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Active Image Formation in LLasers'

Abstract: An optical cavity is described in which the modes are determined as stationary states of the diffraction-limited ob-
ject/image transformation of classical optics; these modes are selected by the insertion of controls into the optical cavity and
lead to field distributions which image these controls. When the cavity is driven by an active medium, laser oscillation can oc-
cur, and this is discussed in terms of the coupled mode equations used by Wagner and Birnbaum in their theory of quantum os-
cillation in a multimode cavity. Some properties of these modes in the limits of small and large optical aperture are described

and illustrated with experiments using the helium-neon gas laser.

1. Introduction

It was shown by Townes and Schawlow in 1958 that
sustained stimulated emission of light could be obtained
if light waves were multiply reflected within an optical
cavity so that the resultant high-energy-density standing
waves could be amplified by an active medium.! They also
demonstrated that this emission, or laser oscillation,
would primarily build up into a single optical mode or
fundamental resonance of the confining optical cavity,
specifically into that mode which possessed the highest Q
or quality factor and for which the confined optical energy
density would be greatest. Wagner and Birnbaum later
gave a more detailed description of the process of mode
condensation as a selection of the most favoured mode
for oscillation from the very large number of possible
modes in the essentially multimode optical cavity.”
Subsequent investigations have shown the general
occurrence of mode condensation in laser oscillation,
but it has been recognized that this selection is effective
only very near a gain threshold. As this threshold is
exceeded, many new modes can appear unless the optical
cavity is specifically designed to suppress these modes—
their growth reduces the efficiency of the laser with
respect to the generation of maximum energy into a
single mode. Such secondary modes have been attributed
to crystalline imperfections in solid state lasers, to in-
homogeneous line broadening in gas lasers, generally to
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the effect of optical imperfections and mirror misalignment
of the laser cavity, and also to nonuniform excitation of
the active medium.

In the present paper an optical cavity, Fig. 1, is employed
in which many modes of equal Q but with varying field
distributions can be excited in laser oscillation; it will be
shown that these modes may be described in terms of
the diffraction-limited object/image transformation of
classical optics. Generally, the laser oscillation in this
cavity corresponds to a roughly uniform but multimode
illumination over the field of the confining mirrors but this
may later be perturbed by the introduction of objects
or masks into the cavity at a mirror surface, locally
destroying the mirror reflectivity at this location. It is
found that the resultant field distribution in laser oscilla-
tion can be projected from the cavity and refocussed by
conventional optical elements to form images of these
objects. It is in this sense that the title of this paper refers
to active image formation.

Figures 3-5 (pp. 36-37) and others illustrate images
formed in this way and make it apparent that the inserted
objects do not merely suppress certain modes of the
optical cavity in the regions where the object absorbs or
scatters energy but, rather, the modes excited in laser
oscillation conform to and map the edge detail of the
objects or masks with fidelity and with high contrast.
Further, this image definition increases with the laser
gain as an increasing number of modes oscillate simul-
taneously. Thus, the active imaging discussed in this
paper depends upon the multimode oscillation that
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builds up into contoured high reflectivity areas as these
modes are driven by the active medium.

Image formation of this type is, of course, quite different
from the conventional, passive image formation obtained
with a simple lens. In this last, each point of an illuminated
object serves as a source for waves that are focussed by
the lens into overlapping diffraction patterns in the
image plane, producing the usual diffraction-limited
resolution. Apart from this spreading, however, there is
a fixed ratio between the intensity of the light radiated
from the source points to the intensity of these points in
the image. In contrast, in active imaging the intensity in
the image depends upon the number and the field distribu-
tion of modes that oscillate into the given image area.
The modes may each have different optical frequencies
and different intensities, with the latter depending both
upon the diffraction loss of each mode and upon the
competition of these modes within the active medium of
the laser for the gain-producing population inversion.
Essentially, therefore, this process must be described in
terms of the properties of the allowed modes of the system
together with the coupling and interaction of these modes
with the laser active medium. An initial description of
this process is attempted in the subsequent sections of this
paper.

The basic optical cavity used in this work is shown in
Fig. 1, where L represents a simple lens and M; and M,
are high reflectivity mirrors located at object and image
positions for the lens L. Within the limits of Fraunhofer
diffraction and neglecting optical aberrations in the
system (viz., within the approximations implied in Egs.
(8a, 8b) below), it is clear that a source area at one mirror
will be transformed into itself by rays that pass through L
and are then reflected back through L from the facing

Figure 1 (a) The arrangement of components used in active
imaging and (b) the coordinates used in the derivation of the
modes of the optical cavity.
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mirror. Additionally, to avoid walk-off losses, the orienta-
tion and position of the mirror surfaces must be such that
each wave advancing against the surface is returned
exactly upon itself. This condition is satisfied when, for
each of the terminating mirrors, the lens L, considered as
an object, is its own conjugate image in the mirror. For
spherical mirrors this requires that L. be located at a
center of curvature of each mirror and that the radii of
curvature of the mirrors correspond to the usual object
and image distances for imaging by L. The mirrors thus
act as field lenses for the lens L. Subject to these conditions,
it will be shown in Section 2 that an optical field distri-
bution can be described for this system in terms of eigen-
function solutions of an integral equation that depends
upon the shape and size of the high reflectivity surface of
one of the terminating mirrors.

This surface is taken here to be defined by an aperture
in a mask placed before one mirror, Fig. 1. As the aper-
ture is contracted, it will be shown that there exists a
minimum source area which will have a diffraction loss
sufficiently low that laser oscillation can occur in a field
distribution within the geometric ray boundaries shown
as dashed lines in Fig. 1; the dimensions of this limiting
area will depend upon the laser gain available within the
active medium, It has been found that with high quality
optical components there is sufficient gain of the helium-
neon gas laser in the visible transition at 6328 A to allow
oscillation to occur for circular source areas with diameters
of the order of 2.5 Airy disk diameters for the system.
(The Airy disk diameter is here taken as a convenient and
conventional measure of the scale of the diffraction
spreading produced in the image plane of an aperture-
limited objective lens®) If R is the distance from the
objective to the image plane for light of wavelength A,
two Airy dimensions may be defined: a disk diameter, A4,,
for diffraction by a circular aperture of radius a,
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and an Airy width, A4,, for diffraction through one
dimensional apertures such as a slit of width w,
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where N. 4. is the numerical aperture of the objective.
Also, in these expressions, R may be taken as the distance
from lens L to either mirror M, or M,, and the diffraction
spread at one mirror is thus related to that at the other
mirror by the magnification ratio of the optical cavity.

If the source area is only slightly larger than the minimal
source area referred to in the preceding paragraph, it is
found that higher order modes are simultaneously excited
in oscillation if the laser gain is high enough, but that
these modes oscillate independently with slightly different




optical frequencies. Further, these single source areas will
usually be much smaller than the limiting aperture set by
the laser amplifying medium. If multiple source areas
exist before one mirror surface, laser oscillation can build
up into each of these areas simultaneously, again with
multimode oscillation in each such area. The total field
distribution is thus highly complicated, but some pre-
liminary experiments have indicated that certain mode
interactions, to be discussed in Section 4, cause adjacent
and nearly frequency-degenerate optical modes to lock
together in optical frequency. This coupling will be shown
to have the particularly interesting property that it can
be induced when objects that are small compared to an
Airy dimension for the system are inserted before one
mirror ; this can lead to an image field in which the bound-
aries of the image of the object are formed with a contrast
that may be an order of magnitude greater than that
which would be predicted by the passive diffraction-limited
image formation of conventional optics. This process is
discussed in Section 4, under the descriptive heading
“Super-resolution.”

2. The diffraction transformation

For simplicity it will be assumed that the optical system
shown in Fig. 1 is of square cross section with uniform
gain across the aperture of the active medium. The
limiting aperture for imaging will most often be determined
by the allowed cross section of the active medium and is
taken as having a width and height of dimension 2a.
This Section, then, is concerned with the wave field which
can exist in the passive optical cavity that is bounded at
mirror M; by a source area S. The source area may be
introduced by a mask with a cut-out to expose a high
reflectivity mirror surface with the shape of the source.
Further, S will also be taken as rectangular and defined
by —B< X< Band —D < Y < D, for the coordinate
system shown in Fig. 1. The actual field distributions at
the terminating mirrors are related in their size by the
lateral magnification, M, of the optical cavity with M =
— R,/R,. It will be useful to use scale normalized *“optical
coordinates” (x,, y,) at the mirror M; by the use of the
definitions®

x; = MX,, »n=MY,. (3)

Similar “optical coordinates” may be defined for the
source area S,

b = MB, d = MD. 4)

It will also be assumed in the following that the use of
Fraunhofer diffraction provides a sufficiently accurate
formulation for the derivation of the wave field, and this
implies that the path length s from a point (x;, 3,) at
mirror M; through lens L at (£, 5) to the point (x;, y.) at

mirror M, is very well approximated by the expansion
.= 2':R _ b —x)E+ (O — yl)n]_ (5)

R

For a given wave function Ui(x;, y;) on M, the field
propagating away from the mirror may be determined
from the Huygens-Fresnel integral. (We note paren-
thetically that only a monochromatic field is considered
here with the time periodic factor e *“* being suppressed,
as is customary.) The lens (or, as will be seen later, an
objective mirror) transforms these waves into diffracted,
convergent waves with amplitude Ux(x,, y,) on mirror M,,
and this transformation is represented by the diffraction-
limited object/image integral®

Uz(xz, .Vz)
b d

= f f Ui(x1, y1) K(x1, 15 X2, y2) dx, dy,. (6)
-6 J—a

Here, K(x;, y.; xs, y») is the transmission function for
lens L. This function may be expressed in terms of the
pupil function of the lens L, determined by the focussing
action of L in forming the image producing wave. Thus,
if G(xi, yi; & n) is the pupil function of the lens, then

1 a a
K(x, y13 %3, yz) = @E f f G(xI’ yis és "1)

.e(—ZWi/)\R) [(xa—~z1) E+ (ya—w1)nl] dE d’)- (7)
As noted in Born and Wolf, the phase of G determines
the aberration function for lens L and the amplitude of G
gives any non-uniformity in the amplitude of the image
forming wave due to attenuation in lens L. For a perfect
lens, as will be assumed here (i.e., we neglect the aberra-
tions of lens L and any non-uniformity in its amplitude
transmission), G may be taken as unity, with the result
that K(xi, y1; X2, »,) is simply

K(xu Yis X2, .V2) = K[(xz - xl), (J’Z - yl)] (83)
_ 1sin [(2ra/AR)(x; — x1)]
x’ (2 — x1)
_sin [(2ra/AR)(y, — y)]
(J’2 - J’I) (Sb)

The first expression, Eq. (8a), indicates the isoplanatic
character of the system, i.e. it shows that the transmission
through lens L is independent of a specific source point
(x1, y1) provided that this point lies within the entrance
aperture of the laser active medium and lens L.

It will also be assumed that the field amplitude function
U;(x1, 1) is separable in the coordinates x and y so that,
according to Egs. (6) and (8b), Us(x,, »,) is also separable.
This assumption leads to a simplification of the problem
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in that it can be treated as one-dimensional, the complete
solution being understood to be the product of two
independent functions of the type discussed below.
Then from Egs. (6) and (8b)

U2(x2)
lf U,(x,) sin [(2ra/AR)(x, — x,)] dx.. ©)

(x2 — x1)

The shape and orientation of the mirrors M; and M,
ensure that the points (x;, y;) and (x,, ¥,) lie on a common
diameter centered on the lens L, and thus that the reflected
wave initially returns exactly upon itself towards the
mirror M;, in accordance with a second transformation
of the type of Eq. (9). The following expression represents
the wave function Ui(x,) of the returned wave:

Uit = % [ [ v [(27r(a£>\§)(;2) — )]
‘Sin [(271'0/>\R)(x1 - .Xz)] x’ X
(e, — x2) dx{ dx,,  (10)

where S, denotes the aperture at mirror M,. In general,
only one mask or limiting shape S will be inserted into
the cavity and S, will be the full clear area of M, ; physically,
the field distribution Us(x,) will differ from that of Ui(x;)
only by the limited-diffraction spreading at the edges of
the image. It is thus a good approximation to take the
limits of the integral of Eq. (10) for S, as —0 < x, < ®
and Eq. (10) simplifies to

U;(xl)

_1 f UL (x)) sin [(2ma/AR)(x, — x1)] ax! (11

X1
1_x1) !

If the mask defining the source area S is close to the
surface of mirror M;, Uj(x,) is a source amplitude for a
further reflection through the system provided that Uj(x,)
is now limited to be zero for |x,| > b. After many reflec-
tions, it may be assumed that a stationary diffraction field
is established with the returned wave amplitude taken as
proportional to that of the source wave. Thus, if ¢ is a
constant with |o| < 1, the relation

Ui(x,) = o Uy(x,), defined for —b<x, <b, (12)
leads to the basic integral equation
4 Ul(xl)
W
1 f Uy (x]) sin [(27ra/)\R)(x1 x1)] dx’. (13)

(x, — xl)

Several authors have identified the modes of an optical
cavity as solutions of an integral equation that may be
derived from the statements of (12) and (6), with K(x;, xJ)
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a kernel chosen for a particular cavity, e.g. Fabry-Perot,
confocal, or concentric*’®®” In particular, Eq. (13)
may be derived with the special kernel of Eq. (8b) as
a result of two successive Fraunhofer diffractions of
the type used by Boyd and Gordon in their discussion of
the confocal cavity.® The present derivation of Eq. (13),
however, has emphasized the connection of such an
integral equation with the diffraction-limited object/image
transformation, Eq. (6); physically, the cavity of Fig. 1 is
defined with two mirrors and a lens (or, equivalently, with
three mirror surfaces, one of which acts as an objective
for imaging) and this differs from the two mirror systems
of the previous authors.® The aperture radius, a, appears
within the kernel of Eq. (13) and determines the diffraction
spread due to the multiple imaging of the source. The
isoplanatic condition Eq. (8a) indicates that the spatial
orientation of the mode or modes defined by Eq. (13) with
respect to the axis of the optical cavity is independent of
the location of the mask opening, —b < x, < b, over the
optical field at M;.

Slepian and Pollack have shown that a complete set of
real ortho-normal solutions of the integral equation Eq.
(13) exist.® These may be ordered in terms of eigenvalues
of Eq. (13) which are found to be real and non-degenerate.
Both the functional form and the eigenvalues depend
upon the source width and the numerical aperture of
the imaging system. The eigenfunctions will be designated
as U/(x), with

(14)

andm(m=0,1,2, ), denoting the order of the solution
and also expressing the number of nodes of the m-th
eigenfunction. The corresponding eigenvalues, o,, rep-
resent the fraction of the energy carried by the m-th mode
which is returned to the source area:

_ f_bb [UL(%)]? dx. (15)

By Eq. (13), ¢, is related to the decrease in the field
amplitude, so that the total diffraction loss, ap, is given by

xp = 1 — 021‘ (16)

It is shown by Slepian and Pollak that the eigenfunc-
tions are prolate spheroidal wave functions defined for a
specified c.

The eigenvalues have the important property that they
are nearly degenerate and of low loss to order m = 2¢/x
and above this order have large and rapidly increasing
loss. The one-dimensional Airy width, 4,, of Eq. (2),
provides a convenient scale for this loss, and, roughly, the
number of low loss functions is (4b/A4,), or twice the
number of Airy widths allowed in S.

For a given source dimension a lowest order eigen-




function can be obtained in laser oscillation by reducing
the laser gain to a minimum threshold, or, alternatively,
by reducing the lens aperture 2a by means of an iris
diaphragm so as to increase the diffraction loss. At higher
gain, however, a number of these modes oscillate simul-
taneously within the single S aperture. The kinetic reasons
for this will be discussed in Section 3, but the main result
is that a given source shows a nearly uniformly illuminated
field due to the laser oscillation. Further, because the
different modes do not generally have quite the same
frequency, the illumination represents an incoherent
superposition of spatially coherent functions. It must
also be noted that the restriction to rectangular apertures
is entirely artificial—circles, triangles, and ‘‘starfish”
shapes are also actively imaged and the associated fields
may be considered as a superposition of the eigenfunctions
of Slepian and Pollak, or alternatively as eigenfunctions of
a modified source area in the imaging optical cavity.
It is true, of course, that the lowest order field distributions
of high diffraction loss figures, as the “starfish,” do not
represent uniform illumination of the figure, especially in
the arm detail, until the highest laser gains are achieved.
For these reasons, it is emphasized that quantitative
estimates of diffraction loss, taken from the one-dimen-
sional solutions of Slepian and Pollak, are valid only for
the rectangular aperture considered above.

The product of two eigenfunctions, one each for the
independent x- and y-directions, thus gives the transverse
spatial dependence of the wave field of the distinct modes
at the source area S of the optical cavity. The full spatial
dependence as this wave propagates into the active
medium may be obtained straightforwardly from the
diffraction integral. It is an important property of the
prolate spheroidal functions that they are their own
Fourier transforms, except for a scale factor, so that the
transverse dependence of the field is preserved along the
axis of a given mode. The field intensity will, however,
vary with distance from source area S.

In the formation of standing waves due to multiple
reflections within the cavity the round-trip phase change
must be a multiple of 27 and the full spatial field de-
pendence of the eigenfunctions is obtained by multiplying
the eigenfunctions of Slepian and Pollak by the function
sin mqz with z measured along the axis of the mode that
also passes through the center of the lens L. These modes
are then designated, following Boyd and Gordon, as
TEM,, ., with the integer g determined by the resonance
condition’

2wq=4‘[’—25+§(m+n)][1+7%]—2”7’e- (17)

Here, \ is the free space wavelength and A, with A < R,
is the deviation of the actual lens-to-mirror *‘optical
separation” from the value for which the center of lens L

coincides with the center of curvature of the mirror.
The phase changes for the various modes expressed by
the right hand side of Eq. (17) follow directly from an
evaluation of the diffraction integral in propagation from
the source S through the lens L, and are taken from
Boyd and Gordon. Equation (17) may be expressed as a
wavelength condition for resonance of the optical cavity,

4R 4A
T=q+(1+m+n)<1—l-ﬁ)- (18)

If A is adjusted to be zero, Eq. (18) can be satisfied by a
number of different modes of the same optical frequency
for which the integer sum on the right-hand side of Eq. (18)
is a constant; in turn, the transverse modes of a given
frequency with different m and/or n will have noncoinci-
dent nodes and antinodes in the energy density. The
field distributions of the modes are, thus orthogonal in
both their transverse eigenfunctions and their axial field
dependence; as is discussed in Section 3, this indicates
these modes can be excited as independent modes in laser
oscillation.

The frequency degeneracy is removed for a nonvanish-
ing A, and A is adjusted experimentally by changing the
separation of one of the terminal mirrors of the optical
cavity from the objective, L. For A sufficiently small,
Eq. (18) predicts low-frequency beats (i.e. difference
frequencies of the order of 50 to 100 kilocycles) between
modes of different transverse symmetries that are excited
in oscillation in the cavity. Further, the laser beam pro-
jected from the cavity can be refocused upon a screen to
provide an image of the source area and the field distri-
bution can be scanned by a detector. When the laser gain
is adjusted so that only two transverse modes of a single
source area oscillate simultaneously, the amplitude of
the low frequency beat between the optical modes varies
across the image field as the product of the field intensities
of the contributing modes. This provides a technique for
testing the predictions of this theory. Experimentally, both
the beats and the distribution of the beat note intensity
across the field of the image were observed and were in
good agreement with all the predictions indicated above.
A limit to these observations was set, however, by the
frequency stability of the beat which was of the order
of 20 to 30 kc/sec and which reflected the high vibra-
tional environment of the apparatus. The “optical length”
of the cavity depends not only upon the spacing of the
mirrors and the lens but also upon the index of refraction
of the active medium, as has been noted by Bennett in
his discussion of frequency pulling in a gas laser.® In the
present experiments, the frequency of the beat was a
function of the gain of the laser and could be varied by
changing the discharge path length within the laser tube.
The shift in the beat frequency is then interpreted as a
change in the optical length of A.
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Some further properties of this system would be expec-
ted, but have not, at present, been examined theoretically.
These include the dependence of the diffraction loss upon
the spacing deviation A, and also the dependence of the
loss upon a physical separation of the mask defining the
source area from its adjacent mirror, i.e. M, in Figure 1.
In the experiments, these factors were not dominant in
the sense that the mirror spacings or the mask location
required critical adjustment but this undoubtedly reflects
the great depth of optical field that is represented by the
very large f-number of the gas laser tube (f/200) used in
the present work.

The eigenvalues and thus the diffraction loss for a given
mode require numerical evaluation for each aperture
value, or c-number as given by Eq. (14). Some estimates
may be made, however, from the table of eigenvalues
given in Slepian and Pollak.’ A one-dimensional aperture
slightly more than two Airy widths wide would admit
three eigenfunctions with diffraction loss less than 19, and
a square aperture of the same width would admit nine
independent functions with diffraction loss also less
than 19,. There is sufficient gain in the helium-neon gas
laser in the visible transition to overcome this loss, and
experimentally, simultaneous oscillation in a number of
nearly frequency degenerate modes was observed for an
aperture of this type. As reported above, this number
could be reduced to 2 or 3 by reducing the laser gain.

A particular imaging system that is simpler than that
of Fig. 1 is the ordinary confocal cavity of Fig. 2. Here
mirror M, acts as an objective for the focussing of source
areas at M, ; by the use of a half mask to form the source
area S the unobstructed half of the high reflectivity
mirror M, is available for the conjugate image of S, S, in
M,. This arrangement, which was used in many of the
experiments reported in this paper, is also useful for
demonstrating the physical nature of the diffraction loss
calculated from the eigenvalues of Eq. (13) as a truncation
by the source cutout S of the diffracted wave returned
to M,. Lens L, of Fig. 2 is of large aperture and images
both the source area S and its conjugate image upon the
screen. The boundary of S is sharply defined in the direct
image whereas the boundary of the conjugate image is
shaded due to the diffraction in the imaging from M,.
The diffraction spreading is maintained in the second
transit from S’ back to the mask defining S, as in the
derivation of Eq. (11), and results in a bright illumination
of the edge of the mask cutout where the light is absorbed
or scattered.

Alternatively, a lens L, may be placed behind the
mirror M, and used to project and re-image S and S’ upon
a screen. In this arrangement both images are diffraction
limited by the effective aperture of the laser active medium.
Figures 3-5 demonstrate this imaging for various masks.
In all figures the mirror spacing was 100 cm and the
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Figure 2 The confocal cavity as a special case of Fig. 1,
controlled by means of a half-mask. The aperture in the
mask may be re-imaged from the laser output beam from
either of the partially transmitting mirrors.

Figure 3 Simultaneous oscillation of the laser into a number
of modes defined by masks with square cutouts measuring
0.06 X 0.06 cm.

Figure 4 Active imaging of square and triangular cutouts of
size near the diffraction limit. The apparatus was that of

Fig. 2. The edges of the squares were 0.075 cm; those of the
equilateral triangles were 0.09 cm.




Figure 5 Active imaging of gear teeth with the apparatus of
Fig. 2. The sloping edges were 0.12 cm.

effective aperture at M, was from 0.5 to 0.6 cm. The
insertion of an additional iris behind M, and before L, did
not affect the image quality until it began to intercept the
laser output beam, and thus the f-number for this imaging
is {/200. For these experiments the Airy width at M, for
the visible transition is 0.03 cm.

3. Multimode oscillation

It is clear that the process of active image formation
depends upon the simultaneous laser oscillation of a
number of modes of the optical cavity. The extent to
which these fill a given source and their relative intensities
determines the degree to which the edge detail of the
source area is subsequently imaged after projection of
the laser output beam. In this Section the low loss modes
of the passive cavity are investigated with respect to their
coupling and interaction with the inverted population
providing optical gain.

By inspection of Fig. 1 it can be seen that two well
separated source areas, S, at M, will have standing wave
fields that are distinct at M, but increasingly overlap as
they approach the lens L. If the active medium existed
only at or very near the surface of M; the fields of the
area S would be wholly separate in the active medium and
the oscillation would be that of independent lasers. In the
other extreme, with the active medium located at, very
near, or in the lens L, the fields that could build up into
source areas located anywhere on M; would overlap
completely at L. All of the allowed modes would then
be forced to compete with each other for the available
gain and mode condensation would be expected to
occur—that is, the suppression of the population inversion
with laser oscillation would favor the excitation of a
single low-loss mode for the system. This implies that

such mode selection would be extremely critical with
respect to perturbations and imperfections in the optical
cavity.

The long tubes of gaseous optical masers constitute an
extended active medium that nearly uniformly fills the
space between a mirror and the lens L. With respect to
the spatial extent of modes due to given source areas,
however, the optical modes do not fill the active medium
uniformly. Although this in itself indicates a source of
optical gain that would permit simultaneous oscillation
into distinct source areas, it has also been seen that a
number of low-loss and frequency-degenerate modes may
exist and oscillate independently within a single source
area S, even though these exist in essentially the same
spatial volume of the active medium.

It will be shown later that two modes with only partially
overlapping diffraction fields may couple coherently,
locking together in frequency. Nonetheless, orthogonal
modes of the cavity may have vanishing coupling of this
type and oscillate independently. The physical principles
governing the quantum oscillations in a multimode cavity
were originally derived by Wagner and Birnbaum and
their results may be used to discuss this mode coupling,
both by extending their work and by adapting their
equations to the gas laser used in the present experiments.’

Wagner and Birnbaum’s original paper considered an
active medium in which the atoms were fixed in position,
and for which the atomic transition providing optical
gain had a homogeneously broadened line shape; all the
atoms can thus provide gain to those cavity modes with
frequency response within this line shape. In the gas laser,
on the other hand, the oscillations are driven by an
inhomogeneous transition (due to Doppler broadening)
and this gives rise to the simultaneous and independent
axial mode oscillations observed in these lasers—that is,
only those atoms which are Doppler-shifted in frequency
by a limited range of velocity components of the atom
parallel to a direction of mode propagation can couple
to a given cavity resonance. Within this frequency range,
however, the very high Q of the optical cavity simplifies
this coupling, for the active medium may be taken as
homogeneously broadened with respect to the atoms
responding within the Doppler-shifted spectral interval.

Each moving atom will thus pass through many standing
waves and, if there are a number of different modes
overlapping in this region, the atom can couple to each
of these. The atomic diffusion length is, however, limited
by the lifetime of the transition and may be taken as
less than 0.01 cm for the 6328 A transition of the helium-
neon gas laser. Although this dimension is more than
one hundred optical wavelengths, it is less than one-tenth
of the transverse extent of the modes of the optical cavity
in the present experiment (with a one-meter mirror
spacing). This indicates that the population inversion is
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well averaged over the axial modes, but that the cross-
excitation of the transverse optical modes by atomic
diffusion may be neglected. These approximations will be
made in this paper, so that the probability for stimulated
emission of an atom into a mode is taken as depending
only upon the transverse dependence of the radiation
energy density of the given mode. For this model of the
helium-neon laser, the theory of Wagner and Birnbaum
may be applied directly.

First, it will be taken that the cavity is defined by a
single source area with allowed field distributions given
by the TEM,,,, modes. Employing the assumptions made
above and neglecting frequency factors that reflect the
line width of the atomic transition, a basic equation of
Wagner and Birnbaum may be written as

(_w2 + w?)Qi - i(w‘/i - w?B(n(r)ﬁ»Q,-
+ iw;B ; wn(®f;1)0, = F. (19)

k=g

The time-dependent normal coordinates Q; in Eq. (19) are
the mode amplitudes of the TEM,,,, modes with j or k
corresponding to the (m, n, g) triad; the spatial field
dependence is contained in the real functions of position,
fi(r). Equation (19) relates the time-dependent amplitudes
of the modes driven by the forcing term F which is due
to spontaneous emission, while B is a constant depending
upon the dipole moment of the atomic transition, w is the
frequency of the laser oscillation, and w; is the resonance
frequency of the j-th mode of the passive cavity as de-
termined from Eq. (18). These frequencies are taken as
nearly identical, and certainly with a difference frequency
much less than that represented by the reciprocal of the
atomic life time. Further, n(r) specifies the excess popula-
tion as a function of position within the active medium.
The expressions in the angular brackets in Eq. (19) are
integrals over the mode volume ¥, and express the coupling
of the modes to the active medium.

The original paper of Wagner and Birnbaum neglected
the spatial dependence of the population inversion as
well as the mode cross-coupling indicated in the summed
term in Eq. (19). They determined the average population
inversion, {n(r)), as a function of the energy in the excited
modes in the multimode cavity and stressed the property
of mode condensation, i.e. the selection of a single domi-
nant mode in laser oscillation, that was demonstrated
through their formalism. Later Statz, Tang, and deMars"
showed that if the spatial dependence of r(r) is included
when treating a homogeneously broadened atomic
resonance associated with fixed atoms, as in ruby, a
number of axial modes could be simultaneously excited,
and they estimated the number of these modes as well as
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the effect of this mode coupling upon the time-dependent
spiking observed in solid state lasers."® An approximation
similar to that of Statz, Tang, and deMars for the spatial
dependence of the population inversion is made in this
paper and used in Eq. (19) to indicate the effect of the
mode coupling and, also, to show that independent and
simultaneous oscillation in transverse modes can occur in
the gas laser, even when these are very nearly identical in
frequency.

Conservation of energy at the position r may be used
to relate the excess population inversion n(r) to the
number of photons in each mode of the optical cavity.
The number of photons in mode j, N;, is directly related
to the energy of a given mode and to the mode amplitudes,
Q;, for the j-th mode. Thus,’

N; = (wi/h) |0;]°. (20)

If 7 is the spatially independent density for uniform
excitation of the active medium but with no stimulated
emission, D is the probability for spontaneous emission
into a single mode, and 7 is the effective spontaneous
emission lifetime, it follows that

n(r) = A — Drn(r) Z Ngi(x, »). (21)

The functions g;(x, yz) primarily express only the trans-
verse spatial dependence of the functions f;(r) because of
the assumption that the population inversion, n(r), is to
be averaged over the axial modes. A z-dependence of the
g; functions is then due only to the diffraction spreading
along the axis of the j-th mode and it is understood that
|8g;/9z| <K g. Equation (21) may be written as

n

1+ Dr 3 N,

n(r) = (22)

The sum in the above properly includes all the modes
of the system, but Eq. (22) may be simplified and ap-
proximated (1) by including only the oscillating modes for
which N; is large so that for r oscillating modes 1 < j< r,
and (2) by assuming that the threshold is not greatly
exceeded so that a first power expansion of the denomi-
nator is valid; i.e.,

n(r) ﬁ<1 — Dr ; N,»g?)- (23)

Insertion of (23) into (19) thus provides a basic equation
for determining the field amplitude and distribution in
laser oscillation as a function of the pumping level,
expressed by 7, and the mode losses, v;. With complete
frequency degeneracy and by taking the classical condition
for oscillation as a demand that the effective conductance
of the system vanish, the coupled mode equations become
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When the cross-coupling term (the second integral in

Eq. (24)) vanishes, Eq. (24) reduces to the equations of

Statz, Tang, and deMars and may be regarded as a set

of linear homogeneous equations determining the N;

photon populations. The integral
f fidv (25)
1 4

is the volume of the active medium used by the j-th mode,
and the remaining term,

BDri Y, N, f figtdv, (26)
s=1 v

represents the effect of photons in various modes in
suppressing the gain available in the j-th mode. For
Fabry-Perot ruby lasers, Statz, Tang, and deMars were
able to evaluate the number, r, of oscillating modes with
N, >> 0 because the integrals of the type of Eq. (26) were
simple and because they could assume that the loss
dependence of v; originated in the frequency dependence
of the homogeneous line shape." For the TEM,,,, modes
considered here the integrals of Eq. (26) are not simple
and the dependence on mode number of the eigenvalues,
or equivalently the v;, is not given, except by numerical
integration for a given aperture. With the approximation
that the eigenvalues are unity to the (4b/4,)-th order
and decrease rapidly thereafter, the number of simul-
taneously oscillating modes in the two dimensional field
would be just the square of this number (this follows as
the integral of Eq. (26) is roughly independent of j and s,
and the r equations of Eq. (24), neglecting cross-coupling,
become identical). Also, the intensities of the modes
would be approximately equal.

It is clear from Eq. (24), however, that if the cross-
coupling integral,

f fihegs dV, (27)
14

does not vanish, energy in the k-th mode is effective as
a gain in driving the j-th mode; further, in view of the
fact that the frequencies are nearly identical, as is here
assumed, and assuming perfect alignment for the optical
cavity of Fig. 1, such coupling will act on the field ampli-
tudes and result in a coherent superposition of these
modes. Eq. (27) may be written more explicity as

f Gomin &mr ne £a.40(sin gmz)(sin q'nz) dx dy dz, (28)
v

for j = (m,n q), k= @',n,q),and s = (s, ). If m,
m' as well as »n, n’ are of opposite parity, Eq. (28) will
necessarily vanish and such modes cannot, therefore,
couple coherently. In view of Eq. (18), certain other
terms of Eq. (28) will be very small with respect to the
assumption that the population inversion n(r) couples
uniformly to the axial modes and that the active medium
nearly fills the region between M, and L of Fig. 1. The
lowest-order even-parity modes which would be expected
to show significant coherent coupling are the TEM,, and
the TEM,,, and the lowest-order odd-parity modes are
TEM,;, and TEMj,,.

The above considerations indicate that with a gaseous
active medium in the optical system of Fig. 1 and for a
single source area S there will be nearly as many simul-
taneously oscillating transverse modes of almost the same
frequency as are permitted by the gain that can drive the
low diffraction loss modes; additionally, there will be a
number of modes, separated in frequency by c/4R, with
each representing ‘“‘hole burning” within the Doppler-
broadened line.”® For two or more separated source areas,
S, there will be an equivalent multimode oscillation at
each area although gain suppression in the common
volume of the active medium that is shared by these
modes reduces the number of modes oscillating in each
area. The latter effect is readily demonstrated experi-
mentally by the use of masks to define several source
areas, say S, and S,. If the laser gain is reduced, a condition
may be found for which there will be one area, S,, which
can be controlled to oscillate in a single transverse mode.
If S, is now blocked off there will be an increase in intensity
in S, as well as in the possibility of a greater number of
transverse modes oscillating within the aperture S,.
This increase provides sharper definition of the shape and
edge detail of the aperture S,.

4. "Super-resolution”

So long as the aperture product, ¢, of Section 2, Eq. (14),
is taken as small, permitting only a few modes to be
generated in the gas laser, good agreement between the
theory and experimental observations of active imaging
may be obtained. As the aperture number becomes larger,
however, the diffraction loss of a great number of modes
becomes insignificant with respect to other loss mechanisms
and perturbations within the optical cavity, and a given
source area loses control of the mode formation except at
edge boundaries where the field is suppressed. We note,
for example, that in the limit of large b (or small N),
Eq. (13) becomes a Fourier identity, and thus any regular
function U(x,) that vanishes in the neighborhood of the
boundary will have low diffraction loss. The coupled
equations (Eq. (23)) that determine the field distribution
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in oscillation are then primarily sensitive to the variation
of the loss parameters, v;, of competing modes with
respect to optical inhomogeneities, to mirror misalignment,
and to spatial variations in the laser gain.

The low gain of the gas laser in the visible transition
(about 19, /transit) further limits the effect of apertures in
controlling the oscillating field distribution through the
diffraction loss, since the latter cannot be greater than
this value. While the residual losses in the optical system
may be taken to be of the order of 0.19, this loss is
essentially constant for all of the modes of the cavity
insofar as it represents a lack of perfect mirror reflectivity
and absorption in the windows of the laser discharge tube.
Inhomogeneities in the optical components will influence
mode selection within apertures of sufficient size such that
they represent very small diffraction loss, but it is difficult
to estimate the magnitude of these effects. The components
used in the present experiments were sufficiently homo-
geneous so that when the only aperture was that of the
laser tube itself the oscillating field distribution was
primarily sensitive to gradients in the index of refraction
of the air that were induced by speaking quietly near one
mirror. This perturbation scrambled the modes of the
field distribution, producing rapidly varying and complex
patterns; it is cited to indicate the sensitivity of the field
distribution in this type of optical cavity to extremely
small perturbations. In this connection, it may also be
noted that while the cavity of Fig. 1 was extremely critical
with respect to mirror alignment, the off-axis imaging of
the confocal cavity of Fig. 2, for which the terminating
mirrors were automatically aligned by being part of a
common mirror surface, was much less sensitive in this
respect.

In this Section, the field distributions that may exist in
the active imaging system of Fig. 1 will be investigated
for the case when multiple source areas S exist at mirror
M, and also for the limit that M; is of large aperture but
the field distribution is perturbed by the insertion of small
opaque objects into the optical cavity at the mirror M;.
As the field is established in laser oscillation, it will be
partially transmitted through one of the boundary mirrors
as the laser output beam and may be subsequently re-
focused by passive optical elements to define an image of
the set of apertures or the object. The definition of detail
in this type of image depends critically upon the number
of modes and their field distribution and thus upon the
effect of the perturbing object in selecting the actual field
distribution; it is found experimentally that the field in
the image of small objects must in part be regarded as a
coherent superposition of modes that extend over a much
larger high reflectivity area of the terminating mirror M,
than is represented by the object size itself. This super-
position of modes of low diffraction loss can be regarded
as an ‘“image” of an obstructing obstacle at mirror M;.
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Figure 6 High reflectivity areas at mirror M, for —b < x
< —s and § < x < b. This specific example indicates that
the coherent superposition of modes of the same order de-
fined for different zones of high reflectivity at mirror M; can
(1) lead to lower diffraction loss and (2) yield a net field
that more sharply defines edge boundaries (here a central
obstruction) by the suppression of side lobe radiation.

This property may be illustrated by a specific example of
two slits in one-dimensional imaging, Fig. 6.

The two slits are shown in Fig. 6 as high reflectivity
areas at mirror M for —6 < x < —édand § < x < b.
As shown in Section 2, an ordered set of eigenfunctions
and eigenvalues exists for either slit by itself; these sets are
defined for each aperture of width |b — §|. For these func-
tions (cf. Eq. (15)), it will be taken that ¢ = 7wa(b — 8§)/AR
with the functions centered upon a central position, d4=x,,
within the slit with x, = |(b 4+ 8)/2|. In the plane of M,
the field distribution may be taken as a sum of these
functions of a given order, m; viz., as

0.(x) = a, Un(x — xo) + a, Un(x + x0). (29)

The function above should satisfy a stationary condition
for the double slit similar to that of Eq. (13):

sin [% (v — x’):|

m(x — x')

0.0n(x) = fM 0.(x") dx’, (30a)
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wx — x" =+ x0)

Because the terms UZ(x — x,) are eigenfunctions of the
slit of width (b — &) with eigenvalues ¢}, and because of
the symmetry of the present example, the simplest solution
may be taken as

0nOn(¥) = anon[Un(x — x0) — Unlx + )] (31)

dx’. (30b)

for al, = —a, = a,. The eigenvalue, o,, may then be
determined by

OL(x) dx
oS (32)

Om = " o
j: . Q:,,(X) dx

By substituting (31) into (32), and using the orthonormality
of the U:(x — x,) functions,

ay — Uix — xo) Up(x + x0) dx
0, = My . (33)

1~fwm@—wm@+ww

The integral in the denominator of Eq. (33) may be
shown to be 0 by writing the functions in terms of their
integral equation Eq. (13), and by integrating over the
transmission functions independently. The integral in the
numerator may also be rearranged and expressed as an
overlap integral for the functions over the opaque sections
of M,.

eemet [T+ [+ ]
JUn(x — x0) Un{x + x0)] dx (34a)

U, (x — xo) Upn(x + x,) dx. (34b)

overlap

= a, +

By the definition of Eq. (32), ¢,, cannot be greater than 1.
Some examples are shown in Fig. 6 for various orders, m,
which indicate that for certain values of b and §, the effect

of the overlap integral of Eq. (34b) is to increase o, with
respect to the values o> and that this sum has, therefore,
lower diffraction loss than either slit oscillating inde-
pendently. The effect of the superposition in reducing the
diffraction loss at the obstacle, — 8 < x < 4, by the
suppression of the field at the obstacle is also indicated
in Fig. 6.

The overlap integral in the numerator of Eq. (33) or
in Eq. (34b) is to be compared with that of Eq. (19) where
it represented a driving term for the coupling of the mode
with amplitude Q, to that with amplitude Q;. In the
derivation of Eq. (24) it was assumed that only a single
source area S existed. The orthogonality of the U,.(x)
modes then caused the coupling integral

B"lf file dV (35)

to vanish, so that the only amplitude coupling terms were
those written in Eq. (24) and, more explicitly, in Eq. (28).
If Eq. (35) is written in terms of the triads j = (m, n, g)
and k = (m’, 1, ¢’) the coupling term, Eq. (35), becomes

Bn f Cmon Emr (s8I gmz)(sin g'wz) dx dy dz, (36)
v

and it is to be understood that this expression is to be
evaluated for modes j and & which only partially overlap,
as in the two-slit example.

The effect of, and thus the existence of, such coherent
coupling in laser oscillation for adjacent source areas
may be demonstrated experimentally by superposition of
the laser output beams from the separate source areas
and examining the resultant pattern for stationary inter-
ference fringes. These fringes are found when the two
slit areas are so close to each other (of the order of an
Airy width separation) that the diffraction fields of each
may be expected to overlap. Additionally, however, when
such field distributions are detected and examined for
coherent beats in a spectrum analyzer, it is found, at
large laser gain, that a number of frequency independent
modes are oscillating simultaneously. It is believed that
these represent sets of modes of different order, m. From
Eq. (36), it is seen that modes with different axial mode
numbers g and ¢’ will not couple significantly provided
the active medium fills the space between mirror M; and
lens L in Fig. 1. This restriction on the coupling implies
that if only modes that are nearly identical in frequency
can couple to each other, then the integer sum (m 4- n)
must equal (m’ -+ n').

It may be noted on this last point that the stationary
states of the diffraction wave field for a single aperture
correspond to a single transmission channel which is
unbounded and which is guided only by the focusing

41

ACTIVE IMAGE FORMATION




42

HALF-MASK

e— 250 -~ 500 =250~

OBJECT

1300 1
IMAGE \ '
PN ‘

|

|

L i
Ll hale ]
|

20

(b)

Figure 7 (a) Two parallel wires forming the half-mask ob-
ject used with the apparatus of Fig. 2 to illustrate one-
dimensional active imaging and (b) the image dimensions
and rough intensity contours as measured in the image plane
of an external objective with N.4. = 0.25, as shown in Fig.
10. All dimensions are in microns.
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action of the objective of the optical cavity. The properties
of this channel are otherwise analogous to those of
bounded, guided wave structures such as optical fibers.
If a grid consisting of a number of closely adjacent source
areas is placed before M;—a mask of the type used in
Fig. 3, for example—this arrangement may be regarded
as a number of paraliel channels that are cross-coupled
through their field overlap. The requirement indicated
in Eq. (36) (specifying that effective cross-coupling is
achieved only for modes with the same axial mode order, ¢)
is seen to be equivalent to a demand that the propagation
constants of the coupled channels (i.e., their guide wave-
lengths) be identical. Similar cross-coupling can be
obtained in adjacent optical fibers that are coupled
through an overlapping of their fringing fields and this
has been commented upon and verified by E. Snitzer.”
This analogy is relevant here insofar as it indicates that
the coherent mode coupling and mode superposition
discussed here in Section 4 have well known counterparts.
The active imaging system is not only self-excited, however,
but the number and coupling of the adjacent channels is
readily controlled by simple mask insertion.

A further consequence of the coupling term, Eq. (36), is
that a mode with a large field amplitude can drive, or
couple energy to, an adjacent mode even when the latter
could have such a large diffraction loss that it would not
independently sustain laser oscillation. The existence of
this gain was demonstrated experimentally by first pre-
paring a thin slit whose width was approximately three-
fourths of that required for threshold laser oscillation into
this slit by itself. When a larger high-reflectivity area was
then made increasingly adjacent to the thin slit it was
found that oscillation in the thin slit was induced when
the separation of these areas was roughly an Airy-width.
The experiment was performed with the confocal system
of Fig. 2; both the semimask and its conjugate image are
shown in Fig. 7, together with a photograph of the image
of these sources obtained from the output laser beam.
If two small sections of this image, one from the region
of the thin slit and one from the outer field were super-
imposed, stationary interference fringes were observed.

A similar experiment was conducted to examine the
imaging for circular objects; in it, a small disk 750 microns
in diameter with a central hole 250 microns in diameter
served as the object. The resultant image is shown in Fig. 8.
Although there is clear excitation of light in the central
area, laser oscillation into a single hole in a large mask
could not be produced unless the hole diameter was at
least 550 microns. The object of Fig. 8 was supported upon
a 12.5-micron wire and we note that this, too, is imaged.
For both Figs. 7 and 8, the Airy width at the location of
the objects is 300 microns.

In a further experiment the object consisted of two
parallel wires, each 25 microns in diameter with their
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Figure 8 The disk object shown in (a) was made of 12.5-
micron brass foil, supported by a 12.5-micron wire, and
actively imaged with the apparatus of Fig. 2. Rough image
intensity contours are sketched in (b) with the dimensions
measured in the image plane of an objective with N.4. =
0.25, as shown in Fig. 10. All dimensions are in microns.

centers separated by 75 microns. The photograph of
Fig. 9a (page 44) shows the image obtained when this
object was placed in the laser cavity before the mirror M.
The same object was then illuminated by a diffraction
limited laser spot of the same wavelength (6328 A) derived
from an external laser and imaged by conventional optics
with an aperture diameter 5/3 greater than was used
previously. The photograph of Fig. 9b indicates that the
wires are just barely resolved.

It must be emphasized that the photographs in Figs. 7,
8, and 9 (obtained in active image formation) are distinctly
different in their contrast and definition of detail from
patterns that would be obtained in passive image forma-
tion; this difference is illustrated by the comparison
photographs in Fig. 9. In passive imaging, the objects
are either self-luminous or are illuminated by an external
source, and the wavefields that are accepted by the imaging
objective are determined solely by the conditions of
illumination. Equation (6) of Section 2 expresses the
diffraction spreading in the image plane of the objective
lens as a superposition of the diffraction patterns from
every luminous point in the object plane; it is well known
that adjacent points in the resultant diffraction limited
image cannot be distinguished unless the diffraction
patterns at each point only partially overlap. The well
known and conventional Rayleigh criterion of resolution,
for example, requires that these points be separated in
the image plane by one-half an Airy disk diameter, and
this dimension also specifies the diffraction blurring in
the image of the edge of an object’?

In active imaging, on the other hand, the resolution in
the image is due to the contrast between the field energy
in modes established in the high reflectivity areas of the
control mirror M, and the sideband energy of the modes
that spilis over the object and, as has been seen, represents
the diffraction loss. The significance of the superposition
of low-diffraction-loss modes in active imaging, therefore,
represents a capability for the cancellation of these side-
bands in the resultant field distribution; the locations of
the edges in the images of Figs. 7 and 8 are nearly the
edges that would be observed if there were no diffraction
spreading. This results, of course, from the increased
contrast that follows from the sideband suppression.

Image formation in terms of such coherent super-
positions was discussed over a decade ago by G. Toraldo
di Francia and was considered in connection with the
resolving power of an optical instrument.’* He was able to
show that there was no theoretical limit to the resolution
attainable in a local area of the optical field, and termed
this process “super-resolution.” That phrase is retained
here, partly to differentiate active imaging as a process
from conventional optical imaging techniques, and partly
to indicate the attainable resolution of distinct points in
the image may be considerably greater than the limit
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Figure 9 An object for active imaging consisting of two
parallel wires. The photograph of (a) shows the intensity
contrast between the wires under active imaging; that of (b)
shows the intensity contrast in the image when passively
imaged using a diffraction-limited spot from an external
laser source as an illuminant. (The N.A. for the latter imag-
ing was 5/3 greater than was used for the active imaging).
The dimensions shown in (c), are in microns.

specified by the Rayleigh criterion.* It may be noted,
however, that when such “‘super-resolution” of an object
or object edge has been observed in active imaging it is
required that there be available a large, adjacent, high-
reflectivity area at mirror M,. In Toraldo di Francia’s
paper this represented an uncontrolled sideband field;
in the present experiments, this expresses the demands
that there be sufficient freedom for mode selection in
the optical field to permit the superposition of low-
diffraction-loss modes and also that the superposition
can be formed to represent local detail of the perturbing
obstruction or object.

Within the limits of Fraunhofer diffraction and by
neglecting aberrations in the components of Fig. 1, the
spatial scale of the diffraction fields at the mirrors M, and
M, is determined by the magnification of the system, as
expressed by Eq. (3); the same scale factor will apply to
images formed from the laser output beam, provided that
the external optical elements used do not obstruct or
vignette the field distribution. This condition is satisfied
if the field distribution at the lens L of Fig. 1 or at the
mirror M, of Fig. 2 is imaged into the clear aperture of
an external objective, L., and the field distribution in the
image plane of L, then represents the magnified (or
demagnified) diffraction field at the mirror surfaces of
the optical cavity. This further implies that the relative
scale of the fields formed within the cavity with respect to
the fields in the image plane of L, is given by the ratio of
the Airy diameters for the two objectives.

Both this property and the fact that “super-resolution”
in the field distribution in the active cavity is retained in
subsequent passive image formation were tested experi-
mentally with the apparatus shown in Fig. 10. L, is an
additional lens that images the field distribution at M, of
Fig. 2 into the aperture of L.. This objective was a standard
microscope objective of N, 4. = 0.25, and hence its Airy




diameter for the wavelength 6328 A is, by Eq. (1), 3.1
microns. The image formed by L., was examined and
projected by a second microscope objective, L,, of N. 4. =
0.5. A knife edge was mounted upon an interferometer
drive such that it could be traversed across the image
plane of L, to measure the scale of the diffraction in this
image.

The photographs in Figs. 7 and 8 were obtained directly
from the image projected by L, in Fig. 10. The defects in
these images primarily represent lack of alignment of the
objectives as well as considerable background due to dust
and secondary interference fringes from the microscope
objectives. The photographs were obtained with an
ordinary oscillograph camera and a coarse ground glass
screen; the images observed were considerably clearer
and more distinct than those recorded by the photographs.
The rough dimensions of the images that were determined
by readings of the interferometer screw are given in these
figures.

These data strongly substantiate the property of “super-
resolution” in active image formation. The support wire
in Fig. 8, for example, is distinctly resolved and so is the
edge detail in both Fig. 7 and Fig. 8, even though the
conventional diffraction spread due to the lens L, would
normally be taken as greater than 1 micron. It may also
be noted that these images could have been recorded
directly upon a photographic film.

It is believed that the preceding discussion illustrates
the origin and nature of the “‘super-resolution” observed
in active image formation, but quantitative evaluation of
the degree of resolution obtainable by this method and
its dependence upon laser gain, upon the available aper-
ture of the optical cavity, and upon the size and shape of
the object cannot readily be estimated at present. To
discuss this point adequately one would require, for
example, a more precise measure of resolution than that
given by the Rayleigh criterion. Such measurement would
depend upon the contrast that can be generated by the
sideband suppression of the field at image edges. An
optimum solution would require the determination of

Figure 10 Apparatus used for demagnifying the laser field
distribution formed at the surface of the control mirror M,
of Figs. 1 or 2.

Ll
5o X L, L
x A2
B Y .
Ry A s WA v
LiLiiise Z //;/;/ 7 ///////////////// ;; //"}_“ 7”77’”7:_/7;./ _SCREEN
VIR A I RIIEIA ALl
A A KA S CREEN.
// A 2
P Xe0 pA sy 000000 e KNIFE
Ly Dy ppda
2,57
EDGE
M INTERFEROMETER
- CARRIAGE

functions Q..(x) that satisfy Eq. (30a) with a largest
eigenvalue as given by Eq. (32), noting that the range of
integration in Eqgs. (30a) and (32) is over multiple-source
areas.

If Q,.(x) is expanded in terms of known functions, as in
Eq. (29), the restrictions discussed after Eq. (36) indicate
that the functions of the expansion must have the same
order, m, because only such functions can cross-couple to
produce a time-stationary field distribution. This type of
coupling was assumed in the two-slit example given at
the beginning of this Section, but this example was
highly illustrative—it cannot be assumed that the optimum
field distributions at each slit are eigenfunctions of the
slit of width (b — &) or that such functions would remain
centered on the assumed central position x,; or, if the
interval (b — &) is large, that other eigenfunctions of the
same order and also of low diffraction loss could not be
added to yield a lower net diffraction loss. That is, if the
field is to be represented by the sum

0u9) = X a,Uix — x) (37)

for a given object distribution at mirror M;, and a solution
of Q,(x) is sought that satisfies Eq. (30a) and yields a
maximum eigenvalue o,, 3t + 1 parameters must be
determined; i.e., ¢ itself and the 3¢ adjustable parameters a;,
¢:, and x;. And, of course, even if this eigenfunction were
determined, it would not be expected to be an eigenfunction
with respect to Eqs. (24) representing the interaction of
this mode with the active medium.

5. Conclusions

The field distributions that have been generated in the
experiments reported here have been controlled by the
physical insertion of masks or objects into the optical
cavity, but a more general and more rapid control can be
obtained by the selection of individual high reflectivity
spots at a control surface through the use of a raster of
electro-optically controlled elements acting as switches.
A summary analysis of such a device acting as a laser
character projector has been reported elsewhere, but one
special advantage obtains from the insertion of the control
elements directly into the laser cavity, resulting in a mini-
mum control energy requirement for optical spot selec-
tion."® This reflects both the fact that the cross-sectional
area of the switch is determined as a diffraction-limited
dimension of the laser cavity and the requirement that
the inserted loss need only be sufficient to suppress laser
oscillation into the switch area. A prototype of such a
projector has been constructed and tested experimentally;
the results support and provide a specific evaluation of
the power efficiency of this type of optical control.

With the gas laser operating in the visible transition,
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the minimum single-aperture diameter is about 2.5 Airy
disk diameters or 0.06 cm for one-meter spacing between
mirror and objective. The full available aperture that
corresponds to a 0.7-cm inner diameter discharge tube is
found to be less than this, but can be as large as 0.6 cm.
An upper limit for the number of individual high-reflec-
tivity areas that can be established at a control mirror
surface is thus 10 X 10, although in this limit there is
considerable field overlap and the laser oscillation within
these parallel channels is strongly coherently coupled.
Rasters of individual spots formed by grids ranging from
6 X 6 to 8 X 8 spots have been used in character forma-
tion, as indicated in Fig. 3.

This limitation in the number of attainable spots of
course reflects the low gain and the long and narrow
discharge tubes of the helium-neon gas laser. It is expected
that systems in which the depopulation of the terminal
state of the laser transition does not depend on wall
collisions would allow active imaging with considerably
larger diameters of the active medium and would have
larger optical apertures, permitting increases either in
the number of individual spots used in image formation
or in the detail available in ““super-resolution’ as discussed
in Section 4. The recently announced H, gas laser shows
great potential for this application; solid state lasers of
high optical homogeneity such as the neodymium glass
laser would also permit very large apertures to be achieved,
although they would require pulsed operation.'®

It is recognized that the research reported in this paper
is preliminary in character, but it is believed that the
present experiments demonstrate the technical potential
of active imaging and illustrate the nature of this process
as it originates in the interaction between the degenerate
modes of the optical cavity and the active medium. These
techniques should find application in microscopy and in
the reading and writing of high bit density information,
but it would be premature to speculate on these applica-
tions at the present time. This work does raise general
questions that are beyond the scope of this paper, especially
questions as to the nature and degree of resolution that
can be realized in optical image formation.’
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