  is equal to the angle of 
reflection, both angles  being  measured  with  respect to the 
normal to the facet. The diffracting  facets  can thus be con- 
sidered as mirrors tilted so as to cause  specular  reflection in 
the direction  where  interference  causes the desired principal 
maximum. In a transmitting grating the blaze  wavelength 
appears in a position for which  Snell's  law  is  satisfied. 
It is  interesting to note that Eqs. (12a-b)  define the con- 
dition under  which E ,  and E t  are zero for all X (see Eqs. 
(9a-b)). Thus the peak of the envelope function for all X 
occurs at the position defined by geometric  optics.  How- 
ever,  only the blaze  wavelength and certain other wave- 
lengths,  namely X, = m b X b / m ,  with (m = I, 2, -..), 
appear in this position, since  only for these  wavelengths 
does a principal  maximum of the interference function 
coincide  with the peak of the envelope  function. 

In a spectrograph aOb = 0 and f f b  is the position of the 
mb order of A b  defined by sin a b  = mbXb/d. Thus from 

(1 2 4  

Eq. (lla), 

6, = $CY,, = 3 sin" (m,Xb/d)  (spectrograph). (13a) 

Clearly, the blaze  wavelength appears at a diffracted 
angle  (measured  from the grating  normal), which is 
double the blaze  angle. 

In a Littrow configuration aCb = - f f b  so that from l l a  

6 ,  = a b  = sin" ( rn ,~ , , / 2d )  (Littrow). (1 3b) 

and the blaze  wavelength appears at  an angle equal to 
the blaze  angle as measured from the grating normal. 

Aspect ratio 

The aspect ratio, e = a/d, has appeared in the foregoing 
discussion. It would  be  desirable to make this factor 
unity,  since then the minor  groove  facets contribute very 
little to the diffraction pattern; this, however,  is  impossible. 
In the case of non-blazed grating, i.e.,  with the blaze 
angle  zero, e = 1 means that the diffraction grating is 
a mirror. It is  interesting, of course, to consider  what 
happens when this occurs. We then have  specular  reflection 
from a mirror (of a dimension  many  times  larger than 
that of the wavelength)  again  described  by  (sin .$/E)'. 
Here,  however, this term is  very  nearly  zero in every 
direction other than that defined  by the law  of  reflection. 

In the case  where 6 is  unequal to zero, it is  clear that 
if e = 1 then  shadowing will  affect the spectral efficiency 



in all the higher orders for a large range of X. How  large 
e can  be in practice  depends to a large degree on the 
accuracy  allowed by the diamond point of the ruling tool, 
the mechanics  of the ruling engine,  etc. For our purposes, 
however,  we shall calculate a useful maximum value for 
this parameter, 

Let a,*,,, be the maximum  angle of observation  associated 
with a principle  maximum of the maximum  wavelength 
involved in the order of interest. The maximum  value of e 
occurs when the minor  facets  lie in this direction. If these 
facets were oriented  differently, either e would  become 
smaller, or a shadowing effect  would  occur for some of the 
incident light; diffraction  effects  (Huygens  wavelets) will 
arise around this shadowing lip, and will contribute to the 
over-all  diffraction pattern. Under the above conditions 
the value of e becomes,  Fig.  10, 

e = a[a  + (d  - a)]-' = (1 + tan  6.tan amax)-'. (14) 

This  expression defines a useful  maximum  aspect ratio 
given a desired amax. Furthermore, given e, Eq. (14) 
defines amax, the limiting  direction for which no shadowing 
occurs. In  the special  case of a grating  whose  grooves 
consist of perpendicular  facets a,,, = 6 and e = cos26. 

Observations 

1) Since the various  wavelengths are not uniformly 
distributed in the zero order, Fig.  4, this order does not 
appear "white". As we have  observed, the wavelengths 
X, = (2a tan 6) /n ,  with n = 1, 2, - .  . , are missing from 
this order. 

In the spectrograph and Littrow configurations, the 
variable A = X/(2a tan 6) appearing in Eq. (7) assumes 
the values,  see Eqs. (13a-b), 

A = (X/embXb) cos2 6 (spectrograph) (154 

A = (X/embXb) cos 6 (Littrow)  (1 5b) 

The  blaze  wavelength A h  will thus be  missing if, for 
instance, e = e,  = cos2 6 in the spectrograph  configuration, 
or e = eL = cos 6 in the Littrow configuration. 

If X < 2a tan 6 (and thus if X < X a  in gratings  blazed 
to the first order and having e,  5 cos28, or eL 5 cos 6) 
then 3(&) < .05 ~ = ( C O > .  The  shorter  wavelengths  are 
almost entirely diffracted into the  higher orders while  the 
very long  wavelengths  are  unaffected by the grating; the 
latter appear in the zero order having  been  reflected  back 
along the grating normal whence  they  came. 

2)  In general, the higher orders do not have a uniform 
transmission  with  respect to wavelength. As a matter of 
fact,  only  in an unblazed grating-where Em = - rem is 
independent of X and where +,,, = +(cos a,, + cos a,) 
is a slowly  varying function of X-is the intensity distribu- 
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a tan 8 

Figure 10 Geometry for determination of the  useful maxi- 
mum aspect ratio. 

tion nearly constant with  wavelength. A special  case  of 
interest is the plane mirror (e = 1) for which S,(X) = 0 for 
all X in all the non-zero  orders, which  is as would  be 
expected. 

As the blaze  angle  is  increased from zero, 5, becomes 
more dependent on X. As we have  seen above (sin &,,/&,J2 

attains its  peak for X, = mbXb/m, with m = 1, 2, . 
Furthermore, 5, has zero's when &,, = kn. 

3) One property of blazed gratings is that all orders have 
zeros at those geometric positions where  the first order 
has zeros; i.e., there are 'dark' lines into which no light 
is transmitted in any order. This is easily  verified  when 
we examine Eq. (9a),  fixing the angles of observation and 
of the source (CY and a, respectively) at their values for 
which the first order has  zeros,  namely ajk' and a:;) 
associated  with X'k' for which = kn (k  = 1, 2, * e )  

and thus, 51[X'k'] = 0. Then in the mth order at these 
positions -i.e., at a:' = ajk) and a 2  = a:;'- we 
observe X"' = X'k'/m. But for these  wavelengths  (see 
Eq. (9a)) (2) = mEjk' = 4~ where 4 = mk is an integer, 
and thus 5,[X'c'] = 0. We  see then that at position ajk' 
and a::' all orders have  zeros, as was to be  shown. 

4) It is  convenient to use Al as the independent  variable 
(even though it is a function of m and thus leads to different 
scales in the different  orders)  since the relative  transmission 
is  then  directly  related to the actual position where the 115 
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diffracted light appears. This follows from  the  fact that 
A1 = mX/rnbXb = K sin CY, where CY defines the position at 
which the various wavelengths X are observed with 
K = K. = d/mbh6 in  the spectrograph configuration, and 
K = KL = 2d/mgXb in  the Littrow configuration. Thus the 
abscissa in Figs. 5 and 6 (and Figs. 7 and 8 as well)  is 
proportional to sin a for all m, and we see the  dark lines 
at  the zero's  of the relative transmission in  the first order. 

5 )  Each  order  has a different relative transmission since 
the dependence of 5, on m arises from  the dependence 
on m of both A1 and E,. The  latter is given  by 

(Littrow). (1 6b) 

6) The contribution of $ to the relative transmission 5,  
can be seen from  the expressions 

_____ 
[Alsin226+(l+-\/1-A~sin226)(1$cos26)] 

$8 = - 
2 4  d l f c o s  26 

(spectrograph); ( 1  7a) 

(Littrow). ( 1  7b) 

In  the  latter case = 1 for  all 6. This is not  true in 
the spectrograph configuration where at  the blaze wave- 
length $. is a function of 6. It is this  factor which causes 
the relative transmission in the spectrograph to be less 
than 1.0 at  the blaze wavelength, Fig. 5. 

7) It should be noted that longer wavelengths can be 
observed  with the Littrow than with the spectrograph 
conjiguration. This is due to the fact that in any order  the 
maximum observable wavelength must be such that  the 
quantity Xm/d is 1 in  the spectrograph configuration, 
but 2 in  the Littrow configuration. These wavelengths 
correspond to CY = 9 / 2  and  are  thus in the region where 
shadowing and multiple diffraction effects become im- 
portant. 

Contribution of the minor facets 

To include the contribution of the minor facets we must 
replace U(x) by U1 = U + U' where U'(x) can be obtained 
from U(x) by replacing K,  $, and o(x) in Eq. (3) by K', 
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o(x) as given in Eqs. (3a-c), with 6 replaced by - 6', and 
k by k', where 6' is the blaze angle of the minor facets 
and k' = k + 3. 

The intensity distribution is then 

u, u: = (1 8) 
I I ( a ) [ K $ E e - i 2 " ' " - " " ' k d  + ~ t $ t ~ r ~ - i Z r ( v - ~ c ) ' k ' d  1 1 2 ,  

where Z(v) is the interference function as given in Eq. (4a) 
and E' is the envelope function associated with the minor 
facets and having the form of E given in Eq. (4b) but 
with a replaced by a' = d - a and E replaced by l', 
obtained  from C; as given in Eq. (4c) by replacing a and 
6 by a' and - 6', respectively. 

The peak of the envelope function E' associated with 
the  minor facets will be at E' = 0. This is on  the other 
side of the normal  from  the peak in E. The two envelope 
functions interfere, however, but the  contribution of one 
to the amplitude in the vicinity of the peak of the other 
is quite small. 

It should be noted that, subject to minor revision, the 
foregoing observations apply to the present case as well. 
Thus  for example, the wavelengths missing from the zero 
order of E' are  the same as those missing from E since 
nXL = 2a' tan 6' = 2a tan 6 = nX, = 2h where h is the 
groove depth. Also, to the extent that  the interference of 
E and E' can be neglected (each contributes  little to the 
distribution on  the opposite side of the  grating  normal 
from  that in which it attains its peak) the  dark lines at 
those locations where the first order is zero remain dark. 
However, for  certain values of the  ratio CY/CY' some of the 
zero's of the first order of E' will overlap those of E. Thus 
for such a grating, dark lines will indeed exist. All such 
ratios  can be obtained  from the constraint that C;' = m'r, 
for some integer m' will fall at  the same geometric location 
as = m9 for some integer m. 

Conclusions 

We have shown that  the linear theory (which neglects 
the dependence of the phase deviation and obliquity 
factor  on spatial frequency) is valid only over a limited 
range of angles of incidence and diffraction. It provides a 
general picture of the relative transmission of a grating in 
any  order but leads to gross quantitative errors. 

Several interesting properties of the relative transmission 
of diffraction gratings in the various orders have been 
examined on the basis of a scalar non-linear theory. It  has 
been shown that  dark lines exist at  the zero's of the first 
order  and  that certain wavelengths are essentially missing 
in the zero  order. We have also given a detailed description 
of the diffraction fields of a blazed grating in the spectro- 
graph and Littrow configurations. 
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