
Enrico Clementi 

Ab Initio Computations in Atoms  and Molecules* 

Abstract: The present  status of ab initio computations for atomic  and  molecular wave functions is analyzed  in  this  paper, 
with  special  emphasis on the  work  done at the IBM  Research Laboratory, San  Jose. The Roothaan-Hartree-Fock method  has 
been  described in detail for atomic  systems. A systematic tabulation of atomic Hartree-Fock functions has been  made  available 
in an  extended  supplement to this paper.t Techniques for computing many-center, two-electron matrix elements  have  been  dis- 
cussed for Slater or Gaussian  basis  sets. It is concluded that the two  possibilities are comparable  in  efficiency. We  have  advanced 
a few  suggestions for the extension of the self-consistent field technique to macromolecules.  The  validity of the  suggestions  have 
not been tested. 

Following  the Bethe and  Salpeter formalism, the relativistic correction has been  discussed  and illustrated with numerical  results 
for closed-shell atoms. A brief analysis of the  relativistic correction for molecular  systems  shows that the  relativistic  effects can- 
not be  neglected in ionic  systems  containing third-row atoms. 

The correlation energy is  discussed from an experimental  starting  point. The relativistic  and Hartree-Fock energies are used 
for determining  the correlation energy for the elements of the first  three  periods of the  atomic  system. A preliminary  analysis 
of the data brings about a “simple  pairing”  model. Data from the third  period force us to consider the “simple pairing” model 
as a first-order  approximation to the  “complex pairing” model. The latter model  is  compared  with the geminals  method  and 
limitations of the latter are pointed out. 

A semiempirical  model,  where use  is made of a pseudopotential that represents a coulomb  hole, is advanced  and  preliminary 
results are presented.  This  model  gives  reason  to  some  hope  for  the  practical formulation of a Coulomb-Hartree-Fock tech- 
nique  where the correlation effects are accounted for and the one-particle  approximation is retained. 

Introduction 

The aim of this  paper is to analyze the present status of 
ab initio quantum-chemical calculations with emphasis 
primarily on  the recent work  done at  the IBM Research 
Laboratory, San Jose. By “quantum chemistry” we mean 
those aspects of atomic  and molecular chemistry and 
physics which have been, and likely will be, quantitatively 
explained by quantum theory. There are many  additional 
phenomena which are qualitatively explainable by quantum 
theory, but those will not be dealt with in  this  work since 
the emphasis here is on computations. We shall restrict this 
paper to computation of wave functions and  total energies, 
and only brief mention will be  made of computations of 
different expectation values. As is known, the prerequisite 
to  an expectation value computation is the availability of 
functions and energies. Since the  computational com- 
plexity in obtaining  a wave function by far exceeds the 
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complexity of computing other properties of a system, 
and since we are aiming at exact wave functions, which by 
definition provide exact expectation values, we feel that 
our restriction is justified. 

The fact that  the field of quantum-chemical  computa- 
tions is undergoing a revolutionary change due to the 
availability of high speed computers is too well known to 
be emphasized here. I shall  show that this field  is now at 
its beginning after several years of probing. We have now 
reached the “mass production”  stage in some simple 
aspects of  it-atomic and diatomic computations-and 
there is  very promising work  in progress in order to 
extend  this situation to more complicated systems. 

It is customary to divide quantum-chemical  computa- 
tions into  “ab initio” and “semiempirical” types.’ The first 
refers to computations where one uses the correct Hamil- 
tonian  for  the problem’ and operates with such a Hamil- 
tonian  on a  function which satisfies some physical model. 

The second type is essentially a curve fitting method. 



In many instances one is not interested in why and how a 
molecular binding energy, or  a given spectroscopic con- 
stant, can be computed from exact models but only in its 
value. Therefore, all that is desired is to obtain these 
values by a reliable fitting procedure. These calculations 
are usually called “semiempirical”, and in the author’s 
opinion should be simply called “fitting formulas” since 
they are  no more than this. Their practical and even 
theoretical value, however, is unquestionable. 

Another type of semiempirical computation is obtained 
by substituting given quantities (which can be obtained 
correctly, but most laboriously) with equivalent quantities 
that can be obtained by much simpler techniques. An 
example of this is the Mulliken approximation of the 
many-center integrals, where it is known from experi- 
mental data  that they are accurate to within 15-20y0, and 
are obtained by an extremely simple technique. This type 
of “semiempirical work”, if used carefully, can  subtract 
very little information from  an a  priori computation. 
Indeed, it can often make  the  latter feasible. 

For particularly simple problems one can attempt  a 
direct solution of the Schrodinger equation. The recent 
work of Conroy3 for  the He, Hz+,  Li systems is a most 
interesting step in this direction. How much the formalism 
of Conroy  can be extended to more complicated systems 
seems to depend directly upon  the availability of extra 
fast and large electronic computers. We shall not comment 
further  on  this direct approach since it seems to be some- 
what premature. 

For a more complex system a basic model is provided 
by the one-electron approximation. In this  approximation 
taken in its simplest form one assumes that the total 
wave function of N particles is a product of one-electron 
functions called “orbitals” (atomic or molecular, according 
to the system). In  order to satisfy the correct statistics for 
the electron, the product is antisymmetrized. There are 
good experimental grounds  for the one-electron approxi- 
mation, i.e., that  the  total energy of the system is  very 
largely accounted for by simply adding up the one-electron 
energies obtained by neglecting the electron-electron 
interaction. Indeed, if one uses the one-electron approxi- 
mation in this strict sense, and  adopts conveniently 
selected orbital exponents, one can obtain  as exact an 
energy as  he wishesP The reason is that variation of the 
orbital exponent, as suggested here, is equivalent to a 
variation of the screening constants, and this in turn is 
equivalent to introducing electron-electron interaction. 

A  more refined method of obtaining one-electron func- 
tions is provided by the Hartree-Fock model. In this 
model5 the electron-electron interaction is conceived as 
the interaction of a given electron with the average field 
of the remaining electrons. Clearly this picture is not fully 
correct because the electrons act on themselves as in- 
dividual interacting particles, as well as a collective system. 

Therefore, the fine details of electronic structure that  are 
essential in the spectroscopy of molecules and atoms, as 
well as in the binding energy of molecules and many ions, 
are poorly explained by the Hartree-Fock model. 

In  the following, we shall discuss several problems 
related to  the Hartree-Fock  method in molecular com- 
putations. Then we shall present numerical results for 
the relativistic correction in atoms, and we shall present 
arguments which predict that  the relativistic correction 
should not be ignored in quantum-chemical computations. 
Finally, we shall analyze the correlation energy problem. 
As is known, the traditional  approach to  the correlation 
energy problem is to propose, from  the outset, models, 
techniques, and formalism without reference to  experi- 
mental data. In  the author’s opinion, this approach  has 
not furnished a practical and satisfactory solution to the 
correlation energy problem, and a different starting  point 
will be adopted in this paper. Namely, we shall first 
derive correlation energies, based on experimental data, 
for a large sample of atomic systems and configurations. 
Then we shall analyze these data  and derive models and 
techniques which explain quantitatively the correlation 
energy previously derived from experimental information. 

The  Hartree-Fock  method 

Unsolved computationalproblems for atoms and molecules 

In this section we shall deal with several problems which 
have not received  sufficient attention in the past literature, 
or which have been considered by many but have not yet 
been satisfactorily solved. 

The first problem to be discussed is related to the 
computation of Hartree-Fock  functions  for heavy elements. 
For  the moment, we shall neglect the basic difficulties 
related to the formulation of an accurate relativistic 
Hartree-Fock technique, since we shall deal with the 
relativistic correction in the following section of this paper. 

We restrict the discussion to  the atomic elements with 
2 from 37 to 103 since for elements 2 = 2 to 2 = 36 we 
have available Hartree-Fock solutions. Let us assume 
that we are interested in a systematic collection of the 
Hartree-Fock functions for the remaining elements. 

As  is known, the time-consuming part in atomic com- 
putations made by the Hartree-Fock  method are in the 
optimization of the orbital exponents‘  of the basis set. 
The slow variation of the inner-shell orbital exponents 
with  successive ionizations, and  the possibility of interpola- 
tion,  should be the  two main criteria for  the construction 
of a  “control program”. This program  should auto- 
matically (a) establish the optimal order of the states to 
be computed, (b) optimize only those orbital exponents 
which are needed and decide the order of the optimization 
and (c) interpolate data  and automatically create  inputs 
for new  cases to be computed. For additional comments 3 
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on this point, we  will refer to some recent work where 
the above suggestion has been analyzed in more detail. 

In addition,  it might be useful to consider in advance 
(a) whether or not one  should proceed with the analytical 
Hartree-Fock  method  or whether it is useful to compute 
numerical Hartree-Fock functions (which can be expressed 
later as linear combinations of a basis set of functions) in 
view  of the cost involved in the optimization of the orbital 
exponents of the basis set, and (b) whether it is possible 
to retain sufficient accuracy in  the calculation, especially 
in the  total energy. (It is noted in this regard that ten-figure 
accuracy is needed in  the very heavy elements if one 
wishes to have the  total energy accurate to the  order of 
a few hundredths of an eV.) 

In  the supplement to this paper7 we have extensively 
reported on  the Hartree-Fock technique, the main em- 
phasis being on the  atomic  problem;  the  situation  for  the 
molecular systems is quite similar from a conceptual 
standpoint. This is true because (a) both in atoms and 
molecules one can express the orbitals as linear combina- 
tions of a suitable basis set of  functions: and (b) the 
Hartree-Fock  equations are formally identical for the 
atomic and molecular cases. 

However, from the computational  point of  view, there 
are differences because the matrix elements in the molecular 
cases involve more than one center; in the  atomic case, 
of course, only one center is needed. 

For molecular cases the main difficulty arises in the 
solution of matrix elements of the type 

where u, b, c ,  d may wholly or in part be different centers 
(atoms), xi is an analytical function centered on  the 
ith center, 1 and 2 refer to electrons 1 and 2. The above 
integral is a two-electron, in general four-center matrix 
element where the centers can be arbitrarily  arranged in 
space. The  solution of the problem is further complicated 
by two prerequisites: (a) the integrals must be solved in 
an extremely short time, in order to obtain a Hartree-Fock 
molecular function in a reasonable amount of computer 
time and (b) the integral should be computed with high 

Table 1 Number of two-electron  integrals  in  typical  compu- 
tation (Slater set)  

Slater Number of IBM 7094 
System orbitals basis integrals time  (hrs) 

Si 7(s), 5(p) 1.8 X lo3 - .os 
co 18(u), 8(7r) 1.7 X lo4 - .5 
coz 27(u), 12(7r) 1.0 X 105 "3.5 
GNz 36(u), 16(?r) 2.5 X 105 "8 .O 
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accuracy. The simultaneous satisfaction of the above 
two prerequisites is not a trivial problem; indeed it is 
one of the main difficulties in quantum-mechanical 
computations  for molecular systems. 

In order to demonstrate the reason for the first pre- 
requisite we provide the data  in Table 1, where we have 
indicated how many two-electron integrals must be 
computed in order to obtain a Hartree-Fock  solution  for 
the following systems: Si(atom), CO, CO,, C,N, (linear 
molecules). The assumptions are made that  the basis set 
consists of Slater-type orbitals: (the size of the basis set 
is  given in the table), and we have assumed the CmV 
symmetry for the system2 (except for the Si atom). The 
total estimated time  for the computation is based on 
previous experience and is given for the IBM 7094 com- 
puter." 

Several techniques have been put  forward in the last 
decade for the solution of these integrals." It is noted that 
the interest is not in computing a single integral at a time 
but  rather in computation of large numbers of integrals. 

In  the following we shall summarize A. D. McLean's 
method12 for  computation of integrals between Slater-type 
orbitals. This  method  has been used extensively in linear 
molecules and is now being extended by A. D. McLean 
and M. Yoshimine for molecules of arbitrary geometry. 
The analysis which is given here is not yet available in 
the  literature,  but has been reported at several meetings. 
I shall follow closely the analysis reported by McLean at 
the Symposium on Molecular Structure and Spectroscopy 
at Columbus, Ohio,  June 1958. 

The  computation  for the general four-center integral 
can be usefully divided into two stages, first the integration 
over the  coordinates of electron 1, and second the integra- 
tion over the  coordinates of electron 2. 

Integration over electron 1 coordinates 

The result of this integration, because of the r l Z  in the 
integrand, will be a function of the coordinates of electron 
2, and in fact will be the potential felt by electron 2 due to 
the average field of electron 1. 

There are two possible types of potential, depending on 
whether a and b refer to the  same nuclei or  not, giving 
rise to a one-center (spherical) or two-center (spheroidal) 
potential. 

The radial part of the one-center potential is evaluated 
in terms of the simple functions AX(x)  and ex(x)  where 
x = (la + {@ ra2 .  The quantities la and {L are the two 
orbital exponents involved and 

X k  

A,(x) = X! x-x-le-z 5 
k = o  k !  



The angular  part of the one-center potential is a linear 
combination of spherical harmonics with nucleus a as  the 
center. 

The two-center potential V is evaluated in terms of 
spheroidal coordinates .$ and q with a and b as foci from 
the formula 

v = c ~ ~ ~ ' ( q , ) e ~ ~ ~ ' ( 2 ~  + I)[([ - I r n l ) ! ]  
CC 

Z = l m l  

. [ ( I  + Iml>!l-l[P1"l(.$*)kl"'(.$,) + Q!m1(.$2)k;1'n1(.$*)1, 

(4) 

where C is a constant depending on  the orbitals involved 
and  the internuclear distance m = -ma + mb ; ma and 
mb are  the axial quantum numbers of x. and x b ;  Pim1 and 
Q;"' are  the associated Jigendre functions of first and 
second kinds 

k/"l(.$,) = / dxeaz(x2 - l)""'Q~"'(x) 
m 

E .  

7 . i  

The wni are numerical coefficients arising from the expan- 
sion of the orbital  product in terms of the  spheroidal 
coordinates. These are finite summations. The  quantities a 
and /3 are defined  by 

a = (la + l b ) R u 6 / 2  ( 8) 

B = (la - . r b ) R a 6 / 2 .  (9) 

The most efficient  way of computing the potential is by 
using an equal-spacing type of integration  formula  for 
computing kim'( t2)  and k{'m'( .$ .J .  

Integration over electron 2 coordinates 

For a linear configuration of nuclei, the 4 integration can 
be done very simply, and in the current  method the 
integrations over the other two coordinates are done 
numerically. Gaussian-type integration formulas have been 
found very useful in this regard. 

The method  has been tested for linear molecules. 
However, little has been done  on the case where the 
nuclei are not in a linear configuration. From recent work 
by  A. D. McLean and M. Yoshimine it seems that this 
problem can be solved with reasonable speed. 

The  advantage of McLean's analysis is  in its complete 
generality, where no restrictions are imposed on  the 
quantum numbers. It is known that  the method works 
with high speed and accuracy. Indeed, the large fraction 
of accurate functions for polyatomic molecules available 
today in the  literature  has been obtained with the McLean 
method. Many alternatives to the McLean many-center 
integral techniques have been proposed in the literature:' 
but we shall not deal with them since these have not been 
tested sufficiently in complex molecular computations. 
In this respect, it is noted that  for this type of numerical 
application a given analysis can be proven convenient 
only after the complete coding and testing is done. The 
reason is in the speed requirement. For example, the time 
factors  alone will decide whether it is convenient to replace 
the elegance of an analytical expansion in  an integration 
by the convenience of a direct numerical integration. 

In  the search for practical methods for solving the 
many-center-integral problem a different technique should 
be mentioned, i.e., the one which  uses a Gaussian basis set 
instead of a Slater-type basis set. The suggestion of using 
Gaussian orbitals goes back to  the original work of 
Boys,13 and has been exploited almost entirely by  Boys and 
his  coworker^.'^ After many years it is still difficult t o  
assess the relative merits of the two  integration techniques. 
The main difficulty arises from the fact that  no exhaustive 
attempt has been made in order to compare the two 
techniques. For this  reason, Huzinaga has recently under- 
taken  the first systematic cornparis~n.'~  The obvious 
starting  point is the atomic systems. It is noted that  the 
problem is purely one of deciding between two different 
methods of integration. The advantage of Gaussian 
functions is that  the product of two  Gaussians G, and Gb, 
centered on a and 6, is a new Gaussian  function G ,  centered 
on e. Therefore the four-center problem (G,G, I G,G,) 
reduces to the two-center problem (G,  I Gf). The  latter 
integral  can be computed up to a few hundred times faster 
than  the integral (xaxb I x c x d )  with a Slater basis set. 
On the other hand, one needs a much larger basis set in 
order to obtain with equal accuracy a given energy, say 
the Hartree-Fock energy, by using Gaussian as compared 
with Slater-type orbitals. The need of a larger basis set 
offsets part or nearly all of the speed advantages. In order 
to be more  quantitative about this  point,  let us first 
consider Huzinaga's results for  atomic  computations. 
In Table 2 the size of the  Gaussian basis set is given for 
some  computations on first row atoms. The computed 
energy is compared with two different sizes  of basis sets 
for Slater type orbitals  obtained by the author.'5v16 

Clearly, one obtains better energies with a limited Slater 
basis set (set A15) than with a considerably larger Gaussian 
set. Indeed with the extended Gaussian basis set used, 
one  has by no means reached the energy obtained with 
the Slater set B.16 Since the set B gives  very  closely a 5 
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Table 2 Comparison of Gaussian and Slater basis  sets (En-  
ergies in a.u.) 

Element Gaussian* Slater (set A)** Slater (set B)*** 
and state 9(s), 5(p )  4(s), 2 ( P )  5 M ,  4(P) 

- 7.432279 
-14.51201 
-24.52113 
- 31.68525 
- 54.39534 
- 14.80029 
- 14.12010 
-14.60159 
-99.39559 
- 128.5261 

-1.432118 
-14.57237 
-24.52189 
- 37.68668 
- 54.39181 
- 14.80476 ... 

-99.40116 
- 128.53480 

... 

- 1.432126 
- 14.51301 
- 24.52905 
- 31.68858 
- 54.40090 
-14.80935 
- 14.12920 
-14.61094 
- 99.40921 
- 128.5470 

* Huzinaga  set (Ref. 14) .  
**Double { set  (Ref. 15) .  

*** Hartree-Fock  set (Ref. 16). 

Table 3 Number of two-election  integrals  in  typical  compu- 
tations (Gaussian set )  

System  Gaussian  basis  Number of integrals 

Si 15(s), 9 ( P )  1.4 X 104 
co 30(u), 12(r) 2.3 X 105 
coz 45(u), 1 8 ( ~ )  1.1 x 106 
CzN2 w U ) ,  24(*) 3 . 6  X lo6 

Hartree-Fock energy, one  can be disappointed by the 
performance of the Gaussian basis. On  the other  hand, 
if we are interested in spectral differences, the results with 
Gaussian  orbitals  are as good as  the results with Slater 
orbitals. Indeed  the  Gaussian set gives the energy differ- 
ences O(3P) - OCD) and O(3P) - OCS) as 0.080187 am. 
and 0.198699  a.u.  which compares well with the equivalent 
values of  0.080147 a.u. and 0.198415 a.u. for the Hartree- 
Fock functions (set B). In addition,  it  should be pointed 
out emphatically that the correct results are 0.072283 a.u. 
and 0.153949 a.u., respectively, and therefore the differ- 
ence between the Gaussian set and the Slater set is  of 
relatively little importance if we are interested in exact 
calculations. 

Let us proceed to molecular computations, and give 
the equivalent of Table 1, this  time using a Gaussian 
basis set instead of a Slater basis set. Again we wish to 
obtain  Hartree-Fock energies for the systems Si, CO,  CO, 
and C,N, (Table 3). The examples given are  not yet com- 
puted and are presented only as a comparison. The basis 
set selected for this sample computation likely  will not 
give a good Hartree-Fock wave-function whereas the best 

6 basis set in Table 1 will. On the other  hand,  the  Gaussian 

set will  give an energy which  will  differ from the Hartree- 
Fock energy by no more than  about one eV for  the above 
molecules. 

Comparison between Tables 1 and 3 indicates that  the 
number of integrals needed in a Gaussian set is certainly 
much larger than the number of integrals needed in 
comparable Slater basis sets, and  that Gaussian integrals 
can be computed up  to 100 times faster than  the Slater 
integrals. On  the  other  hand, the Hartree-Fock matrix 
dimension in the  Gaussian case is larger than  the matrix 
dimension for a Slater basis and  thus requires additional 
computer time. The  net conclusion of these conflicting 
factors is that probably the two techniques are  comparable, 
and it will  be  difficult to positively state which method is 
better until actual program performance can be compared. 
I feel at present, however, that  the use of Gaussian orbitals 
for many-center integrals might offer some advantage over 
the Slater set. One could consider the possibility of a 
mixed set where Slater orbitals of 1s type are used with 
Gaussian sets. This possibility, if practical, would eliminate 
the  poor behavior of the 1s  Gaussian functions at the 
origin. It is noted that this behavior is the reason for  the 
unsatisfactory performance (Table 2)  of the  Gaussian 
functions for  the  atomic systems. 

With molecular problems of the size we have been 
mentioning, and especially for systems much larger than 
GN2,  one should look for new methods within the 
Hartree-Fock technique. Up  to now one constructs  the 
Hartree-Fock  orbitals by obtaining the best linear com- 
bination of a given basis set. For large molecules  (which 
require very large basis sets) it might be convenient to 
work with larger blocks than  the initial basis set of Gaus- 
sian  or Slater functions, for example, with Hartree-Fock 
atomic orbitals. This will reduce the computational 
difficulty in the solution of the Hartree-Fock  equation. 
As an alternative, one could use Hartree-Fock  orbitals 
for the inner shells and Slater (or  Gaussian)  orbitals  for 
the valence electrons. This might be useful not only for 
molecular cases but also  for atoms with many electrons 
(say more than 80 electrons). 

For large systems one might be compelled to resort to a 
much more  drastic  departure  from the present standard 
technique. Let us consider, for example, the porphyrin 
system (see Fig. 1). In order to simplify the problem, one 
could consider the pyrrole group  as  starting blocks. In this 
case, the porphyrin symmetry orbitals will be a linear 
combination of the pyrrole radical symmetry orbitals, and 
the self-consistent technique will optimize the expansion 
coefficients of the basis set of pyrrole symmetry orbitals. 
This is equivalent t o  introducing a perturbation (or 
polarization) on  the original pyrrole symmetry 0rbita1s.l~ 
In  turn  the pyrrole symmetry orbitals can be obtained by 
using a symmetry-adapted set where the basis is not  in 
terms of Slater orbitals, but of Hartree-Fock  orbitals. 
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Figure 1 The pyrrole molecule is part of the metal-porphyrin 
and is  indicated  inside the area limited by dashed  lines.  Key: 
0 hydrogen atoms, carbon atoms, A nitrogen  atoms, 

a metal atom of the I1 or 111 period. 

The proposal essentially is to do a repetitive set of 
self-consistent computations.  First for  the  atoms  as  such; 
this will freeze the coefficient for  the Slater-type  orbitals 
into  atomic Hartree-Fock orbitals. Then for  the symmetry 
adapted orbitals of the pyrrole group; this will freeze the 
linear combination of the Hartree-Fock  orbitals into  the 
pyrrole radical  symmetry-adapted orbitals. Finally, the 
porphyrin  symmetry-adapted orbital will be obtained by 
the  SCF technique as  an expansion of pyrrole orbitals. 
Schematically, if (pp indicates a porphyrin  orbital, (pp a 
pyrrole orbital, pa a  Hartree-Fock orbital  for  atom A,  ‘pt 
a  Slater  (or  Gaussian)  type orbital  on  atom A,  we shall have 

pA = C ~ V ;  First SCF cycle for  atoms 

p p  = dApA Second SCF cycle for  groups of atoms 

qp = e,pP + X’ dLpL Third  SCF cycle for the 
A 

P A whole system, 

where c,  d, e and d’ are  the expansion coefficient (with 
proper symmetry), and (PA‘ represent  those additional 
atoms  in  the  porphyrin molecule not accounted for  in 
the pyrrole molecules. 

Since much  time is required for computing the integrals 
in a macro-molecular computation, we shall  mention two 
possibilities that should  reduce the  amount of computer 
time. 

First, many four-center integrals have exceedingly small 

values, such that two- to three-figure accuracy is all that 
is needed. Most of the past  programs  compute all  the 
integrals, small or large, with the same  method. It seems 
that this  could amount to a waste of computer  time and 
one should  test, by some  approximation (for example the 
Mulliken approximation) the value of the integral before- 
hand,  and compute it accurately only if its value exceeds 
a  certain  threshold, whereas the integral would be com- 
puted  approximately if the value is below the  same 
threshold. Alternatively, if electron 1 is located on centers 
far removed from  the center of electron 2, then we can use 
the dipole-dipole approximation in  the l/rlz expansion, 
since then r, << R and r, << R where R is the distance 
between the  two centers for electrons 1 and 2, and r,, r, 
are  the distances of electrons 1 and 2 from their origin. 
The decision on when to shift from  the usual  calculation 
to the dipole-dipole approximation  can  be left up to the 
computer, which is provided with simple testing rules 
involving the value of R and  the values of (rl ) and (r2) .  

Second, for large molecules (or even for  atoms with 
many electrons), it seems more likely that  one could do 
a  set of computations on  the same system in different 
excited states  or various geometrical configurations. For 
example, one could  be  interested  in several electronic 
states or  in analogous systems where new atoms or 
chemical groups are  added  or removed from  the original 
system. In this case it seems to be wasteful to compute 
repeatedly for each  individual  computation a large 
number of integrals, which could and should be saved 
from  one computation to the next. 

The practicality of most of the suggestions put forward 
in this section has  not yet been tested. On  the other hand, 
it seems to us that  the “traditional” setup of past  programs 
should not be merely extended for large molecules, but 
the above  points  should be carefully considered, unless 
one wishes to perform  computations at a very exorbitant 
cost. 

Atomic Hartree-Fock computations 

Up  to now the first three periods of the periodic table 
have been carefully studied by the Hartree-Fock tech- 
niques. Results on  the positive, negative and  neutral 
elements from  He to Kr  are available in the  literat~re.’~’’~ 
The collection of the functions  computed at  our  laboratory 
is given in  the supplement to this paper.? It has given 
reliable functions,  ionization  potentials,  electron affinities, 
screening constants:’ and basis sets very useful for molec- 
ular and solid state calculations. From a  theoretical point 
of view, the main  value of this work  has been in providing 
a  large series of accurate data on atomic correlation 
energies, totally  absent from  the available  literature. For a 
detailed analysis of the  atomic  Hartree-Fock  method we 
refer to the introduction to  the supplement of this paper.? 7 
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Molecular Hartree-Fock  computations 

Most of the molecular computations  obtained up to date 
have been performed as "test" computations.  There is a 
considerable number of functions which have been done 
in  the self-consistent-field framework,  but have not 
reached the Hartree-Fock limit. For a complete bibli- 
ography we refer t o  Allen and Karo's review  paper" and 
to the Slater volume on molecular structure.'l Recently, 
we have reached the stage of mass production of Hartree- 
Fock diatomic functions; this work, done at  the  Labora- 
tory of Molecular Structure and Spectroscopy (University 
of Chicago), is not yet published, but preliminary infor- 
mation  can be obtained from their technical reports." 

Previous computations which obtained an approximate 
Hartree-Fock solution23 for a few diatomic molecules have 
clearly demonstrated that: (a) the computed electronic 
charge distribution well represents the experimental electric 
multiple moments, (b) the computed equilibrium inter- 
nuclear distances are within a few percent of the ex- 
perimental distances, (c) the computed vibrational and 
rotational constants are accurate to approximately 15%, 
and (d) the directly computed binding energies are generally 
very poor (see the discussion on  the molecular correlation 
energy at  the end of this paper). The new data, now 
available from Chicago, confirm the above conclusions. 

For molecular systems with more than two  atoms, the 
progress has been limited by the difficulty in the many- 
center integral computations, and by the lack of sufficiently 
fast  and large computers. In view  of the progress made in 
computer technology in the  last few years, it is now feasible 
to consider computations at the  Hartree-Fock level for 
systems much larger than diatomic molecules. The greatest 
remaining difficulty is in  the treatment of the correlation 
en erg^.'^ This will  be  discussed later in the paper. 

The relativistic correction 

For the He  atom (2 = 2 )  the relativistic energy is 
smaller than  the Hartree-Fock energy, but for  the  Zn 
atom (2 = 30) is only lo-' smaller than  the Hartree-Fock 
energy. This is due to  the well known high-2 dependency 
of the relativistic effects. Therefore, for high 2 the rela- 
tivistic correction cannot be any longer considered as a 
simple perturbation and L . S  coupling is no longer a 
satisfactory quantization scheme for the system. All this 
is known, but there are still several problems of theoretical 
nature. The essential point is that,  at present, the many- 
electron relativistic Hamiltonian is only partially known 
and very  few numerical computations have been made to 
verify the accuracy of the approximated Hamiltonian 
proposed. This seems to be the main difficulty that lies 
ahead in  the computation of systems containing heavy 
elements. In the following we shall present some results 
of computed relativistic energies. Since we have considered 

8 low-Z cases, the perturbation technique is adequate. 
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The relativistic energy has been  defined in the literature 
in a number of different ways and for  the  purpose of this 
paper the formulation and notation given  by Bethe and 
SalpeterZ5 of the relativistic energy of a two-electron system 
based on  the Breit equation is extended to the N-electron 
system. The Breit equation describes the  interaction of 
two relativistic electrons with each other and with an 
external electromagnetic field. The Hamiltonian of this 
system can be expanded in powers of (Za) (Pauli's ap- 
proximation, where 2 is the nuclear charge and a is the 
fine structure  constant) and consists of both one-particle 
and two-particle operators. We assume that  the Hamil- 
tonian for  an N-electron system can be obtained by 
summing all one-particle operators over all N electrons 
and summing all two-particle operators over all pairs of 
electrons in the system. A great simplification occurs for 
closed-shell atomic systems. Up  to and including the 
order of a', the relativistic correction to the  Hamiltonian 
for such a system depends on three  terms: 

where 

Hl = P:, 
-1 

and 

Here e is the  absolute value of the electronic charge. 
The Hartree-Fock orbitals are taken in the form of 

where Ui(x)'s are  the single-particle wave functions of 
the  type 

7 is the spin wave function a or 0. The value i runs 
from 1 to N = the number of electrons. Y , ,  = normalized 
spherical harmonics and fnl(r)/r is the radial part of the 
exponential function in the  form proposed by Slater.26 
The coefficient  of the expansion of the Slater-type basis 
set, Ci,ir is determined by the self-consistent field tech- 
nique. 

If we define 



Table 4 Relativistic  energies ( in  a.u.) for closed-shell  systems 

He -0.oooO70 -0.000070  -2.8616801 
Be -0.002033 -0.000165  -0.002198  -14.573021 
Ne -0.106628  -0.013845  -0.010737  -0.131210  -128.54701 

Ar "1.220578  -0.235288  -0.257411  -0.025311 - 1.760981 - 526.81730 
Ca -1.884626  -0.380956  -0.428731  -0.051217  -0.051264  -0.002907  -2.798701  -676.75801 
Zn -9.900744  -2.284792  -2.802329  -0.368432  -0.447182  -0.015103  -0.100389 - 15.918970  -1777.8471 

Mg -0.228050  -0.034385  -0.031252  -0.001363  -0.295049 - 199.61458 

and 

where f' and f" are  the first and second derivatives of 
fnr(r) then  one  can  show that 

E, = $ (21 f l ) [ I 1 ( t ~ I )  - 2l(1 + l)I ,(nl)  
nl + 1 7 1  + 1)214(n01 (18) 

and 

E4 -k E5 = $ I ~ ( n 0 )  + $ (21 + ~)Iz(~Z) (19) 

and, in general, 

Ere, = E, + E4 + E5 = -$ & ~ < I $ ( n l ) ~  

n "1 1 

n . 1 . i  

i = 1 ,  2,  3, 4 ,  5 .  (20) 

The coefficients dnl, that  are needed for the computation 
of the relativistic energies of  closed shell states of 2, 4, 10, 
12, and 18 electron systems are available from  Hartmann 
and  Clemer~ti.'~ 

The  error in the computed relativistic energy can  be 
estimated by computing the next higher-order correction, 
that is, the  Lamb shift, of orders Z'a3 and Za3 In CY. For a 
two-electron atom in its  ground  state, the lowest order 
Lamb shift is  given in a.u. byz8 

,' + ,', = 2- L Y ~ ( B ( Y , )  + B(rz))no 
4 2  

- - L Y ' ( ~ ( Y ~ ~ ) ) ~ ,  In (I/CU) a.u., (21) 
14 
3 

where k ,  is the average excitation energy. 
Estimates of the  Lamb shift can be obtained by  using28 

k ,  = 80.5 Ry for Z = 2 ,  

= 191.6Ry for Z = 3 ,  

= 19.772' for Z 2 4, (22) 

and 

(6(r12))o ,  = - 1 - " + -7 . z31 8n- .877 ' Z 3  * '  89J 
The relativistic energy corrections for the Hartree-Fock 

functions for He, Be, Ne, Mg, and Ar atoms  are presented 
in Table 4. The relativistic energy corrections are computed 
for each subshell of electrons E(ls), E@), etc., and then 
summed to give the  total relativistic energy Ere,. 

The lowest order  Lamb shifts are computed, using 
Eqs. (23) and (24), for the two-electron isoelectronic series 
and tabulated in Table 5. 

Because of the quasiadditivity of the E(nl) contributions 
to the relativistic energy (EQ. 20) it is not difficult to 
improve the computed values of the relativistic energy 
in the following manner:  Instead of using the computed 
values of E(1s) from  the Hartree-Fock functions, one 
could use the E(1s) obtained  from the exact function of 
Pekeris" and  add  to it the E(nl) for n 2 1 from our 
computations. Pekeris' relativistic energies are available 
up  to Z = 10 and have been extrapolated by Scherr et al?' 
to Z = 20. These values have been tabulated in Table 6 
along with our computed values. The difference  between 
our values for E(1s) and those of Pekeris and Scherr are 
tabulated in the  third column of the  table and can  then 
be used as a correction to all  the terms in Table 4. It 
should be noted that if this correction is used, the results 
for 4, 10, 12, and 18 electron systems will include Lamb- 
shift corrections for  the 1s electrons, but  not for the other 
electrons. This is justified because the Lamb-shift correc- 
tions are small compared with the main relativistic 9 
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Tabie 5 Lowest-order  Lamb shifts for two-electron atoms 
(In U . U . )  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0 .  oooo22 19 
0.000106 20 
0.000323 21 
0.000740 22 
0.001439 23 
0.002500 24 
0.004000 25 
0.006015 26 
0.008614 27 
0.011856 28 
0.015791 29 
0.0:0460 30 
0.025887 31 
0.032085 32 
0.039051 33 
0.046765 34 
0.055190 35 

0.064270 
0.073933 
0.084081 
0.094600 
0.105350 
0.116174 
0.126887 
0.137283 
0.147130 
0.156165 
0.164110 
0.170665 
0.175480 
0.178194 
0.178422 
0.175742 
0.169699 

Table 6 Relativistic  correction for a two-electron system 

Z a b A 

2 
3 

-0.oooO49 -0.oooO60 - 0 . m 1 1  
-0.000433 -0.000500 -0.oooO67 

4 -0.001767 "0.001878 
5 

"0.000111 
-0.004914 

6 
- 0.005092 -0.000178 

7 
-0.011086 -0.011345 - 0.000259 
-0.021807 -0.022166 -0.000359 

8 -0.038918 -0.039395 
9 

-0.000477 

10 
-0.064576 -0.065202 -0.000626 

11 
-0.101276 -0.102075 - 0.000799 

12 
-0.151820 -0.152847 -0.001027 

13 
-0.219385 - 0.220655 -0.001270 

14 
-0.307451  -0.308996 -0.001545 

15 
- 0.419797 -0.421671 -0.001874 

16 
-0.560656 -0.562833 "0.002177 

17 
-0.734444 -0.736965 "0.002521 

18 
- 0.946076 -0,948891 -0.002815 

19 
- 1.200515 - 1.203750 "0.003235 

20 
- 1.503578 - 1.507060 "0.003482 
- 1.860704 - 1.864620 -0.003916 

5 Our results  including  E(re1) f E L ,  I + EI ,  , a  * 
b Pekeris'  relativistic  energies up to Z = 10 and  their  extrapolations 

by Scherr  et al. for Z > 10. 

contribution, (compare Tables 4 and 5) ,  and  the main 
contribution to the  Lamb shifts  should come from the 1s 
electrons. Table 6 indicates that the estimates of Scherr 
et al. agree with our  theoretical  computations within 1% 
except for low Z,  where the discrepancy is larger. 

10 The above analysis has been made by direct extension 

of the Bethe and Salpeter two-electron Hamiltonian. 
This is certainly an oversimplification of the problem. 
Unfortunately, a "correct" Hamiltonian  for N-particle 
systems in a central field  is not available. For additional 
references on the relativistic correction we refer to the 
work of Hirschfelder et al.P1 Slater,2' Brown:' Breit;?3 
and Grant.34 

I should add  that  the quantum-chemical literature on 
the relativistic correction is practically nonexistent, despite 
the importance of the correction in those molecular systems 
with heavy atoms. 

The  correlation energy 

8 Atomic correlation energy from spectral data 

The correlation energy is commonly defined as  the differ- 
ence between the exact nonrelativistic energy and  the 
Hartree-Fock energ~. '~ ' '~  

It is worth while to note  that there are several Hartree- 
Fock schemesp5 each leading to a somewhat different 
energy and, consequently, to different values of the 
correlation energy. For this reason we state from the 
beginning that in the following, when we refer to the 
Hartree-Fock energy, we refer to the best energy one can 
obtain by the  analytical self-consistent field method  as 
put  forward by Roothaan.' The  reason  for  this choice is 
simply that by now this  method  has been  used to obtain 
many atomic functions and energies and a large number 
of molecular functions and energies. 

From a conceptual point of  view one might prefer to 
define the  correlation energy as the difference  between 
the exact nonrelativistic energy and  the  Hartree energy, 
since the Hartree-Fock  method presents an unbalanced 
situation when we look at  the way in which electrons 
with like spins and those with different spins are con- 
sidered?' The  Hartree-Fock  method partially correlates 
electrons with the same spins. This  correlation present in 
the Hartree-Fock  method will be hereafter referred to as 
precorrelation, where we  define the precorrelation energy 
as  the difference  between the Hartree-Fock energy and 
the  Hartree energy. This energy difference is a correlation 
energy, but in view  of the accepted definition of correlation, 
we might say that it is a correlation energy ante literam. 

We note that  the emphasis on  the nonrelativistic exact 
energy in  the definition of the correlation energy has 
mainly a practical value. The relativistic energy itself can 
be partitioned into a correlated and  an uncorrelated 
relativistic energy. 

It is well known that there  are, in principle, several 
methods available in order to obtain correlated wave 

At present it seems that a common 
characteristic of these methods is that they are  not easily 
applicable and  are often outside of today's computational 
capabilities. For these reasons, it is  of interest t o  give 

functions.23. 35. 36, 37 
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estimates of the  correlation energy for  the isoelectronic 
series of atomic systems with 2 to 22 electrons. 

Since electrons with parallel spins are somewhat 
correlated in the Hartree-Fock method and since parallel 
spins occur to a varying extent in the low energy states 
of atoms,  one can expect that  the correlation energy in 
the  ground  states of neutral  atoms is not a linear function 
of the number of electrons. The Hartree-Fock method 
uses antisymmetrized wave functions; this is done to 
satisfy the  Pauli principle, and brings about  the exchange 
energy which  is the origin of the precorrelation energy. 
Electrons with the same spin find  themselves encircled 
by a  Fermi  hole which prevents electrons with the same 
spin from  approaching each other. 

We can expect a large correlation energy for pairs of 
electrons of the same shell (intrashell correlation), a 
smaller correlation energy between electrons of different 
shells (intershell correlation), and  a quasi-constancy for 
the  correlation of given types of pairs of electrons with 
opposite spin. 

With the Froma$' and  Linderberg-Sh~ll~~ work in 
mind, one will predict that the  correlation energy of the 
ground-state first-row atoms will behave as follows: 
There is a given correlation for the pair of electrons in 
the He atom. For the Be atom, the correlation is about 
twice that of helium. Lithium will have an intermediate 
correlation energy between He and Be. Since the extra 
electron (compared with He) is a 2s electron, which has 
a maximum radial probability far  from  the 1s electrons, 
its correlation with the 1s electrons is certainly small. 
In fact, from the Linderberg and S h ~ l l ~ ~  values, we know 
it to be  very small (the intershell correlation for 1s-2s 
is much smaIIer than for the 1s (or 2s) intrashell correla- 
tion). The correlation energy of B, C, and N in their 
ground  states can be estimated by keeping in mind that 
the 2p electrons have all parallel spins and consequently 
the precorrelation existing in the Hartree-Fock energy 
will take care of most of the correlation for  the 2p electrons. 
There will certainly be some intershell correlation of 
1s-2p type and 2s-2p type. Since the 2s electrons are in 
the same spatial neighborhood as the 2p electrons, one is 
tempted to assume that (1s-2p) intershell correlation 
( ( ( 2 s - 2 ~ )  intershell correlation. 

The correlation energy for 0, F,  and Ne  should increase 
sharply. With those  atoms we build one, two, and respec- 
tively, three  pairs of unparallel spin electrons in the same 
shell (the 2p shell). The  sharp increase is due to the lack 
of precorrelation for those newly added electrons. 

It is fairly simple to be more quantitative about all 
the  above reasoning. Accurate Hartree-Fock energies are 
available." The necessary relativistic energies were 
available from  our work?  and the total energy can be 
obtained experimentally by adding the ionization potentials 
from Moore.*' Then the correlation energy is simply the 

total energy minus the  Hartree-Fock energy minus the 
relativistic energy. 

With these data we obtain an accurate estimate of the 
correlation energy for 2 to 10 electrons in atoms and in 
positive ions with Z from 2 to 10. The results are con- 
densed into a diagram (Fig. 1) where the  correlation 
energy is plotted against Z. 

This diagram, we feel, reveals the essential features 
of the correlation energy problems for atomic systems 
in the L - S  coupling. In order to compute  the  correlation 
energy of excited states we again  make use  of Moore's 
tables or of an extrapolation of the data of Moore by 
means of a power expansion in Z,  and we can calculate 
the total energies of excited states. Thus, we have the 
total energy, E(TOT), the relativistic energy, E(REL), 
and  the Hartree-Fock energy, E(HF), for the ground and 
the excited states. We note that  the Hartree-Fock energy 
is computed in the  approximation of infinite nuclear mass. 
Consequently, the Hartree-Fock energies must be mass 
corrected. (See for example, Bethe and Salpeter, Reference 
25, page 253.) The correlation energy is simply E(C0R) = 
E(T0T) - E(REL) - E(HF). A sample of  the results 
we have obtained is given in Table 7 (in atomic  units; 
one  atomic  unit equals 27.2097 eV). The  Hartree-Fock 
energies are computed with seven significant figures and 
the relativistic and  the  total energies are computed with 
the same number of figures. In Table 7 the correlation is 
given to the number of figures we feel are correct (plus one 
in order not to introduce roundoff  error). One can notice 
that  the number of significant figures we give varies from 
four to two. This is done in view  of the uncertainty in 
the relativistic energy and  the extrapolations of the  total 
energy. 

In Figure 2 we have also given the correlation energy 
for excited states of  the ground-state configuration for 
neutral  atoms. The correlation energy for excited states 
of the positive ions was not indicated, to avoid confusion 
on  the diagram. The dot-dash lines connect states with 
the same multiplicity and  total angular momentum. 
Linear dependency on the  number of electrons for the 
correlation energy of 'S(Be), 'S(Ne), excited 'S(C), and 
' S ( 0 )  was obtained.  The same is true for the 'P(B), 'P(F), 
and excited 'P(N). 

There are cases in which the correlation is directly 
known from computations of the Hartree-Fock and 
correlated functions. For  the two-electron cases, the  data 
of  Weis$l and those of  Pekeris"  give us accurate correla- 
tion energies up to Nes+.  The  computations by Weiss"' 
and Kelly42 of three- and four-electron systems up  to 
0"' and 04+, respectively, give us data for the correlation 
energies for three and four electrons. There are  no other 
data of comparable accuracy available. In Table 8 the 
Pekeris, Weiss and Kelly data for two, three and  four 
electrons are given. It is noted that for the three- and 11 
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Table 7 Experimental correlation energy for atomic isolectronic series with 2 to 22 electrons ( I n  u.u.) 

Z 2 - 'So 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-0.0421 
-0.0435 
-0.0443 
-0.0448 
-0.0451 
-0.0453 
-0.0455 
- 0.0456 
- 0.0457 
-0.0458 
- 0.0459 
- 0.0459 
-0.0460 
-0.0461 
-0.0461 
- 0.0462 
-0.0463 
-0.0463 
- 0.0463 
-0.046 
-0.046 
-0.047 
-0.047 
-0.047 
-0.047 
-0.047 
-0.047 
-0.047 
-0.047 

3 - 2SliZ 

-0.0453 
-0.0475 
-0.0489 
-0.0498 
- 0.0505 
-0.0510 
-0.0513 
-0.0516 
-0.0519 
-0.0521 
-0.0523 
-0.0524 
-0.0525 
-0.0527 
-0.0528 
-0.0529 
-0.0529 
-0.0530 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 
-0.053 

6 - 3P0 7 - 4 S ~ / ~  8 - 3P2 

-0.0944 
-0. I123 
-0.1268 
-0.1412 
-0.1551 
-0.1684 
-0.1814 
-0.1941 
- 0.2066 
-0.2190 
-0.2313 
-0.2435 
-0.2556 
-0.2677 
-0.2797 
-0.2917 
- 0.3037 
-0.316 
-0.327 
-0.339 
-0.351 
-0.363 
-0.375 
-0.387 
-0.398 
-0.41 1 
-0.423 

-0.125 
-0.139 
-0.151 
-0.162 
-0.173 
-0.182 
-0.191 
-0.200 
-0.208 
-0.216 
-0.225 
-0.232 
-0.240 
-0.248 
-0.2555 
-0.263 
-0.270 
-0.278 
-0.285 
-0.293 
-0.300 
-0.31 
-0.32 
-0.32 
-0.33 
-0.34 

-0.158 
-0.167 
-0.175 
-0.182 
-0.188 
-0.193 
-0.199 
-0.204 
-0.209 
-0.214 
-0.218 
-0.222 
-0.227 
-0.231 
-0.235 
-0.24 
-0.24 
-0.25 
-0.25 
-0.25 
-0.26 
-0.26 
-0.26 
-0.27 
-0.27 

-0.188 
-0.193 
-0.197 
-0.200 
-0.203 
-0.205 
-0.207 
-0.209 
-0.211 
-0.213 
-0.214 
-0.215 
-0.217 
-0.218 
-0.22 
-0.22 
-0.22 
-0.22 
-0.22 
-0.23 
-0.23 
-0.23 
-0.23 
-0.24 

-0.258 
-0.260 
-0,267 
-0.274 
-0.279 
-0.2,85 
-0.291 
-0.296 
-0.301 
-0.305 
-0.309 
-0.313 
-0.317 
-0.32 
-0.32 
-0.33 
-0.33 
-0.34 
-0.34 
-0.34 
-0.35 
-0.35 
-0.35 

Z 9 - 2P 10 - 1s 11 - 2s 12 - ' S  13 - 'P 14 - 3P 15 - 4S 

9  -0.324 
10 -0.328 -0.393 
11 -0.336 -0.396 -0.403 
12 -0.344  -0.402  -0.411  -0.451 
13 -0.350 -0.409 -0.420 -0.464 -0.482 
14 -0.358 -0.417 -0.429 -0.482 -0.504  -0.522 
15  -0.366 -0.426 -0.438 -0.499 -0.523 -0.54 -0.561 

16 -0.60 
17 -0.71 
18 -0.79 
19 -0.82 
20 -0.84 
21 -0.85 
22 -0.86 

12 
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- - - - ISOELECTRONIC SERIES

GROUND STATE NEUTRAL ATOMS

--- EXCITED STATES ' .E, - RAL ATOMS

Figure 2 Correlation energy for the first row elements . The
dashed lines connect isoelectronic series in the ground state ;
the solid lines connect ground states of the first row neutral
elements; the dot-dashed lines connect excited states of neu-
tral elements with some symmetry. The ground states for the
neutral elements from He to Ne are 'S, =S, S, 2P, 3P, 4S, 3P,
'P and 'S, respectively .

four-electron cases the Weiss computations give only a
lower limit of the correlation energy since the exact
nonrelativistic energy was not fully obtained .

It is quite interesting to note that not only the Is 22s2
isoelectronic series has a strong Z dependency, but also
the 2p(n) isoelectronic series shows large Z dependency .
One notices that the Z dependency is pronounced in the
Be(S) series, and progressively less in B(2P), C(3P), and
N(4S) series . In the series from O(3P) to Ne('S) the de-
pendency is about constant. We note that Linderberg
and Shu1139 have discussed the Z dependency of the
1s22s2 configuration in terms of 2s, 2p near degeneracy .
We can comment on the excited states correlation

energies somewhat further than that done earlier . The
correlation energy for the multiplet components of a
given term is approximately the same . The difference in
correlation energy, for example, between B( 2P12 ) and
B( 2P312 ) is very small and within the error of the estimate .
For this reason no such data are reported .

For different states of the same electronic configuration
the correlation energy has the following characteristics .
First, the lowest correlation energy is for the state of
highest spin multiplicity. For example, in the 3P, 'D,
and 'S series beginning at C (or 0), E(COR . 3P) <
E(COR . 'D) and E(COR . 3P) < E(COR . 'S) . This is, as
mentioned previously at length, a consequence of the
spin precorrelation in the Hartree-Fock method . Second,
for states with the same spin multiplicity the correlation
energy is smaller for the states of highest angular momentum .

For example, E(COR . 'D) < E(COR. 'S) for the carbon
and the oxygen series, and E(COR. 2D) < E(COR . 2 P) for
the nitrogen series. Since states with the same spin multi-
plicity but different angular momenta do not have the
same correlation energy (for given Z and number of
electrons), one concludes that in the Hartree-Fock method
we have not only spin-related precorrelation but also
angular precorrelation. The angular precorrelation being
in the sense that the higher the angular momentum
(total angular momentum) the higher the angular pre-
correlation. This is quite interesting because it tells us
that we cannot obtain excitation energies of the correct
magnitude with the Hartree-Fock method even for states
of the same multiplicity. A simple explanation of the
differences of the correlation energies between states of
the same multiplicity but different total angular mo-
mentum is that the larger the angular momentum, the
more "preferential" is the electron's motion about the
nucleus .

•

	

The two-particle model

Up to now the results we have obtained for the correlation
energy in the first, 3 second;'` and third" row have indicated
a remarkably simple picture, where one can simply divide
the correlation energy into "strong" and "weak" pairs,
the former for intrashell electron pairs, the latter for
intershell electron pairs. In addition, for the first and
second row, the "weak pairs" have much smaller correla-
tion where the electrons in the pair have different principal
quantum numbers, for example, the is-2s pair correlation
is smaller than the 2s-2p correlation .
There seems to be evidence that the above simple

pairing model 4° is only the limit of a more complex situa-
tion, which we have called the complex pairing model.
For this we mean that the simple division between "strong"
and "weak" pairs is inadequate, that the "weak" inter-
actions increase not only in number (simply because

Table 8 Correlation energies from ab initio computations

` See Ref . 29 .
" See Ref. 41 .
"` See Ref . 42 . 13
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Case Pekeris* Case Weiss** Case Weiss**

He -0.0424 Li -0 .0444 Be -0.0869
Li+ -0.0453 Be+' -0 .0462 B+1 -0.1038
Be+ 2 -0.04427 B+ 2 -0 .0472 C+ 2 -0.1177
B+3 -0.04474 C+3 -0 .0479 N+3 -0 .1305
Ct4 -0.04506 N+4 -0.0483 0+4 -0.1424

N+5 -0.04529 O+5 -0 .0486 Kelly***
0+' -0.04546 Be -0 .92
F+7 -0.04558
Ne+3 -0.04570
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there are more electrons in the systems) but also in strength .
In other words, the new situation is that the correlation
energy to a first approximation is not the simple sum of
the "strong" pairs correlation, but, one should add to
this the contribution of the intershell correlation ; this
contribution is comparable in value to that of the "strong"
pairs . One reason for this behavior is that the n, 1, m, and s
quantum numbers (L-S coupling) do not describe ade-
quately the atomic system . If the atomic system under
examination is partially described by j-j coupling, then this
prevents assigning strong and weak pairs to the valence
electron configuration . This point can be simply stated in
the following way : "If a system is, for example, not a
pure singlet, but a mixture of singlet, triplet and quintet
states, then why consider the correlation as due entirely
to its singlet component? Further, if the system does not
possess a well-defined total orbital or spin angular mo-
mentum, what is the meaning of pairs based on the
assumption of a well-defined total orbital or spin angular
momentum?" A second reason is that the number of
subshells is more important, for example, in the third
group we have 4s, 4p, 4d and 4f degeneracy as compared
with only 2s and 2p, the case for the first period . These
two reasons affect the correlation energy picture in the
same way, namely, they emphasize the role of the "weak
pairs" of the "simple pair model" . We might say that the
larger the number of electrons, the more linear the cor-
relation behavior becomes with respect to the number of
all possible strong and weak pairs . This is tantamount to
saying that we see the emerging of a statistical picture
which is very likely the final limit of the complex pairing
model.

Let us examine, for example, the scandium atom 4" and
consider the correlation energy for the Sc( 2D), Sc+ (3F),
Sc+2(2D) and Sc+3('S), with corresponding configura-
tion	4S23d, 403d 2, 4s°3d' and 4s°3d° . The correlation
energy difference from Sc to Sc+ , from Sc+ to Sc++ and
from Sc +2 to Sc+3 are 0.037, 0 .034 and 0.031 a.u ., respec-
tively. In the first step, Sc to Sc+ , a "strong pair" is
destroyed and the 4s electron promoted to the 3d shell can
bring about only "weak pairs". In the second and third
steps, we leave unaltered the number of "strong pairs" and
we vary only the number of "weak pairs" . But the corre-
lation energy is very insensitive to such distinction of
"weak" and "strong" pairs and behaves as if the 4s and
3d electrons do not depend on the n, 1, m, and s quantum
numbers at all. (The remarkable linearity of the computed
values 0.037, 0.034, 0.031 a.u ., should not be taken too
literally, because of the angular momenta, near degeneracy,
uncertainty in ionization potentials, lack of accuracy in
the computation of the relativistic effects, etc .) Un-
fortunately, the lack of reliable data for higher ionization
potentials for many cases prevents a final conclusion .
It is noted that the highest ionization potentials available

in the literature are likely to be in error, because of the
heavy reliance on extrapolation and analogy which
characterizes the determination of the high order ionization
potentials for the third group .

The net outcome of the analysis of these data is that
we see the emerging of the "complex pairing model" and
the collapse of the "simple pairing model" .

The above considerations on the two-particle model
are obtained by analyzing the correlation energy data .
It should be pointed out that the two-particle method has
been proposed and analyzed by Hurley, Lennard-Jones
and Pople ;' and later by others .411 Their analysis is not
within the self-consistent framework. Recently, Huzinaga 49
derived a set of coupled Hartree-Fock type equations
to determine the two-electron geminals .

Presently there are no numerical computations to prove
that the two-particle model functions (called geminals)48
represent a general answer to the correlation problem .
However, the numerical results on the correlation energy
which we have reported seem to indicate that this model
will work well for the Be atom, less well for the Ne atom,
and poorly for atoms with more than 20 electrons. The
reason is the large amount of correlation energy due to
the intershell correlation . In addition, we note that the
model at present makes no provision for those cases where
one should work in terms of j-j coupling. On the other
hand, it is expected that the two-particle model will give
a satisfactory answer for saturated molecules with strongly
localized bonds .

•

	

Coulomb hole and correlation energy

The Hartree-Fock (HF) models assume that each electron
experiences the average field of all the remaining electrons
and that the total wave function can be expressed as an
antisymmetrized product of one-electron orbitals . Thus,
the exact function is replaced by a single determinant of
one-electron orbitals (at least for closed shell systems) and
the 11r,; operator of the exact Hamiltonian is replaced by
Coulomb and exchange operators, representing the average
field interaction .

Formally, the Hartree-Fock model can be equated to
an "unperturbed system" and the difference between
the exact and the average electron-electron interaction
will be a "perturbation potential" . This much is well-
known from the Moller and Plesset50 analysis of the
correlation problem . As a consequence, one can attempt
to obtain the exact function by taking the HF function
as a zero-order function and then add some correction
via perturbation and/or variation techniques .

Physically, one can equate the Hartree-Fock model to
a system where the "Coulomb hole" for electron pairs
with antiparallel spin is not accounted for . We refer to
Wigner's work on this point ."'
We shall attempt to introduce in the Hartree-Fock



potential an additional term which directly represents
the "Coulomb hole" . Since we are interested in the
quantum chemistry of molecular systems, we are concerned
with not increasing the mathematical complexity of the
problem beyond the Hartree-Fock formalism .

The "Coulomb hole" is introduced directly as a modifi-
cation of the Coulomb integrals J5DQ,,,,,6 .7 This modifica-
tion consists in replacing the integration range of the
first electron from zero to r and from r to infinity, (the
usual limits of the JXD ,,,, r , elements) with the integration
range from zero to (r - S) and from (r + 6) to infinity .
Since at the integration limit r the two electrons of the
Coulomb element occupy the same radial position, the
effect of replacing r by (r - 6) and (r + 6) introduces a
discontinuity in the potential . Thus, we have a "Coulomb
hole". In our method there are as many S as J integrals,
thus b is designated as S , a ,,, r , .

It is not difficult to obtain an expression for the 5 x ,,, ,, .
In our work52 we have made use of two empirical para-
meters, one for the case of S with X = ‚ and the second
for the case 6 with X p6 ‚. The first parameter has been
obtained by fitting the He atom ('S state), the second by
fitting the Ne atom ('S state) .

With these two fittings we have analytically computed
the elements which differ from the standard
J~DV . Mr+

because of the discontinuity in the integration
range.

In summary, the technique of computation is as follows :

Table 9 Correlation energy from the CHF method (In a .u .)

Difference of E(CIIF) - E(HF) .
" From Table 7 .

(a) compute a Hartree-Fock function, (b) compute the
6 x	and then the

	

matrix elements, and
(c) compute again the self-consistent field function, but
with the newly obtained J' matrix elements .

The resultant energies (in a.u .) for the first and second
period are given in Table 9. The first column gives the
Hartree-Fock energy for the functions we have used as a
starting point ; the second column gives the Coulomb-
Hartree-Fock (CHF) energies (we shall call this the
Coulomb-Hartree-Fock method, CHF) . The third column
gives the difference between the CHF and HF energies
(i .e ., the correlation energy computed by the CHF method) .
The results are in substantial agreement with the "experi-
mental correlation energies" presented in Table 7 (see
Fig. 3) .
We note that the CHF functions may represent an

improvement or a step backward as compared with the
HF functions . In order to test this important point, we
have computed the dipole polarizability of the Be atom .
The Hartree-Fock dipole polarizability53 is 9.94 X
10-24 cm3 , the Coulomb-Hartree-Fock dipole polar-
izabilit 52 is 4.5 X 10-24 cm, the latter agrees well with
the correct valueS4 of 4.5 X 10-24 cm3. We are presently
testing more extensively the validity of the CHF functions .
The same improvement over the Hartree-Fock functions
has been obtained for the polarizability of Li, F -, Ne, Na,
Mg and Ar.

The main results of this work seem to indicate that :

15
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System Hartree-Fock CHF EC(comp)* EC(exp)**

He(' S) - 2 .86166801 -2.9037222 -0.0420421 -0.0421
Li( 2S) -7 .4327257 -7.4850509 -0.0523252 -0.0453
Be(IS) -14.649920 -14 .573070 -0.076860 -0.0944
B(2P) - 24.529052 -24.632040 -0.102988 -0.125
C(3P) - 37 .688611 -37 .829531 -0.140920 -0.158
N(4S) - 54.400911 -54 .590641 -0.189730 -0 .188
O( 3 P) -74.809359 -75 .055357 -0.245998 -0.258
F( 2P) -99 .409284 -99 .725809 -0.316521 -0 .324
Ne('S) -128 .54636 -128.94431 -0.39795 -0 .393
Na(2S) -161 .85734 -162.26045 -0.40311 -0.403
Mg('S) -199 .61430 -200 .05139 -0.43709 -0 .451
Al(P) -241 .87625 -242 .35842 -0.48217 -0 .482
Si(3 P) -288 .85109 -288 .38888 -0.53779 -0 .522
P(4 S) -340 .71846 -341 .30388 -0.58538 -0 .561
S( 3 P) -397 .50460 -398 .14259 -0.63799 -0 .60
Cl(2P) -459 .48169 -460 .20544 -0.72375 -0 .71
Ar('S) -526 .81703 -527 .64943 -0.83240 -0 .79
Be+2('S) -13 .611256 -13 .654058 -0.042802 -0 .0443
C+4(IS) -32 .361154 -32 .404169 -0.043015 -0 .04510+6(1S) -59 .111119 -59 .154215 -0.043096 -0 .0455
Ne+8 ('S) -93 .861103 -93 .904409 -0.043306 -0 .0457
Kr +34 ('S) -1273 .6110 -1273 .6543 -0 .0433 -0.047
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Figure 3 Comparison of the correlation energy obtained from
Hartree-Fock energies (see Table 7) with the correlation
energy computed directly in the Coulomb-Hartree-Fock semi-
empirical method (see Table 9) .

(a) the HF method can be improved within the spirit of the
one-electron approximation (notice that the HF model is
a direct extension of the Hartree model, via introduction
of the Fermi hole ; in an analogous way the CHF model
is an extension of the HF model, via introduction of the
Coulomb hole) ; (b) the CHF semiempirical method
proposed and tested here gives correlation energies in
rough agreement with the experimental values ; and
(c) the empirical CHF functions seem to be as good as
the HF functions, but this point must be studied further .

At present we are expanding our analysis52 and we are
attempting to obtain the S's directly from some physical
model without making use of empirical parameters.
Simultaneously, we are attempting to extend the CHF
method to molecular systems .
We note that the CHF method could be reformulated

by referring to the F integrals, (introduced by Slater 18a) in
place of the J integrals (as defined by Roothaan 8 ).

•

	

Molecular correlation energy

From the previous discussion one could be led to the
hurried conclusion that the "simple pairing model"
should hold well for those molecules with component
atoms of low Z value (say, Z less than 15) . Indeed, for
such molecules the spin-orbit effect (at least at the equi-
librium distances) is small and the complications due to
the near-degeneracy in the atoms are removed, because of
symmetry requirements in the molecule . It is noted that

the above conclusion might be in error because in multiple-
bonded molecules the intershell effect can be substantial .

In the following, we shall clear up a few points about
the relations of atomic correlation and molecular corre-
lation energies . Up to a few years ago, there had been
sufficient numerical computations in atomic systems that
one could advance the hypothesis that the correlation
energy in atoms is simply a function of the number of
electrons. For molecular computations, the situation was
such as to predict molecular correlation incorrect even in
the order of magnitude (for example the correlation energy
per bond in CH was estimated to be a few tenths of an
eV instead of somewhat more than one eV) . With im-
proved accuracy in molecular computations and the
increasing number of accurate atomic computations, a
somewhat better situation started to emerge . Roothaan
and Kolos55 pointed out the equality of the correlation
energy in the He, H - and H 2 problems . Karo and Allen"
made use of approximate atomic correlation for the
fluorine neutral atom ( 2P) and negative ion ('S) in order
to estimate a limit for the molecular extra correlation
energy of the HF molecule . Since their computation is
somewhat far from an Hartree-Fock function, any definite
answer on the possibility of computed dissociation energy
was prevented. Most puzzling was the suggestion that
the correlation energy for a 2p pair in F - should be at
least 1 .5 eV (later from our work, it turned out to be a
correct suggestion) about one-third more than expected
from previous available atomic work. A new calculation
by the author on the HF molecule 57 approximately
reached the Hartree-Fock function . The molecular cor-
relation energy was, therefore, defined within about 0.1
eV and the concept of molecular extra correlation energy
was first defined and its value determined within 0 .1 eV .
This was done by explicitly using the known value of
the dissociation energy . Since the computed function
was not an accurate Hartree-Fock function, and since
we were lacking accurate data on atomic correlation
energy, it was concluded that the problem of computing
exact dissociation energies was not yet under control .
A later computation on the HF molecule was reported
by Nesbet5 8 However, this new work did not improve our
computed total energy despite the use of.a larger basis set .
The dissociation energy was estimated, following the
same argument presented by Allen and Karo S6 The net
correlation energy contribution was put between 2 .0 eV
and 1 .6 eV, and the hope was expressed that the correlation
energy for simple atoms and molecules would behave
very regularly as a function of the number of electrons

.

8

The availability of the correlation energies for the first
three periods of the atomic system proved that we can use
atomic correlation data for predicting the correlation
energy in molecules. This was done first in our works on
LiF (Ref. 59) and CH,, (Ref. 60) then in A . D. McLean's

"7R+"~P~d';'~'Y:ATTSaTr.R^



work on LiF (Ref. 61) and subsequently in the CH, 
computations by Carlson and Skancke,62 the  N2, CO, BF 
analysis by N e ~ b e t , ~ ~  and  the  Be0 analysis of Y ~ s h i m i n e . ~ ~  

It seems worthwhile to define a few quantities somewhat 
more critically than was previously done.57 First, we shall 
partition the correlation energy. The  total correlation 
energy in a molecule is defined in the same way as for 
the atoms, namely, it is that energy needed to reach the 
exact energy in a molecular system, as  an addition to the 
Hartree-Fock energy and to the relativistic energy. 

As a practical first step, we shall assume for now that 
the relativistic energy in the molecule is the same  as in 
the constituent  atoms. But this needs some judgment. 
Namely, if we have a molecular compound  built up of 
atom A and  atom B, with resulting molecule A-B, we shall 
use the atomic data on the relativistic energy, with attention 
to  the fact that if the compound is of type A'B-, then the 
relativistic data for the separated  atoms A and B must be 
that for the ions A' and B-. However, since very  few 
compounds are totally ionic, the relativistic energy of the 
ions should be corrected by some appropriate weighed 
factor. It is noted that  the relativistic energy difference 
between A and A+ is up to 5 kilocalories in  the  third row 
elements. 

The total molecular correlation energy as was  defined 
is clearly a function of the internuclear separation and we 
shall use the notation  TMCE(r) to indicate this  fact in 
diatomic molecules, where (r)  is the internuclear distance. 
For polyatomic molecules, TMCE will be a function not 
only of the internuclear distances, but also of the bond 
angles, in addition. In  this regard, we refer the reader to 
the numerical results obtained by A. D. McLean for the 
Hz  and  LiF molecules. We finally are in a position of 
partitioning TMCE(r). If we have a system of N atoms 
designated as A l ,  . . . , A,, then the first partition is 

n 

TMCE(~) = (AC); + MECE(~).  

Namely, TMCE is the sum of the correlation energy of 
the component  atoms, ACI - AC, plus a remainder 
which  was called the molecular extra  correlation energy, 
MECE. It is important to point out  the need of having 
exact Hartree-Fock functions in order to make any 
meaningful analysis of the molecular correlation energy. 
Naively, one could assume that  an approximate self- 
consistent field computation on a molecule and  an approx- 
imate self-consistent field computation on  the separated 
atoms are sufficient in order to determine the molecular 
correlation energy. However, this is not  the case, since the 
above assumption can bring about  up  to several tenths of 
one eV  of error in the estimate of the binding energy. 

In  Table 10 we present the value of the molecular 
extracorrelation energy for several diatomic molecules. 
The  Hartree-Fock energies at the equilibrium internuclear 

distance are available from the L.M.S.S. Technical 
Reports." The  quantity denoted as  D,(HF) is the Hartree- 
Fock dissociation energy; the last column of Table 10 
gives the experimental dissociation energy. By simple 
inspection of the MECE  data given in  the table, one 
realizes that there are several regularities. For example, 
the  LiH value is approximately the same as expected for 
the creation of a new s-type pair, the H F  value is ap- 
proximately the same as expected for the creation of a 
new p-type pair. The  four new pairs needed to obtain  the 
CH, molecule from C('P) and four HCS) atoms are 1.3 eV, 
again approximately the value for  the  formation of an 
s-type pair. 

With some ingenuity one can account for a large percent 
of the MECE, and build up empirical rules which should 
help in predicting the MECE as was done in several cases. 
However, it is still an open question as to how reliable 
these empirical rules will  be. 

The possibility of extending the Coulomb-Hartree-Fock 
method to molecular cases seems to be a more  attractive 
technique, than building up empirical rules as previously 

On the other hand a limited amount of configuration 
interaction might provide somewhat better energies and 
a close agreement with experiments for vibrational and 
rotational constants. But configuration interaction will 
not provide an adequate answer to the molecular quantum 
chemistry computations, nor will the Hartree-Fock  method 
alone. Configuration interaction applied to the geminals 
could in principle, give  very accurate results, but at 
present no such formalism is available and the  computa- 
tional difficulties could be very substantial. 

The recent work by S i n a n o g l ~ ~ ~  is now in the testing 

Table 10 Molecular extra correlation  energy, MECE, and 
dissociation energy, D,,  for diatomic  heteronuclear molecules 
(In e V )  

MECE D.(HF)* D,(exp) 

co lZ+ 3.406 7.836 11.242 
BF 1Z+ 2.397 6.183 
LiH 1Z+ 

-8.58 
1 .040 1  .476  2.516 

FH 1x+ 1.682  4.378 -6.06 

N2 1x0 4.631 5.271 9.902 
Liz 1 x+, 0.884 0.169 1 .050 
G 1X+" 5.469 0.781 -6.25 
Nz 1 4.631 5.271 9.902 
0 2  3 2 - ,  4.910 1.227 5.178 
0 2  4.171 -0.520 4.171 
0 2  1 2+, 3.951 -1.392 3.518 
F2 1Z+, 3 .047 - 1.374 1 .679 

CH, 'Ar, -5.20 -13.0 -18.20 

* The  Hartree-Fock  function  for  diatomic  molecules  have been ob- 
tained at  the  University of Chicago. The  value of this  column  is the 
computed  Hartree-Fock  dissociation  energy. 17 
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stage for  atomic systems but it is not of simple applicability 
even for closed shell atoms.  In  the author’s  opinion  this 
method will not provide a practical  working  solution for 
chemical systems. Perhaps it is too optimistic to think of 
present and  past techniques as being practical and satis- 
factory  methods for molecular computations when these 
same  techniques  fail for simple atomic cases. 

In  the author’s  opinion, we shall  have to resort to 
semiempirical methods for several years. On  an extremely 
crude basis, for example the Hiickel theory, one can 
obtain a remarkable insight for spectral assignment in 
complex molecules. With  quite simple theoretical com- 
putations, one  can understand and sometimes make 
reliable predictions in  such complex systems as the 
charge-transfer complex. Most of the  theory of the 
molecular structure, available to date, has been provided 
with much  intuition and little  computation by R. S. 
Mulliken. 

It is not difficult to extend the list of these cases which 
all have  one  common factor: much of the chemistry can 
be explained and, to some extent predicted, without 
exact wave functions. On  the other hand, exact quantitative 
understanding of chemistry can be achieved only via exact 
computations. The  net conclusion of these  contrasting 
comments is, in  the author’s opinion, that exact com- 
putations  should  be done whenever technically and 
economically feasible. “Testing” computations of exact 
nature should  be  done for very complex systems only in 
order to provide models for “routine” semiempirical 
computations, or in  order to prove or disprove theories 
and models based on experimental or empirical evidence. 

These “test”  computations possibly will provide the 
prototypes of routine computation, if the computer 
technology continues at  the present astonishing pace. 

Conclusions 

In  the past ten years we have seen the realization of the 
computation, with some accuracy, of atomic and small 
molecular systems. Hartree-Fock  functions for  atoms  and 
diatomic molecules are now mass produced.  There still 
remain the correlation energy problem, which is a 
formidable and practical one for macromolecular com- 
putations but  has been fairly accurately understood. Few 
exact computations are available for  atomic systems but 
a large number of accurate estimates have been presented 
in recent literature. The next few years will probably see 
equivalent development for  small molecular systems and 
a few pilot computations for large molecules. 

In this  paper we have not underestimated the existing 
difficulties. On  the  other  hand,  the progress in quantum- 
mechanical computations has been extremely rapid  and 
this gives hope  for the future. 

In this  work we have made little attempt to present 
the entire development of ab initio computations  in a 

systematic fashion, and we have made  no  attempt to 
offer a complete set of references. A recent review of the 
field has been made by R. P a d 5 ,  where heavy emphasis 
has been put  on semiempirical methods and  on  the 
Sinanoglu  pairing theory.24 We refer the reader to this 
work  for  such subjects. Promising attempts  have been 
made at  the Wisconsin University and at Upsala University 
to obtain good  functions via perturbation methods. These 
are additional examples of very interesting approaches, 
not covered in this  paper, since here our emphasis is on 
the Hartree-Fock technique. 
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