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Coincidence Counter  Models  with Applications 
to Photographic Detection  Theory* 

Abstract: Various types of counter  models  have  been treated in the literature over the past  twenty  years. In all these  models 
the counter  mechanism  involves a fixed or random dead time  following a registered event. In this paper a different type of 
counter mechanism is introduced  in  which the occurrence of two or more input events  within a relatively short time is re- 
quired to produce a registered (output) event. This model of an “R-fold coincidence counter” is applied to the  development 
of grains in a photographic  emulsion for both low-intensity and high-intensity  reciprocity failure. 

Symbols 

x parameter of Poisson process 71 a dead-time  interval following input event 
% estimate of the parameter X Si ,  j = 1, the states through which an R-fold coinci- 
T time of operation of the detector on  the 2 ,  . . .  , dence counter  must pass before regis- 

T,  time to  the ith event s o  the ground state  (the most  stable  state) of 
xi a random variable  denoting elapsed time 

t a point  in time, or  an  amount of elapsed P L f ,  7 )  the probability density that  state is j at 

F ( 0  inter-arrival  time  distribution of input 

stochastic process R -  1 tering an  output event 

a coincidence counter and  the  state  at 
between events (i - 1) and i t = O  

time depending on the context time t, and  has been for a time r ,  and 
that  state R has not occurred in (0, f )  

stochastic process and  state  at t = 0 is S o  
probability that  state  at time f is j and 

stochastic process that  state R has  not occurred in (0, f )  

hazard function or conditional  probability 
density of decay at  time r given survival 
to time r 

probability that  at least one count is 
registered in time  interval (0, f )  

photographic  grain developable 

FCiO inter-arrival  time  distribution of output P i ( f )  

P probability of an event II(7) 

E[ I expectation of [ 1 
var[ 1 variance of [ I  
+(S), (4&3)) Laplace transform of input (output)  inter- HdT) 

arrival  distribution 
II, ( P o )  mean of F(f) ,  (F,(t)) .”, ( 4  variance of F(t), (Fo(t)) 
7- a  time  interval of fixed or variable duration volved in a photographic detection 

G(r) the distribution  function of r T’ 

R number of photons required to make a 

S the number of photographic  grains  in- 

following an  input event to  the detector  problem 

I *  
that  amount of time  in (0, T )  during 

Laplace transform of { ] which detector is not “dead”. 

1. Introduction 

Various types of counter models have been introduced 
’Based on  a  Ph.D.  thesis,  “Counter Models and  Applications to Detec- 
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the fact that a registered event produces a dead  time 
during which no  further events can be registered. Type I1 
counters are characterized by the fact that incoming events 
produce  dead  time  during which further incoming events 
cannot be registered, although these events are capable of 
prolonging the dead  time, that is, paralyzing the counter. 
Modifications of Type I and Type I1 counters have also 
been introduced and studied  in the literature. 

Here we shall be concerned with a different type of 
counter  model called a coincidence counter. The motiva- 
tion for such  a  counter  model arose  out of a  study of the 
mechanism involved in the photographic  detection process. 
However the coincidence counter  model is interesting  in 
its  own  right and  there  are other  applications of the model 
in such fields as reliability. 

The simple coincidence counter  model we now introduce 
is intended to work as follows: An incoming event, say a 
photon, is not directly recorded by the detector.  Instead 
it changes the  state of the detector say from So to SI. The 
state S, is maintained for a fixed time 7 following the 
incidence of the  photon. If during  this  time  interval no 
further arrival takes place, the detector reverts to state So 
and no output  count is recorded. If, however, while the 
detector is in  state S, another  photon arrives an  output 
count is registered and  the detector immediately reverts 
to  state So. Thus  for example if photons were incident on 
the detector at time t ,  t + 2.07, t + 2.17, t + 2.57, and 
t + 37 an  output event would be registered at times t + 
2.17 and  at t + 37; so in this case five input events have 
produced  two output events. The R-fold coincidence counter 
is a generalization of the simple coincidence counter. 
Here incoming events cause changes in  the  state of the 
detector from Si to Si+, provided the detector is in state 
Si (i = 0, 1, . . , R - 1) at  the time of the arrival of the 
input event. For i = 1,2 ,  . . , R - 1 the counter  remains 
in state i for a time ri which is now taken  to be a random 
variable with distribution  independent of i. If no further 
event occurs  during  time T~ following the  last  input  the 
counter reverts to  state So without registering a count. 
Only if state SE is reached is a count registered with the 
counter immediately reverting to So. 

The photographic  detector is a counting device of an 
entirely different type, but  the counter models nevertheless 
play a part in the analysis of this kind of detector. Basically 
the photographic  detector (the emulsion or photographic 
plate) consists of an ensemble of many counters  (the 
individual photographic grains), each of which is able 
to register a count only once. The fractional  number of 
grains that develop is then a measure directly related to 
the average  number of photons incident on each  grain 
during  the time of exposure. The simplest photographic 
detector consists of grains  all of the same size and speed, 
i.e., each  grain requires R photons to  make  it developable 
(that is, to register a count). Aside from variations  in 

grain size, which will not  be considered, actual photo- 
graphic  detectors consist of an ensemble of grains of 
varying speed so that R, the number of photons required 
for registering an  output event, is a random variable  with 
distribution  dependent on  the particular  photographic 
material. 

There is a  photographic effect which can  be explained 
in terms of the dead  time and coincidence counter models 
introduced  above. This effect is known technically as 
reciprocity failure and manifests itself in two different 
ways: (a) At high intensities X and  short exposure times T 
the photographic  detector registers fewer events for a 
given average number of photons per grain XT than when 
X is somewhat smaller (but AT is fixed). This  can  be 
explained by postulating  a  dead  time 7 following each 
incident photon so that only those  photons which arrive 
at least 7 units apart contribute to produce the neces- 
sary  number R of input events required for developability 
of the grain. (b) Low-intensity reciprocity failure de- 
notes the condition in which the response, for a fixed 
average input AT, is again lowered, this  time when the 
intensity of radiation X is low;  that is, the  photons arriving 
at a grain  tend to be spaced far  apart. By assuming the 
type of mechanism discussed in  the case of the coincidence 
counter, this  type of reciprocity failure can  also be ex- 
plained. The dead  time  counter models and coincidence 
time counter models postulated for photographic  detectors 
can be identified with the times required for  the creation 
of a  sublatent image speck and  the  duration of such a 
speck. 

I I .  Simple coincidence  counter 

As a model for a simple coincidence counter, we shall 
consider the following mechanism: An incoming event 
impinges upon  the counter, which is so constructed as  to 
be able to hold  this event in memory for a  time 7 (a  fixed 
constant). If another event occurs during the time that 
the first event is in memory, the  counter registers an 
output event and resets its  memory to zero  content. If no 
second event occurs during time 7,  the first event is lost, 
that is, produces no count. 

The  formal definition of a simple coincidence counter 
can be  stated  as: a counter  which immediately registers 
an output count whenever an input event is preceded during 
a jixed time interval 7 by a nonregistered input event. 

It should  be noted  that  the coincidence model suggested 
above differs from  the general counter model  proposed by 
Takacs' in  that  the occurrence of an event within 7 units 
of an earlier one  produces  a  regeneration point (in effect, 
a new origin) for  the  output stochastic process in our 
case, but  not  in Takacs' case. In  his process, an  output 
event could occur after  the arrival of both  the second 
and  the  third  input event. In  our model, that would be 
considered physically impossible. To get two  output 101 
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transform of the output inter-arrival time random variable W 

is  derived as follows:  Beginning at a time  when an output E[e-"T] = E[e-OT ] N](  1 - e-X')(e-")N-' . (2.6) 
event  has just occurred, let X,, X,,  X, ,  denote the 
time  between further successive input events. The input This  yields 
stream  is  assumed to be a Poisson  process, so that the 
Xi have a common  exponential distribution. Assuming E[eLaT] = ( k Y ( 1  - e-('+*)')  [-I , 
that the Nth event  produces the first count, we have 
X1 > T, X2 > T, * * , X N - l  > T ,  but X ,  5 T (note that (2.7) 

N = l  

Xe-(s+X)r N"l 

N = l  s + x 

there are no conditions on X,). Let T(N) = X,  + X ,  + 
e - .  + X,  denote the total time  between output events, 
then the conditional Laplace transform of T(N), given N, is 

E[e-"T'N' I N ]  = E[e"X.]E[ exp {-s 2 = 1  X%} I Xi 
N - 1  

> T E[e-"X" 1 X,, 5 T I .  1 (2.1) 

Noting that the conditional probability  density that two 
input events are X units apart, given that they are  not 
more than T units apart, has density 

and after  summing the infinite  series,  letting &(s) = 

E[e- 'I, 

A t s  

In this formula, the term X2/(X + s ) ~  represents the 
transform of the waiting  time for the second input event 
of the Poisson  stream. As r 3 the second input event 
can be taken as producing an output event, which  is 
what we would  expect of an infinite  memory  device. 

Ae-XX/l - e-xr, 
(2'2) 111. R-fold coincidence  counter 

we find the Lap1ace transform (i*e*> the One natural extension of the coincidence counter 
transform of this conditioned random variable) is is to permit input events arriving within  specified  time 

Similarly, if we know that two input events  differ  in  time 
by at least T units, we obtain the conditional Laplace 
transform 

counts, at least  four input events are required. the Nth input event,  namely, (1 - e-hr)  (e-Xr)N-l, and sum 
Using an approach similar to that of Feller2 the Laplace  over N obtaining I 

From these  results we obtain the conditional Laplace 
transform of T(N) given N 

E[e-"T'N' [ N ]  

intervals to change the state or levels  of a counter, and 
to allow the registering of an output event  only after a 
terminal state, say after the Rtb state, is  reached.  We term 
this the R-fold  coincidence counter. For R = 2, this 
reduces to the previously  described  simple  coincidence 
counter which has two states So and S,. Then an input 
event  changes the counter from So to S,,  and if another 
event  occurs  before time T, an output count is registered 
and the counter immediately  reverts to So. The counter 
also immediately  reverts to So at time r but without 
registering an output count if the input does not arrive 
within the time interval T.  

Briefly  we can describe the R-fold  coincidence counter 
as being a counter which immediately registers an output 
event whenever an input event is preceded by (R - I )  
non-registered input events none of which are spaced more 
than T units apart where T is a time interval of random 
length whose (R - I )  values are independently and identi- 
cally distributed. 

Here we obtain the waiting  time distribution (or, rather, 
X(1 - e - ( a + x ) 7 )  its  Laplace transform) for the first  time  occurrence  of 

(s + X)(I - e-hr) 
1 - e - ( s + x ' 7  exponential distribution, F(t) = 1 - e-". This  is  equiva- 

1 - e-X' 
lent to the assumption that input impulses constitute a 

1 02 by the probability that the first output event will occur at decay  takes  place at the end of an interval of duration T~ 

(2 .5 )  the critical level R in the case  where the waiting  time 
between  upward jumps of unit magnitude has negative 

N + l  -(N-l)(a+h)i e 

Poisson  process. We also  assume that all the levels Si, 
To obtain the unconditional transform of T(N) we multiply j = 1, 2, + . , R - 1 can decay  only to So and that such 
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following the latest incident impulse. We assume that 
each ri is itself a random variable with absolutely con- 
tinuous  distribution  function G(r) which  is independent 
of Si and  the times of occurrence of the states S i .  

We shall write p i ( t ,  7) for  the probability density that 
jointly: 

a) at time t the process is in state Si; 
b) that  it reached this state r time units  ago, that is, 
a t t -  7; 

c) that  the state at t = 0 is So, and  that previous to 
time t the  state R was not reached. 

Now the probability that a decay to So takes place 
during  the small interval (7, T + 6) after occurrence of 
the  last impulse is 6G‘ (T), and the probability that  no decay 
takes place during  the time interval ( t  - 7, t )  is 1 - G(r). 
Hence the conditional probability of decay during the 
interval (T, r + 6) given that no decay has  taken place 
during  the elapsed time T since the last impulse is  given  by 

so that 

The function p ( ~ )  is sometimes called the hazard function, 
and has been discussed, for example, in connection with 
telephone call demands and other queueing problems. 

We shall derive here a set of differential equations from 
which the Laplace transform of the inter-arrival time 
distribution of output counts can be obtained. In terms 
of pi(t, T) and the  hazard function p ( ~ ) ,  we can write 

Pj(t + 6, 7 + 6) = (1  - X6)(1 - 6p(T))Pj(t, r )  (3 .3)  

or, neglecting terms in a2 since 6 is assumed small, we get 

Pj(t + 6 ,  T + 6) = [l - X 6  - 61L(7)]Pj(t, 7). ( 3 . 4 )  

If during the interval ( t ,  t + 7) an impulse occurs, we 
have, for  the probability that the state is Si at t + 6 and 
that  the time T’ since the last impulse was  less than 6 
[denote this bypi(t + 6, T‘ < S)], 

P i ( t  + 6, T’ < 6) = X 6  lm (1  - 6 p ( ~ ) ) P j - l ( t ,  T) dT 

(3 5 )  

where the integrand on  the  right represents the probability 
that  the  state was Si-l at time t ,  had been attained T time 
units  earlier; and  did not spontaneously decay in  the 
time span (7, T + 6) following the moment  it was attained. 
Since all possible times, T ,  of attainment of the  state Si-l 
must be considered, the probability of no decay from 

Again neglecting terms in 6’ this becomes 

pi ( t  + 6, 7’ < 6 )  = X6 p i - l ( t ,  T) d r .  lm (3 .6)  

These considerations hold  for j = 1, 2, - , R - 1. 
For  state So, we have 

i.e., the probability of being in state So at time t + 6 is 
the probability of being in that  state  at time t and having 
no incident events in (t ,  t + 6) plus the probability that 
a decay occurs in  the period ( t ,  t + a), when the process 
is in  state Si ( j  = 1, 2 ,  . , R - 1) at time t and  no 
incident events occur during ( t ,  t + 6). Note  that  the 
integral under the summation represents the probability 
of a decay in  the period (t ,  t + 6) when the process is in 
state Si ( j  = 1, 2, - , R - 1) at time t and this  prob- 
ability is independent of how long  ago the  state Si was 
attained previous to time t .  Similarly for po(t + 6, T’ < 6) 
we have, by (3.5), 

~ o ( t  + 6, T’ < 6) = X6 (1 - 6p(T))PR--l(t, T) dT.  l* 
(3 .8)  

In the period ( t ,  t + 6) a  transition  from state SR-I  to 
state SR may occur thus causing the process to revert 
immediately to state So and register an  output count, or 
we may write 

po(t 4- 6) = ( 1  - X ~ ) P O ( ~ )  -k lm X P ( T ) P ~ ( ~ ,  r)  d r  
i=l  0 

(3.9) 

and 

po( t  + 6, T’ < 6 )  = X6 pB-l(t,  T) d ~ ,  (3.10) 

if terms in a2 are neglected. If in (3.4) we transpose p i ( t ,  T), 
then divide each side of the equation by 6 and pass to 
the limit, we obtain 

l* 

or 

( 3 . 1 1 )  
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= -Xpo(t) i- p ( 7 ) p l ( t ,  r )  dr .  (3.12) dt 1 = 1  0 

These are  the differential equations whose solutions will 
provide the  inter-arrival time distribution of the output 
counts. 

Letting * denote Laplace transformation using g(7) = 
1 - G(T) and G’*(r) = (dG/d7)* it can be shown that 

(3.13) 

is the Laplace transform of the inter-arrival time distribu- 
tion of output counts  from  the general R-fold coincidence 
counter.12 

For R = 2; G(7) = Ofor 7 < 7,; and G(7) = 1 for 7 2 r0, 
which is the case treated previously in Section 2 we have 

G!*(S + X) = / r o  e - ( s + X ) r  d r  = e - ( a + A ) r o  (3.14) 
0 

and 

which is the result previously derived for this case by the 
conditional probability approach used in  that section. 

Another interesting case which is mathematically trac- 
table is that in which G is a negative exponential distribu- 
tion, G(T) = 1 - e-E*. In this case we find 

(3.16) 

E[e-*“] = X2/(s2 + (2X + E)s + A’). (3.17) 

IV. Application of counter models to photographic 
detectors 

We shall consider a (simple) photographic detector as  an 
ensemble of go-no-go detectors, each of which  is capable 
of responding just once immediately following the  arrival 
of the Rth event. Consequently further  arrivals at a detector 
having already received R “hits” are wasted, and cannot be 
transferred to another  detector or registered in the  output. 

104 The photographic detector is unique in  that it  can  operate 
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simultaneously on a large set of Poisson processes,* 
namely, on all  those sources in space which are imaged 
on the face of the photographic plate.” Also, because of 
imperfect imaging and scatter within the emulsion, a 
Poisson point  source is imaged, not  on one, but on a set S 
of detectors  (or  photographic grains). Thus, in comparing 
the intensity of two  point sources, the  output from 2 s  
detectors must be compared. An ideal non-photographic 
ensemble of S detectors exposed to a Poisson source of 
intensity X for  a  time T would provide an estimate x of X 
with a variance of X/ST, assuming the set of S detectors 
to operate independently of each other on  the same 
Poisson source. 

If we suppose that each photographic detector requires 
exactly R hits to become developable and retains its 
deuelopability indefinitely, then we can calculate that the 
mean number of detectors responding to  an intensity X 
(per grain per unit time) after an exposure time T will be 

S . H ( X T )  = s e - X T ( X T ) i / j !  
W 

[I=. 1 (4.1) 
r R - 7  1 

= SI 1 - e-XT (XT)i/ j!  I. 
L 1 =o -I 

Now if H i s  the Probability that a detector will respond, 
and if S independent experiments are performed, the 
probability that exactly k responses are obtained is 

p ( k )  = (i)Hk(l  - (4.2) 

and hence the variance of the number of responses is 

0’s = S.H(XT)[l - H(XT)] .  (4.3) 

The use of dead time and coincidence counter models 
occurs in connection with the  photographic phenomenon 
known as reciprocity failure. Reciprocity failure means 
that the  photographic detector responds not  just to the 
total number of photons, AT, incident during the time of 
exposure, but reacts differently, depending on whether 
for AT = constant, it is the time of exposure or the  strength 
of radiation which is large. There are two types of reci- 
procity failure: high-intensity failure, which can be at- 
tributed to a type of dead time phenomenon as  in a Type I 
counter, and low-intensity failure, which can be thought 
of as being due to the finite memory of a coincidence 
type of counter mechanism. Diverse explanations of this 
phenomenon have been giveng but  the crucial experiments 
to determine the precise mechanism whereby reciprocity 
failure is produced have not yet been attained.  Con- 
sequently any model whose consequences are in reasonable 

____ 
* Throughout we assume  that  the  light  fluctuations which, strictly 
speaking, obey Bose-Einstein  statistics,  can be approximated by Max- 
well-Roltzmann  statistics so that  the  spatio-temporal  distribution of 
photons  incident  on  our  detector  constitutes a Poisson  stream. 



accord with existing experimental data  can provide a step 
forward. 

We assume here that  for photons in the visible region 
there is not sufficient energy to produce a developable 
grain. As is well known, at shorter wavelengths there is 
enough energy in a particle to trigger one or more  photo- 
graphic  grains, and  for such particles the problem of 
reciprocity failure does not arise. 

For low-intensity reciprocity failure, we assume that a 
photon can produce a sublatent image speck which can 
persist for a time r. Another  photon incident during  this 
time will cause this speck to grow to a stable silver speck. 
Such a speck may, or may not,  in itself be developable. If 
it is,  we have a two-photon  photographic detector with 
low-intensity reciprocity failure. If r is infinite, this reduces 
to the type of photographic detector discussed above. 

It may be necessary to have a larger speck of  silver to 
produce development than one obtained from two photons. 
If we assume that  the two-photon speck is nondevelopable 
but  one twice as large is developable, then two further 
photon  hits within an interval r are required to produce 
either another speck or to enlarge the one already formed. 
Since actual emulsions are a mixture of grains of varying 
sensitivity, we would have to combine various models to 
simulate an actual photographic  material. Here we shall 
content ourselves with some discussion of the two- and 
four-photon  photographic  detectors as even these present 
considerable difficulty. To arrive at the response curve of 
a two-photon  photographic detector with low-intensity 
reciprocity failure, we should proceed as follows. 

Beginning with the Laplace transform of the inter- 
arrival  time  distribution of the coincidence counter 
output (2.Q we  find the inverse Laplace transform and 
integrate this function from  zero to T. The result, 
F& T,  T) ,  indicates the probability of one or more 
coincidence events, which is the probability of a grain 
bxoming developable during the time of exposure T, 
that is, the probability that at least one silver speck is 
formed in a grain irradiated by an average of XT photons, 
(and one such speck is sufficient for developability). If 
there are S photographic grains in  the  area under con- 
sideration,  the expected number of grains which will 
contain a developable speck after exposure time Twill then 
be S. FJX, T, T).  A plot of F,(X, T, r )  versus X or T indicates 
the average fractional number of grains which become 
developable as X or T increases, the other variable being 
held constant. In photographic technology, when studying 
reciprocity failure, it is customary to hold constant 
F,(X, T, r) (which corresponds to the developed optical 
density) and plot for various values of X or T the value 
of XT needed to produce a fixed F,(X, T, 7). 

The problem of carrying out this  procedure arises right 
at the start in trying to  obtain  an explicit closed form for 
the inverse Laplace transform. To find the inverse trans- 

form of the coincidence counter inter-arrival time, 

40($ = 

one  should take a contour integral over the left half 
plane. (From  the  fact that  the distribution  function is zero 
for t < 0, we know that  all the poles of 4(s) must have 
negative real part.") Hence we must find the  roots of 

Even though it is possible to obtain an indication of 
the  location of these roots,  some direct attempts at a 
solution by numerical methods indicate that large scale 
computer programming is necessary. 

Thus a closed form approximation to the distribution 
function F,(X, T, r )  would be helpful. One possibility is 
to fit a gamma distribution, i.e., a density function of 
the  form 

r(x; u ,  k )  = ue-""(ux)k"/(k - I)! (4.5) 

by fitting the first few moments of this distribution to 
those  obtainable by differentiating +&). Since the first 
two moments of r ( x ;  u, k)  are 

s + X(l  - e - ( h + s ) ' ) .  

k s k  
Po = - ,  U Bo = - u2 

and these determine the particular gamma distribution 
completely, we could set 

&(s = 0)  = - 
k 
P 

and 

(4.7) 

c#l:'(s = 0) = -- k + . 
P2 

If r is large I#&) tends to Xz/(X + s)', that is, the Laplace 
transform of a gamma distribution with k = 2 and X = u. 
This is as it should be, for  that corresponds to  the waiting 
time distribution for the second input event in  the case of 
a Poisson process. For large enough values of 7, we are 
justified in approximating F,(X, T, r) near the origin by 
a gamma distribution with k = 2. (Some trial approxima- 
tions easily show that this parameter is not very sensitive 
to variations in k.) Thus  to a crude  approximation we will 
need  only u and this parameter is found from 

so that we shall take 

(4.9) 

(4.10) 



as response function in  the case that  two  photons within 
time r can  produce developability. We  shall take 

if twice as large a silver speck is required. 
Formula (4.1 1) can  be  integrated to yield 

Fo(X, T ,  r)  = 1 - e-uT - u T e - U T ,  (4.13) 

which indicates that  the response  function of the two-pho- 
ton photographic  detector  with low-intensity reciprocity 
failure is identical in  shape (to this crude approximation) 
to  that of the  two-photon detector without reciprocity 
failure but stretched  along the X-axis  by the  factor X/u. 

High-intensity reciprocity failure can  be handled  in 
much the  same way as low-intensity reciprocity failure. 
In this case we postulate a dead  time, r d ,  so that only 
those photons  contribute to making  an R-photon photo- 
graphic  detector  respond which arrive a t  least r units 
apart.  In this  case the probability that a grain will become 
developable in time T is obtained by calculating the 
probability of R or  more  output events from a Type 1 
counter. Here again we encounter the  apparent difficulty 
that  as a first step we need the inverse Laplace transform 
of the  Rth power of the inter-arrival time  transform of 
the Type I counter’ 

(4.14) 

which represents the waiting time  distribution for  the Rth 
output event from a Type I counter. Subsequently we need 
the integral from 0 to T which is the probability that 
the Rth event will occur prior to time T and corresponds 
to the probability that a grain exhibiting high-intensity 
reciprocity failure will become developable. 

However, in the present case, we can  make use of the 
following device. We  replace T by T‘ = T - (R - 1)r, 
a contracted  time  interval. It is easily shown that  the 
output process from a Type I counter is again a Poisson 
process with  parameter X in contracted time. Hence high- 
intensity reciprocity failure is equivalent,  under the present 
model, to shortening of the exposure  time for  an A-photon 
simple photographic  detector by an  amount (R  - 1)r”the 

106 accumulated  dead  time  arising from  the first (R - 1) input 

photons which are incident on a photographic grain. 
Hence the response of an  R-photon photographic  emulsion 
with high-intensity reciprocity failure  and deadtime T d  is 
obtained by using the relation 

H(X,  T ,  T d ,  R )  = H(XT‘, R), (4.15) 

which indicates that on a part of H vs T (not log T )  high 
intensity reciprocity failure  should  correspond  approxi- 
mately to a shift of the characteristic curve. 

V. Conclusion 

A mathematical  model of a coincidence time  counter  has 
been constructed which is based on  the idea that  two or 
more  input events are required within a relatively short 
time to register an  output count. Earlier (dead time) 
counter models were based on  the idea that closely spaced 
input events may not be effectively detected due to the 
dead  time  generated by the arrival of an  input event, 
whereas in the model  introduced  here the initial  arrival 
of an event serves to cock or activate the counter mecha- 
nism for some  time  (the coincidence time) so that  the next 
input event, if it arrives  during the coincidence time, 
produces an  output count. 

The counter models were applied to a photographic 
detection  problem, and  the behavior of the characteristic 
curve of a photographic  material exhibiting reciprocity 
failure was related to  the time  constants of dead  time and 
coincidence time  counter mechanisms for high- and low- 
intensity reciprocity failure, respectively. It is shown that 
to a first approximation the density-exposure curve is 
displaced parallel to itself toward higher exposure values, 
the  amount of displacement being given by the time 
constants of reciprocity failure and  the number of photons 
required  for  grain developability. 
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