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Abstract: Various types of counter models have been treated in the literature over the past twenty years. In all these models
the counter mechanism involves a fixed or random dead time following a registered event. In this paper a different type of
counter mechanism is introduced in which the occurrence of two or more input events within a relatively short time is re-
quired to produce a registered (output) event. This model of an “R-fold coincidence counter” is applied to the development
of grains in a photographic emulsion for both low-intensity and high-intensity reciprocity failure.
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a dead-time interval following input event

the states through which an R-fold coinci-
dence counter must pass before regis-
tering an output event

the ground state (the most stable state) of
a coincidence counter and the state at
t=20

the probability density that state is j at
time ¢, and has been for a time 7, and
that state R has not occurred in (0, ?)
and stateat t = 01is S,

probability that state at time ¢ is j and
that state R has not occurred in (0, 1)

hazard function or conditional probability
density of decay at time 7 given survival
to time 7

probability that at least one count is
registered in time interval (0, 7)

number of photons required to make a
photographic grain developable

the number of photographic grains in-
volved in a photographic detection
problem

that amount of time in (0, 7) during
which detector is not “dead”.

l. Introduction

Various types of counter models have been introduced

and discussed in the literature of the last twenty years.'”

8

Type I and Type II counters have received the most
extensive treatment. Type I counters are characterized by




the fact that a registered event produces a dead time
during which no further events can be registered. Type II
counters are characterized by the fact that incoming events
produce dead time during which further incoming events
cannot be registered, although these events are capable of
prolonging the dead time, that is, paralyzing the counter.
Modifications of Type I and Type II counters have also
been introduced and studied in the literature.

Here we shall be concerned with a different type of
counter model called a coincidence counter. The motiva-
tion for such a counter model arose out of a study of the
mechanism involved in the photographic detection process.
However the coincidence counter model is interesting in
its own right and there are other applications of the model
in such fields as reliability.

The simple coincidence counter model we now introduce
is intended to work as follows: An incoming event, say a
photon, is not directly recorded by the detector. Instead
it changes the state of the detector say from S, to S;. The
state S; is maintained for a fixed time 7 following the
incidence of the photon. If during this time interval no
further arrival takes place, the detector reverts to state S,
and no output count is recorded. If, however, while the
detector is in state S; another photon arrives an output
count is registered and the detector immediately reverts
to state Sy. Thus for example if photons were incident on
the detector at time ¢, ¢t + 2.0r, t 4+ 2.17, ¢ + 2.57, and
t -+ 37 an output event would be registered at times 7 -
2.17 and at ¢ + 37; so in this case five input events have
produced two output events. The R-fold coincidence counter
is a generalization of the simple coincidence counter.
Here incoming events cause changes in the state of the
detector from S; to S;.; provided the detector is in state
S;(i=0,1, ---, R — 1) at the time of the arrival of the
input event. For i = 1,2, -+ , R — 1 the counter remains
in state i for a time 7, which is now taken to be a random
variable with distribution independent of i. If no further
event occurs during time r; following the last input the
counter reverts to state S, without registering a count.
Only if state S5 is reached is a count registered with the
counter immediately reverting to .So.

The photographic detector is a counting device of an
entirely different type, but the counter models nevertheless
play a part in the analysis of this kind of detector. Basically
the photographic detector (the emulsion or photographic
plate) consists of an ensemble of many counters (the
individual photographic grains), each of which is able
to register a count only once. The fractional number of
grains that develop is then a measure directly related to
the average number of photons incident on each grain
during the time of exposure. The simplest photographic
detector consists of grains all of the same size and speed,
i.e., each grain requires R photons to make it developable
(that is, to register a count). Aside from variations in

grain size, which will not be considered, actual photo-
graphic detectors consist of an ensemble of grains of
varying speed so that R, the number of photons required
for registering an output event, is a random variable with
distribution dependent on the particular photographic
material.

There is a photographic effect which can be explained
in terms of the dead time and coincidence counter models
introduced above. This effect is known technically as
reciprocity failure and manifests itself in two different
ways: (a) At high intensities A and short exposure times T
the photographic detector registers fewer events for a
given average number of photons per grain AT than when
A is somewhat smaller (but AT is fixed). This can be
explained by postulating a dead time = following each
incident photon so that only those photons which arrive
at least 7 units apart contribute to produce the neces-
sary number R of input events required for developability
of the grain. (b) Low-intensity reciprocity failure de-
notes the condition in which the response, for a fixed
average input A7, is again lowered, this time when the
intensity of radiation A is low; that is, the photons arriving
at a grain tend to be spaced far apart. By assuming the
type of mechanism discussed in the case of the coincidence
counter, this type of reciprocity failure can also be ex-
plained. The dead time counter models and coincidence
time counter models postulated for photographic detectors
can be identified with the times required for the creation
of a sublatent image speck and the duration of such a
speck.

Il. Simple coincidence counter

As a model for a simple coincidence counter, we shall
consider the following mechanism: An incoming event
impinges upon the counter, which is so constructed as to
be able to hold this event in memory for a time 7 (a fixed
constant). If another event occurs during the time that
the first event is in memory, the counter registers an
output event and resets its memory to zero content. If no
second event occurs during time 7, the first event is lost,
that is, produces no count.

The formal definition of a simple coincidence counter
can be stated as: a counter which immediately registers
an output count whenever an input event is preceded during
a fixed time interval T by a nonregistered input event.

It should be noted that the coincidence model suggested
above differs from the general counter model proposed by
Takacs® in that the occurrence of an event within 7 units
of an earlier one produces a regeneration point (in effect,
a new origin) for the output stochastic process in our
case, but not in Takacs’ case. In his process, an output
event could occur after the arrival of both the second
and the third input event. In our model, that would be
considered physically impossible. To get two output
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counts, at least four input events are required.

Using an approach similar to that of Feller” the Laplace
transform of the output inter-arrival time random variable
is derived as follows: Beginning at a time when an output
event has just occurred, let X, X;, X,, -+ denote the
time between further successive input events. The input
stream is assumed to be a Poisson process, so that the
X; have a common exponential distribution. Assuming
that the N* event produces the first count, we have
X, > 71, Xe> 71,00, Xyo1 > 7, but Xy < 7 (note that
there are no conditions on X;). Let T(N) = X, + X, -+

- |+ Xy denote the total time between output events,
then the conditional Laplace transform of T(N), given N, is

> T]E[e—sX” | X, < 7], (2.1)

Ele™™ | N] =

Noting that the conditional probability density that two
input events are X units apart, given that they are not
more than 7 units apart, has density

A/l —e™, (2.2)

we find the conditional Laplace transform (i.e., the
transform of this conditioned random variable) is

T —A\X
e [ x <= [ e X _ux

o 1 — e—)\‘r

)\(1 . e—(s+)\)7) )

= 2.3
s+ N1 —e™) @3

Similarly, if we know that two input events differ in time
by at least 7 units, we obtain the conditional Laplace
transform

—8X ® —8X Ae—)\X
Ee ™ | X> 1] = € = dX
v e

(2.4)

)\e-(e+)\)'r

5+ Ne ™

From these results we obtain the conditional Laplace
transform of T(N) given N

E[e"™| N]
= Ele™WE*" | x> )}V EeF | x < 7]
A { A~ VT } oAl — e—<s+x>f)
Ats (s 4+ Ne ™ (s + N1 —e™)
)\ N+1 e—(N—l)(3+)\)r 1 . e—(s+)\)'r
= ()\ + s) o N ’ | — ™
To obtain the unconditional transform of 7(N) we multiply
by the probability that the first output event will occur at

(2.5)
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the Nt input event, namely, 1 — ¢ ") ("), and sum
over N obtaining

0

E[e—sT Z E[ —aT

This yields

E[ —;T] _ ( A )2( _()\+a)7) Z[ —(c+)\)r]N 1
¢ B A + S N=1 N + )\ !

(2.7)

11— e ™M)V (2.6)

and after summing the infinite series, letting ¢,(s) =

Ele*"],

A >2 l_e—()\+a)r
JS(8) = . 2.8
o0 = () 5 9

A

In this formula, the term N /(A + s)° represents the
transform of the waiting time for the second input event
of the Poisson stream. As 7 — « the second input event
can be taken as producing an output event, which is
what we would expect of an infinite memory device.

INl. R-fold coincidence counter

One natural extension of the simple coincidence counter
is to permit input events arriving within specified time
intervals to change the state or levels of a counter, and
to allow the registering of an output event only after a
terminal state, say after the R state, is reached. We term
this the R-fold coincidence counter. For R = 2, this
reduces to the previously described simple coincidence
counter which has two states S, and S,. Then an input
event changes the counter from S, to S;, and if another
event occurs before time 7, an output count is registered
and the counter immediately reverts to S,. The counter
also immediately reverts to S, at time r but without
registering an output count if the input does not arrive
within the time interval 7.

Briefly we can describe the R-fold coincidence counter
as being a counter which immediately registers an output
event whenever an input event is preceded by (R — I)
non-registered input events none of which are spaced more
than T units apart where 7 is a time interval of random
length whose (R — 1) values are independently and identi-
cally distributed.

Here we obtain the waiting time distribution (or, rather,
its Laplace transform) for the first time occurrence of
the critical level R in the case where the waiting time
between upward jumps of unit magnitude has negative
exponential distribution, F(r) = 1 — ¢ M. This is equiva-
lent to the assumption that input impulses constitute a
Poisson process. We also assume that all the levels S;,
j=1,2,+--, R — 1 can decay only to S, and that such
decay takes place at the end of an interval of duration 7;




following the latest incident impulse. We assume that
each 7; is itself a random variable with absolutely con-
tinuous distribution function G(7) which is independent
of S; and the times of occurrence of the states S;.

We shall write p;(¢, 7) for the probability density that
jointly:

a) at time ¢ the process is in state S; ;

b) that it reached this state 7 time units ago, that is,
att — 73

¢) that the state at t = 0 is .Sy, and that previous to
time ¢ the state R was not reached.

Now the probability that a decay to S, takes place
during the small interval (r, 7 + &) after occurrence of
the last impulse is 6G’ (1), and the probability that no decay
takes place during the time interval (t — 7, 1) is 1 — G(7).
Hence the conditional probability of decay during the
interval (r, 7 + 0) given that no decay has taken place
during the elapsed time 7 since the last impulse is given by

8-G'(r)

1_——G—(T)_ (3.1)

d-p(r) =

so that

G() = 1 — exp {— fo e dx}. (3.2)

The function u(r) is sometimes called the hazard function,
and has been discussed, for example, in connection with
telephone call demands and other queueing problems.

We shall derive here a set of differential equations from
which the Laplace transform of the inter-arrival time
distribution of output counts can be obtained. In terms
of p;(¢, 7) and the hazard function u(v), we can write

pit+ 6, 7+ 8 = (1 — No)(1 — du(m)p;(t, ) (3.3)

or, neglecting terms in 8 since & is assumed small, we get

pit + 6,7+ 8 = [1 — N6 — du()lp;(t, ). (3.4)

If during the interval (¢, ¢ -+ 7) an impulse occurs, we
have, for the probability that the state is .S; at 4+ & and
that the time 7’ since the last impulse was less than &
[denote this by p;(¢ + 5, 7' < 9],

pi(t + 8,7 < 8) = A8 ‘/:o (1 — ou(r)p;_1(t, 1) dr
(3.5)

where the integrand on the right represents the probability
that the state was S;_, at time ¢, had been attained 7 time
units earlier; and did not spontaneously decay in the
time span (r, 7 + §) following the moment it was attained.
Since all possible times, 7, of attainment of the state S;_,
must be considered, the probability of no decay from

state S;_; during (1, 7 + &) is [0~ (1 — Su(M)p,, (¢, 7)ér.

Again neglecting terms in 6 this becomes

pi{t -+ 6,7 < 8 = A /‘” pi1(t, 7) dr. (3.6)

These considerations hold for j = 1,2, --- , R — 1.
For state S,, we have

po(t + 8) = (1 — NO)po()
5 a0 [ weone D, @1

i.e., the probability of being in state S, at time ¢ 4+ § is
the probability of being in that state at time ¢ and having
no incident events in (¢, ¢t + &) plus the probability that
a decay occurs in the period (¢, £ 4 ), when the process
is in state S; (j = 1, 2, -+ , R — 1) at time ¢ and no
incident events occur during (¢, t -+ §). Note that the
integral under the summation represents the probability
of a decay in the period (¢, t + &) when the process is in
state S; (j = 1,2, --- , R — 1) at time ¢ and this prob-
ability is independent of how long ago the state S; was
attained previous to time ¢. Similarly for p(t + 8, 7/ < 6)
we have, by (3.5),

po(t + 8,77 < 8) = Ab /: (1 = 8u())pr-s(t, 7) dr.
(3.8)

In the period (¢, t + &) a transition from state Sz_; to
state S may occur thus causing the process to revert
immediately to state S, and register an output count, or
we may write

polt + 8) = (1 — Nopol) + Z [ ente, 7 ar
(3.9)

and

polt 4 8,7/ < &) = mf Pty ) dr, (3.10)
0

if terms in 6% are neglected. If in (3.4) we transpose pi(t, 1),

then divide each side of the equation by & and pass to

the limit, we obtain

i 22 T+ 8) = pi(r. 1)

30 ]

m — Q8 +55#(T)) it )

= —(\ + w()p(t, 7). (3.11)
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This is so for j = 1,2, --+ , R — 1 and similarly from
(3.9) we get for j = 0

o o0+ T [ wnt a2

dt
These are the differential equations whose solutions will
provide the inter-arrival time distribution of the output
counts.

Letting * denote Laplace transformation using g(r) =
1 — G(r) and G'*(r) = (dG/dr)* it can be shown that

Mg+

S+ A= \G'*(s+ A)[I _1 %_i\g::i(ji)):‘) - ]

(3.13)

Ele'*] =

is the Laplace transform of the inter-arrival time distribu-
tion of output counts from the general R-fold coincidence
counter."”

ForR=2;G(r)=0forr < r,;and G(r) = 1 forr > 7,
which is the case treated previously in Section 2 we have

G'*(s + \) = f eV dr = gm TN (3.14)
0
and
it }\ 2 1 __ e—(a+)\)ro
Ele*"] = <>\ ¥ s) (3.15)

_ >\ )—(s+)\)ro’
! (x + s/

which is the result previously derived for this case by the
conditional probability approach used in that section.

Another interesting case which is mathematically trac-
table is that in which G is a negative exponential distribu-
tion, G(r) = 1 — ¢ %", In this case we find

G'*(s + \) = f e N g
0 (3.16)

G+ N+ 8

and

E[] = N/ + (2 + 85 + ). (3.17)

IV. Application of counter models fo photographic
detectors

We shall consider a (simple) photographic detector as an
ensemble of go-no-go detectors, each of which is capable
of responding just once immediately following the arrival
of the Rt event. Consequently further arrivals at a detector
having already received R “hits’ are wasted, and cannot be
transferred to another detector or registered in the output.
The photographic detector is unique in that it can operate
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simultaneously on a large set of Poisson processes,*
namely, on all those sources in space which are imaged
on the face of the photographic plate.'" Also, because of
imperfect imaging and scatter within the emulsion, a
Poisson point source is imaged, not on one, but on a set .S
of detectors (or photographic grains). Thus, in comparing
the intensity of two point sources, the output from 2S5
detectors must be compared. An ideal non-photographic
ensemble of S detectors exposed to a Poisson source of
intensity \ for a time T would provide an estimate A of A
with a variance of \/ST, assuming the set of S detectors
to operate independently of each other on the same
Poisson source.

If we suppose that each photographic detector requires
exactly R hits to become developable and retains its
developability indefinitely, then we can calculate that the
mean number of detectors responding to an intensity A
(per grain per unit time) after an exposure time T will be

S HO\T) = s[w e_)‘T()\T)i/j!:l )
o (4.1

= S[l — M RZ; (AT)"/;:].

Now if H is the probability that a detector will respond,
and if S independent experiments are performed, the
probability that exactly k responses are obtained is

S _
pk) = ( k)Hka — H (4.2)
and hence the variance of the number of responses is

6y = S-HAT)[1 — H(\T)]. (4.3)

The use of dead time and coincidence counter models
occurs in connection with the photographic phenomenon
known as reciprocity failure. Reciprocity failure means
that the photographic detector responds not just to the
total number of photons, AT, incident during the time of
exposure, but reacts differently, depending on whether
for AT = constant, it is the time of exposure or the strength
of radiation which is large. There are two types of reci-
procity failure: high-intensity failure, which can be at-
tributed to a type of dead time phenomenon as in a Type I
counter, and low-intensity failure, which can be thought
of as being due to the finite memory of a coincidence
type of counter mechanism. Diverse explanations of this
phenomenon have been given® but the crucial experiments
to determine the precise mechanism whereby reciprocity
failure is produced have not yet been attained. Con-
sequently any model whose consequences are in reasonable

* Throughout we assume that the light fluctuations which, strictly
speaking, obey Bose-Einstein statistics, can be approximated by Max-
well-Boltzmann statistics so that the spatio-temporal distribution of
photons incident on our detector constitutes a Poisson stream.




accord with existing experimental data can provide a step
forward.

We assume here that for photons in the visible region
there is not sufficient energy to produce a developable
grain. As is well known, at shorter wavelengths there is
enough energy in a particle to trigger one or more photo-
graphic grains, and for such particles the problem of
reciprocity failure does not arise.

For low-intensity reciprocity failure, we assume that a
photon can produce a sublatent image speck which can
persist for a time 7. Another photon incident during this
time will cause this speck to grow to a stable silver speck.
Such a speck may, or may not, in itself be developable. If
it is, we have a two-photon photographic detector with
low-intensity reciprocity failure. If = is infinite, this reduces
to the type of photographic detector discussed above.

It may be necessary to have a larger speck of silver to
produce development than one obtained from two photons.
If we assume that the two-photon speck is nondevelopable
but one twice as large is developable, then two further
photon hits within an interval 7 are required to produce
either another speck or to enlarge the one already formed.
Since actual emulsions are a mixture of grains of varying
sensitivity, we would have to combine various models to
simulate an actual photographic material. Here we shall
content ourselves with some discussion of the two- and
four-photon photographic detectors as even these present
considerable difficulty. To arrive at the response curve of
a two-photon photographic detector with low-intensity
reciprocity failure, we should proceed as follows.

Beginning with the Laplace transform of the inter-
arrival time distribution of the coincidence counter
output (2.8), we find the inverse Laplace transform and
integrate this function from zero to 7. The result,
F,\, T, 7), indicates the probability of one or more
coincidence events, which is the probability of a grain
becoming developable during the time of exposure T,
that is, the probability that at least one silver speck is
formed in a grain irradiated by an average of AT photons,
(and one such speck is sufficient for developability). If
there are .§ photographic grains in the area under con-
sideration, the expected number of grains which will
contain a developable speck after exposure time 7 will then
beS-F,(\, T, 7). Aplot of F,(\, T, 7) versus \ or T indicates
the average fractional number of grains which become
developable as \ or T increases, the other variable being
held constant. In photographic technology, when studying
reciprocity failure, it is customary to hold constant
F,(\, T, 7) (which corresponds to the developed optical
density) and plot for various values of A or T the value
of AT needed to produce a fixed F,(\, T, 7).

The problem of carrying out this procedure arises right
at the start in trying to obtain an explicit closed form for
the inverse Laplace transform. To find the inverse trans-

form of the coincidence counter inter-arrival time,

)\ )2 1 _ €~()\+3)r
(s5) = , 4.4
¢ <S) <)\ + s 1 A —(\+s)T ( )

TN+

one should take a contour integral over the left half
plane. (From the fact that the distribution function is zero
for t+ < 0, we know that all the poles of ¢{s) must have
negative real part.'’) Hence we must find the roots of
s+ ML — e Mon),

Even though it is possible to obtain an indication of
the location of these roots, some direct attempts at a
solution by numerical methods indicate that large scale
computer programming is necessary.

Thus a closed form approximation to the distribution
function F,(\, T, 7) would be helpful. One possibility is
to fit a gamma distribution, i.e., a density function of
the form

T(x; u, k) = ue ™ (ux)*/(k — 1)! (4.5)

by fitting the first few moments of this distribution to
those obtainable by differentiating ¢,(s). Since the first
two moments of I'(x; u, k) are

o =~ , o, = 59 (4.6)
U

and these determine the particular gamma distribution
completely, we could set

s = 0) = & (4.7)
o
and
tr —_ — lC, E ’
. (s = O) = ,U«Z (,u> . (4.8)

If 7 is large ¢,(s) tends to N*/(\ -+ ), that is, the Laplace
transform of a gamma distribution with £ = 2 and A = u.
This is as it should be, for that corresponds to the waiting
time distribution for the second input event in the case of
a Poisson process. For large enough values of 7, we are
justified in approximating F,(\, T, 7) near the origin by
a gamma distribution with & = 2. (Some trial approxima-
tions easily show that this parameter is not very sensitive
to variations in k.) Thus to a crude approximation we will
need only u and this parameter is found from

2 1 1
== = —_— 4.9
- >\+>\(1~e“*’) (4.9)
or

—»r
u = M1 — e ™) (4.10)

-X
2 —e

so that we shall take
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as response function in the case that two photons within
time 7 can produce developability. We shall take

Foonn = [ |20

2= 3!

(4.11)

(4.12)
~t
X exp {—!:—————2}\(1 : )]} ot
2 —e "
if twice as large a silver speck is required.
Formula (4.11) can be integrated to yield
F\T,7)=1—¢*" —ure™”, (4.13)

which indicates that the response function of the two-pho-
ton photographic detector with low-intensity reciprocity
failure is identical in shape (to this crude approximation)
to that of the two-photon detector without reciprocity
failure but stretched along the A-axis by the factor A/w.

High-intensity reciprocity failure can be handled in
much the same way as low-intensity reciprocity failure.
In this case we postulate a dead time, v, so that only
those photons contribute to making an R-photon photo-
graphic detector respond which arrive at least 7 units
apart. In this case the probability that a grain will become
developable in time T is obtained by calculating the
probability of R or more output events from a Type 1
counter. Here again we encounter the apparent difficulty
that as a first step we need the inverse Laplace transform
of the R™ power of the inter-arrival time transform of
the Type I counter®

[6.()]F = NN+ 5)e” 17, (4.14)

which represents the waiting time distribution for the Rt
output event from a Type I counter. Subsequently we need
the integral from 0 to T which is the probability that
the R* event will occur prior to time T and corresponds
to the probability that a grain exhibiting high-intensity
reciprocity failure will become developable.

However, in the present case, we can make use of the
following device. We replace T by 77" = T — (R — Dr,
a contracted time interval. It is easily shown that the
output process from a Type I counter is again a Poisson
process with parameter \ in contracted time. Hence high-
intensity reciprocity failure is equivalent, under the present
model, to shortening of the exposure time for an R-photon
simple photographic detector by an amount (R — 1)r—the
accumulated dead time arising from the first (R — 1) input
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photons which are incident on a photographic grain.
Hence the response of an R-photon photographic emulsion
with high-intensity reciprocity failure and deadtime 7, is
obtained by using the relation

H(\, T, 74, R) = HQAT', R), (4.15)

which indicates that on a part of H vs T (not log T') high
intensity reciprocity failure should correspond approxi-
mately to a shift of the characteristic curve.

V. Conclusion

A mathematical model of a coincidence time counter has
been constructed which is based on the idea that two or
more input events are required within a relatively short
time to register an output count. Earlier (dead time)
counter models were based on the idea that closely spaced
input events may not be effectively detected due to the
dead time generated by the arrival of an input event,
whereas in the model introduced here the initial arrival
of an event serves to cock or activate the counter mecha-
nism for some time (the coincidence time) so that the next
input event, if it arrives during the coincidence time,
produces an output count.

The counter models were applied to a photographic
detection problem, and the behavior of the characteristic
curve of a photographic material exhibiting reciprocity
failure was related to the time constants of dead time and
coincidence time counter mechanisms for high- and low-
intensity reciprocity failure, respectively. It is shown that
to a first approximation the density-exposure curve is
displaced parallel to itself toward higher exposure values,
the amount of displacement being given by the time
constants of reciprocity fajlure and the number of photons
required for grain developability.
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