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Amplification of Sound by Hot Electrons

It is well known that sound waves can be amplified in a
solid by electrons or holes having a drift velocity, in the
propagation direction, greater than the velocity of sound.!*
At least at low temperatures, an electric field strong enough
to induce a drift velocity of this magnitude, in a semi-
conductor, can result in a “hot electron” state'® The
purpose of the present communication is to show that the
properties of hot electrons can themselves give rise to a
distinct contribution to the amplification, one which does
not change sign according as the drift velocity is greater
or less than the velocity of sound, both for semiconductors
typified by cadmium sulphide’ and those typified by
n-germanium.*

For simplicity, effects of modulation (variation due
to the wave motion) of the fraction of the charge carriers
in bound states will be excluded.® Let ¢(¢, x) be the energy
of a charge carrier (in one particular valley, for the
many-valley case) due to the wave, where x measures
distance in the propagation direction, proportional to
the wave amplitude. Let the wave amplitude be propor-
tional to exp (iwt — ikx), in the usual convention for
harmonic motion. We may define a “dynamical density
of states”, G(w, —k), by the relation

n=—Gé¢ 1)

where n is the density of carriers (in the valley) and the
prime denotes a small deviation proportional to the
wave amplitude. For the germanium case, ¢ is equal to
the valley deformation potential, =, times the strain.
Assuming for simplicity a combination of orientations
such that Za’ = 0 (where Z indicates summation over
valleys), we have

2p5°a,/k = — £ & Im G, (2)

where ¢, is the carrier contribution to the attenuation
constant «, the mass density of the lattice is p, and s = w/k
is the propagation velocity, provided that « << k. For a
piezoelectric semiconductor, such as cadmium sulphide,

2ps’a/k = D," Im (1/€) (3)

where D, is the induced electric displacement per unit
strain, e the dielectric constant. (Again it is assumed that
a < k, and attenuation not due to the imaginary part

of ¢ is omitted in (3).) Since the contribution of the charge
carriers to e(w, k) is

e, = (4w’/K°) = G, (4)

again the sign of «, agrees with the sign of the imaginary
part of —G.

Let u be the drift velocity and N the flux density, in
the propagation direction, of the carriers (in a particular
valley). Then

N' = n'u + n8F — 3(¢n)/dx, (5)

where @ is the differential mobility per unit charge, { the
diffusion coefficient, for the propagation direction and F
is the force on a carrier in that direction, so that

F' = —3¢/dx, 0 = du/dF. (6)

We may write, for the last term of (5),

agn) _

on oF _ 4t
dx g-6x+nQ(")x ’ &= ' ()

= dF
The conservation equation is
an/dt + dN/dx = R (8)

where R, the rate of generation of carriers, is proportional
to the wave amplitude. We shall write

—R =v(n' + gp + hF'), €

where v represents the recombination and intervalley
scattering rates. The term in g comes from the strain
dependence of the electron states, that in # from the field
dependence of the distribution over states. In that we are
excluding modulation of the occupation of bound states
we are concerned with “exhaustion” conditions in which
(9) refers to intervalley scattering only. Then for a “single-
valley”” semiconductor we will have R = 0 in (8) and
accordingly should set the v terms of (11) equal to zero.
For the many-valley case, in general for each of the
valleys R will be given not by (9) but by a similar sum over
the #/, ¢ and F’ of all valleys. For appropriately sym-
metrical orientations, however, (9) will be valid. The
coefficients 6, {, Q, v, g, h are of course functions of
F (of the applied electric field).
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From Eqgs. (5)-(9), on substituting dn/dx = —ikn’, etc.,
and dn/dt = iskn’, we get

where

a= K9+ vg/n,

b= KkQ+ vh/n, (11)
c =Ky 4+

For thermal equilibrium @ = & = 0, so & = 0 and (10)
reduces to the conventional form, and furthermore a = B¢
for Boltzmann statistics, so evidently we recover the
known results for this case.®*

The contribution to o, with which we are concerned is
that given by the second term in the numerator of (10).
It gives amplification when b is positive; i.e., when Q
and/or h are positive. The longitudinal diffusivity, ¢, is
difficult to calculate in terms of known quantities,"® but
it appears probable that in general it is an increasing
function of |F|-—i.e., QF is positive. Evaluation of one
simple theoretical model for hot electrons confirms this.
Recently the longitudinal diffusivity was measured® for
holes in germanium with electric fields up to ~10° V/cm,
and it was found to increase monotonically with field
strength (roughly proportional to |F| in the hot-electron
range). Where intervalley scattering is by phonon emission
and absorption, it is clear that 4 is positive. For intervalley
scattering by iomized impurities in germanium, from
theoretical considerations™ it appears that the contribution
to 4 will be negative but will become small. With a variable
fraction of impurities ionized* (a situation which has been
excluded from this discussion), the question of the sign
of & is more complicated.

If the terms in ¢ are dominant in the numerator and
the denominator of (10), if the terms in Q and { dominate
over the terms in », for b and ¢ in (11), and if @/ ~ 1/F,
then by (2) we have

—a, ~ (E%/ps”)(nk®/ F).

For n-germanium, if k ~ 10° cm™, F/e ~ 10* V/cm, this
gives —a, ~ n X 107* ¢m’. Inasmuch as the condition
u > s is not a necessary one for amplification, the latter
may be brought about at a lower level of power dissipation
than previous theory would indicate. It is evident that in
a many-valley semiconductor, by suitable choice of

orientations, amplification could be obtained with an
applied electric field transverse to the propagation direc-
tion, with the hot-electron effects represented by the
Q and & terms coming from the rotation of the valley
effective fields and depending on the valley anisotropies.
It should be noted that the coefficients in the “phenome-
nological” equations (5)-(9) will vary with « and k& when
the latter are appropriately large, and furthermore since
these coefficients will then no longer be real the imaginary
part of G will no longer be given by (10). Thus the ultimate
high frequency limit, within the quasiclassical range, is
not to be obtained simply from (10) with these coefficients
given their values for small frequencies and wavevectors.

Note added in proof

Equation (2) can be derived by showing, by use of an argument
given by E. L. Blount [Phys. Rev. 114, 418 (1959), Section 1],
that the net rate of dissipation per unit volume is — =(¢9n/a1).
The latter is negative when the positions of the maxima of » are
displaced, from the minima of ¢, in the direction of wave
propagation. This forward displacement ensues from a positive
value of b, which corresponds to a tendency for the carriers to
flow to the minima of the total instantaneous force F in each
valley.

The possibility of amplification in n-germanium (i.e., negative
values of (10)) for small values of 1 /s may be shown by estimates,
similar to that in the last paragraph above, of b¢/a, and is indi-
cated for “warm electron” conditions [T. N. Morgan, Phys.
Rev., in press] by similar estimates.

These clarifications derive from discussion with W. P. Dumke,
to whom I am indebted,
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