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Abstract: Algebraic methods that are useful in the reduction of EPR spectra to the magnetic parameters in 

the phenomenological Hamiltonian are summarized and programs presently available to accomplish  the 

necessary computations are described. Among the  topics  discussed are (i) the calculation of the  spectrum  of 

the complete spin Hamiltonian for single-crystal experiments, with the principal axis system; (ii) the trans- 

formation  of the Hamiltonian  to the magnetic quantization axes, which is convenient for perturbation 

theory; (iii) the use of  iteration methods to determine the parameters by a least-squares  technique; (iv) the 

detailed  fitting of EPIZ spectra of polycrystalline or glassy-state magnetic sites; (v)  the correlation methods 

in the analysis of solution spectra; (vi) a novel integral  transformation  to  improve the  resolution; and  (vii) 

the calculation of the dipolar sum for  line width studies. 

Introduction 

Electron paramagnetic resonance is a powerful technique 
for the  study of magnetic properties of solids and  has seen 
extensive use. Some of the systems studied are insulating 
or semiconducting single crystals doped with transition 
metal  ions, defects and color centers in crystals, triplet 
states, and free radicals. In general, one is interested in 
learning the symmetry of the magnetic species, something 
about its wave function, exchange interactions with neigh- 
boring magnetic sites, chemical bonding, nuclear hyper- 
fine interactions and nuclear quadrupole interactions, and, 
for maser application and low temperature  application, the 
energy levels themselves and  the relaxation rates. 

In  the past  most of the analyses have been confined to 
simple systems; or the analysis was done at  the unique 
crystal directions  for which closed expressions were pos- 
sible; or first- and second-order perturbation  theory was 
used. Currently  computers have become available to  the 
point that most physicists and chemists have access to one. 
Hence more complicated problems can  be solved and a 
more exact answer is readily available. Many times com- 
plicated algebraic expressions can be avoided and per- 
turbation theory need not be used. They can, however, 

conveniently serve to  obtain  an approximate answer as 
input  for computation. Finally the computer, besides 
merely being faster than a desk calculator,  can be pro- 
grammed to direct one  toward  the proper  solution. 

Many  computer  programs have been written and used 
for  the determination of spin energy levels, and frequently 
these are briefly referred to in  papers on paramagnetic 
resonance. The purpose of this paper is (1) to summarize 
some of the mathematical techniques useful in the calcu- 
lation of spin energy levels, (2 )  to list  some  programs 
available for  the analysis of EPR spectra, and (3) to en- 
courage  more complete and accurate  spectral analysis in 
order to extract  as  much  information  as possible. 

We shall first discuss the spin  Hamiltonian and  its appli- 
cation to  the analysis of single crystals. The simple spin 
cases will be discussed and then followed by the  more 
complicated cases. The use of the least-squares technique 
to arrive at the “best fit” for  the magnetic  parameters will 
be outlined. The line shape calculation for powder and 
frozen solution (glassy state) will also be discussed. 

The analysis of solution  spectra is fairly straightforward 
but can nevertheless be  quite difficult if the number of 515 
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lines is very large. Here  the use of the  correlation functions 
and a simple integral transformation will be illustrated. 
Finally, lattice sums and exchange effects  will be discussed 
in connection with line shapes. 

Spin Hamiltonian 

The  spin  Hamiltonian, derived by Abragam and Pryce:" 
has the  form 

X = PS-g-H + D[Sz  - S(S + 1)/3] 

+ E($ - + [(a/180) 4- b1[35S: 

- 3 0 S ( S  + 1)s: + 25s: - 6S(S + 1) 

+ 3 S 2 ( S  + l)'] + (a/48)(S: + S!) + S.A. I 

+ Q[ZZ - I(Z + 11/31. (1) 

Here the first term is the Zeeman term, with g the gyro- 
magnetic tensor which may contain an orbital  contribu- 
tion to the magnetism. The spin operator S may be the 
true spin operator or an effective spin  operator defined 
for the lowest level resulting from the splitting of an orbit- 
ally degenerate ground state. Only when one relates the 
results to  the physics of the problem will the difference 
between  effective and  true spins be apparent. The next 
terms are the fine structure terms and  are present only 
when the spin S > 1/2; the terms in a and b appear only 
for S 2 2, such as the  S-state ions. The last two terms 
represent the hyperfine interaction and the nuclear quad- 
rupole interaction, respectively. We have neglected the 
nuclear Zeeman terms, which  give only very small contri- 
butions, and the exchange terms, which  will  be  briefly 
discussed later. 

According to Koster and Statz3" and B l e a n e ~ ~ ~  further 
terms linear in the Zeeman operator with odd powers of 
the spin  operators  are allowed by symmetry when S 2 
3/2; these have only rarely been required and will not be 
included below. In addition, Griffith' shows that  for  an 
even number of electrons, a ground  doublet state may 
require a zero-field splitting term of the  operator  form 
GS,. Such a term may be derived from (1) for S = 1 or 2, 
if D < 0 and if only the lowest pair of states is observed. 
We shall therefore not discuss this further. Finally, in 
the  rare  earth ions J is usually a good quantum number 
and  the spin  Hamiltonian is written in terms of J.  

In order to determine the eigenvalues of the Hamil- 
tonian (Eq. (1)) it is necessary to evaluate the matrix ele- 
ments and then diagonalize the matrix. Two convenient 
directions of quantization are usually used: one is the 
principal axis system of the g-tensor and  the other is 
closely related to magnetic field direction. Naturally these 
are constrained to give the same spectra by a unitary 
transformation, the rotational matrices5 D'(R). We  give 
both  formulations, which are based on  the familiar proper- 

516 ties of angular momentum :6 

S2 IS, M > = S ( S  + 1) IS, M > 
S ,  IS, M > = M IS, M > ( 2 )  

S ,  IS, M > = .\/S(S+ 1 ) - M ( M f  1)  IS, M f 1 > 
S ,  = S, f is, 

The matrix elements of the  Hamiltonian (1) in the g- 
tensor axis system can readily be written. All the elements 
follow directly from Eq. (2), except those involving the 
magnetic field. The Hamiltonian  for these terms is 

X = pg,, S, H cos 8 + pgz,S, H sin 8 cos 4 

+ pg,,S,H sin 8 sin 4, (3) 

where 8 and 4 are the conventional polar angles between 
the g-tensor axes and the magnetic field direction. It has 
been assumed that  the principal axes of the fine structure, 
hyperfine structure,  quadrupole moment, and g-tensor are 
all the same. In general, of course, these axis systems may 
differ from each other and from the crystallographic axes. 

Bleaney7 transformed the Hamiltonian  for  the axial 
case to the magnetic axis and then applied second-order 
perturbation  theory to determine the eigenvalues. The 
advantage of this technique is that the  angular depend- 
ences of the various terms are given in a fairly simple 
way and only a few small second-order corrections need 
be applied in many cases. This technique is quite useful 
and has been utilized in the analyses of most  reported 
EPR spectra of single crystals. Low8 has indicated a deri- 
vation of Bleaney's results and Weger and Low8 have 
extended the  perturbation result to include the (St - S:) 
term. The  perturbation theory is accurate when the Zee- 
man energy dominates the fine structure or when the 
magnetic field is close to one of the principal axes. The 
largest errors occur for 8 45" and  are of the  order of 
(D/8gpH)3. Much of the data in the  literature, however, 
was derived from measurements along the principal axes 
only. Also, if the Hamiltonian consists of the Zeeman 
energy alone,  the procedures outlined below are unneces- 
sary, since the principal values and directions of the g- 
tensor may be derived from  rotation data  about any  three 
mutually orthogonal axes.g 

Since only the  perturbation results are given we shall 
show the transformed Hamiltonian from which these per- 
turbations can be readily verified.  When a computer is 
used it is naturally convenient to enter  all the elements 
and obtain an exact solution. We shall treat the various 
terms successively. 

Zeeman terms 

The Zeeman part of the Hamiltonian in matrix  notation 
can be written as 

X = pStgH, (4) 

where St is the adjoint of S and the principal directions of 
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g define the axes. It is now convenient to write S and H as 

( 5 )  

in  order to conform to  the  rotation matrices 

s,, = rs*/&i ( 6 4  

H , ,  = = F H + / d j .  (6b) 

The g-tensor  in  Eq. (4)  has the form 

g =  (7) 

where 

SI = %gzz + s,,) 
g’ = 3(gzr - s,,) 

gll = g z z .  

g ,  = (g,”, cos2 4 + g;, sin2 +)l” 

g = (gi cos2 e + g? sin2 

COS p = g,, cos +/g, sin p = g,, sin +/g, 

cos u = gll cos e/g sin u = g, sin e l g  (13)  

and 

x = gPSLH0. (14)  

Fine structure terms 

The fine structure  terms are given in  matrix  notation  as 

Xps = StDS, ( 1  5 )  

where the tensor D is 

Using the same  transformation, M(p, a), we obtain  the 
following Hamiltonian : 

Now an irreducible tensor  transforms  according to the 
relation‘ 

T:”’ = DL,(Crpy)TY’ 

which is conveniently written in terms of the M matrix 
defined by  Rose‘ f { - D + E(g:, cos2 4 - g,”, sin2 4)/g?] 

X F S  = { D[3gi  cos2 O/g2 - 1 ] / 2  

3E[(gz, cos2 q5 - g:, sin2 q5) 
(8) 

.(sin2 O / g 2 ) ] / 2 }  { S12 - S ( S  + 1) /3  ] 

M = D  

T’ = MT, 

where + iEg,,g,, sin 4 cos q5 sin e(  S:S: + SLS: 

M(P9 4 - S’S: - S: X ]  /gg, + { (Dg: sin2 0//4g2) 

u)/2 sin u/ d5 e iP( l  - cos u)/2 + E(& cos2 4 - g:, sin2 4) 

- i p  sin u/ d? cos u . ( I  + gp COS’ ~ / ~ ‘ ) / 4 ~ : }  { s? + st:} 
- cos u ) / 2  ”sin u/ dii e“(1 +cos u ) / 2  + iEg,,g,, cos 4 sin +SI, cos O/glg{ 5‘:’ - Si2] 

(10)  (17) 

Then we have the transformation 

X = P S t g H = P S t M t ( p ,   ~ ) M ( P ,  u)gMt(B, +)M(O, 4)H, 
Hyperfine structure terms 

The hyperfine terms follow in a similar manner, except that 
( l  we must define a new transformation M(+, x) which re- 

lates to  the hyperfine interaction axis: 

H’ = M(O,+)H = and, S’ = M(p,  u)S .  (12)  Xhls  = StAI = A,zS , I ,  + A,,S,Z, + A,,S,Z, (18) 

and 

Here 0 and I$ are Euler angles between the principal direc- A A  0 - A ’  AI, = A, ,  
tions of g and  the magnetic field; p and u are chosen to 
set the coefficients of Si, in (11) to zero and define the A = [  0 All 0 1 A ,  = + ( A z  4- AbJ 

convenient spin  quantization direction. - A’ 0 A1 A’ = %(A, ,  - A#, ) .  (19)  517 
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Quadrupole  terms 

And finally the  quadrupole terms of the Hamiltonian are 

X e p ~  = ItQI, (23 )  

where 

Q = [ 2 y 3  1, (24 )  

- Q / 3  

- Q / 3  0 

and  the transformed  Hamiltonian is 

X e a V  = gQ[3Aggi COS' e / (  K'g') - I] 

. [Z:' - Z ( f  + 1)/3] 

- Q[  A,,Bgllg,  cos e sin 1 3 / ( 2 ~ ' g ~ ) ]  

.(Z:I: + z;z: + ZLZ: + ZLZ') 

+ Q[B'gf  sin' 0/(4K2g2)](ZL2 + Z:'). (25)  

Culculations for single crystals 

Where these various  terms of  the Hamiltonian are com- 
bined and perturbation theory is applied we arrive at 
Bleaney's result7" and Weger and Low's result9 for  the 

perturbation  theory is inadequate;  an extreme  example, 
for which the perturbation  theory would not be used, is 
provided by the much-studied resonance  spectrum of ruby, 
for which the zero-field splitting between the levels S ,  = 
f 3 / 2  and S ,  = f 1 / 2  (0.76 cm-') corresponds to K-band 
microwave radiation. Schulz - du Bois" illustrates how 
for  irradiation at 9.3 kMc/sec, the transition 1 / 2  - - 1 / 2  
occurs twice, once for low magnetic field and once  for high 
magnetic field. The perturbation result, however, has the 
transition frequency linear in the magnetic field and pro- 
vides for only a single resonance. With a computer, it is 
easy to include all the terms of the Hamiltonian and  the 
formulation  in  terms of the principal axes (Eqs. ( l ) ,  (2) ,  
and (3))  or in  terms of the magnetic axes (Eqs. (2),  (13), 
(14), (17),   (22),  and (25)) can be used. 

A number of calculations for  ruby (Cr"':AlzO3) have 
been done for maser application. Schulz - du Bois" used 
the magnetic axis representation  for the axial case with 
no hyperfine terms. The effect of the anisotropy  in the 
g-tensor on the fine structure terms was, however, neg- 
lected. Stahl-Brada and Low" used the principal axis 
representation  for the S = 3 / 2  case and present tables of 
eigenvalues and matrix elements of St and S: for intensity 
calculations at various selected values of the fine structure 
terms. Chang  and Siegmann12 have an extensive set of 
tables for ruby. Fox  and Swalen13 have written a program 
to solve for the eigenvalues, eigenvectors, and transition 
moments for the S = 3 / 2  case with the magnetic field 
representation. In addition a provision is provided for a 
"best fit" to experimental data. This  point will be dis- 
cussed below.  Gladney14 has written a general program 
for  the cases from S = 1 / 2  to S = 5 / 2  with no hfs terms. 
He used the principal axis representation and treated the 
rhombic case. Gerritsen and Sabisky15 report a program 
for the S = 2 case in which the energy levels are calculated. 

From,  Dorain,  and Kikuchi'' recently report  the use of 
computer  programs  for S = 3 / 2  which adjust  the values 
of g ,  D, E, A,  and  the parameters  for  the hfs from ligand 
atoms to fit the observed magnetic fields measured at  
unique crystal directions. They then calculated the various 
resonances as a function of the angles. 

No  doubt there are many more programs written to 
determine the eigenvalues and eigenvectors. There are four 
additional point!. worth mentioning: 

1) In  the usual EPR experiment one varies the magnetic 
field strength and keeps the frequency constant.  Hence 
the difference in eigenvalues as a function of magnetic 
field must be formed which corresponds to the microwave 
frequency. In the programs of Fox and SwalenI3 and of 
Gladney14, a technique involving Newton's method is 
used. The derivative dv/dH is calculated by differentials 
for small displacements. 

518 axial and rhombic cases, respectively. In some instances, H ( n + l )  = H'"' + (v, - v '" ' ) / (dv/dH)'" ' .  (26) 

J. D. SWALEN AND H. M. GLADNEY 



The n + 1" value of magnetic field can  be calculated 
from  the nth value, the microwave frequency (v,,), the 
eigenvalue difference (v'"'), and the derivative of the eigen- 
value difference with respect to magnetic field. This proc- 
ess is iterated  until convergence, which is  very fast for pairs 
of energy levels that  are almost linear. Because of crossing 
situations or large curvature  various magnetic fields should 
be used as starting  points for the  iteration  in  order to 
ensure that all the resonance conditions between a pair 
of levels are calculated. Occasionally an oscillation occurs 
where two levels approach a resonance condition and then 
are deflected away by some  interaction. In our experience 
convergence occurs within ten  iterations or  not  at all. A 
closer investigation of the eigenvalues can show if oscil- 
lation is occurring. 

2) A "best fit"  of experimental values can be found 
very conveniently by the computer and  has been incor- 
porated. The magnetic field for resonance depends on  the 
frequency, crystal angles, and  the various magnetic param- 
eters to be determined. By calculating the derivatives of 
the magnetic field with respect to each magnetic parameter, 
a  set of linear  equations  can be written-one for each 
transition observed at each  different set of angles. By 
a least-squares technique, a set of corrections to  the 
magnetic parameters  can be determined and this process 
repeated until the sum of residuals squared is a minimum. 

(27) 

i = 1 to m, where rn is the number of transitions observed. 

3) In  the case of rhombic symmetry in either representa- 
tion the terms are complex. The complex eigenvector 
problem, 

cx = Ax, 

where C = A + iB 
and X = p + iv, 
is equivalent to  the simultaneous real eigenvector problems, 

Ap - Bv = Ap and (29) 

Bp + Av = Xv, (3  0) 

whose solutions occur in degenerate pairs, 

so that  the diagonalization of a  Hermitian n X n matrix 
may be accomplished by selecting half the eigenvalues 
and vectors of a related 2n X 2n real symmetric matrix. 

(t) and (-J* 

4) The intensities of the transitions are given by: 

where (ilX'1j) is the matrix element of the  perturbation 
from the microwave field, H,, inducing the transition 
from i to j .  The term f(v) is the line shape  function  nor- 
malized so the integral is equal  to unity. Equation (31) can 
be written more conveniently: 

w- 1 1  = (e)' f(v)l(i/Sklj)12, (32) 

where Sk is the component of spin  along the space-fixed 
axis of the microwave field and is a linear combination 
of the components  along the principal axes: 

Sk = aS, + bS,  + cS,; (33) 

here a, 6, and c are  the direction cosines. The actual 
value depends on  the crystal orientation and  the direction 
of H1. Frequently the matrix elements of I(jlSLli)lz are 
calculated and assumed to be equivalent to I ( j lS:  l i ) 1 2 .  
This could be incorrect and  Eq. (33) should be used. In 
the principal axis system, the perturbation X' in the Zee- 
man coordinate system must be transformed to  the princi- 
pal axis system by the inverse of M (Eq. (10)). In either 
case, however, for  orthorhombic symmetry an additional 
angle is necessary to denote the  rotation  about  the new 
z axis, i.e., the magnetic field axis, giving the orientation 
of the x' and y' axes. For example, if H1 is perpendicular 
to z', then 

S: = cos' ysL2 + sin2 YS:'. (34) 

Polycrystalline samples 

The EPR spectrum of a polycrystalline or glassy-state 
sample involves a spatial average over different magnetic 
site orientations. The determination of magnetic param- 
eters has been discussed by a number of authors, whose 
usual method requires some assumption about  the line 
shape of a single magnetic site. Considerable  information 
is available from these spectra; detailed computation,  to 
plot estimates of the spectrum  from assumed parameters, 
has been useful, particularly in the more complex cases. 
However, Weil and Hecht'? point out  that if the line width 
of a single site is small  compared to differences in H,, 
and H,, most of the desired information, including line 
shape, is available near  cos20 = 1 in the  form of absorp- 
tion envelopes in the  normal first derivative trace. 

The simplest case is that of axial  anisotropy in g with- 
out fine structure or hyperfine structure terms. Bleaneyls 
and  Sandig considered this  situation and assumed a  delta 
function  for the line shape of each  crystallite; the  absorp- 
tion is 

Z ( H )  J f ( ~  - H') sin e de, 

where HI, the line center, depends on  the orientation of 
the magnetic site. For f as  a  delta  function 

(3 5 )  
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I 

where H lies between HI, and HA. 
Since 

hv = (g i  cos2 0 + g? sin2 B)1’2pH, (37) 

then 

I ( H )  H-’(H: - H 2 ) ” / 2 ,  (3 8) 

where Hl = hv/g,P. This  crude  procedure gives only an 
approximate  relation to  the expected line shape and can 
be improved. Searl, Smith, and Wyard2‘; Chirkhov  and 
Kokin” ; and Ibers and Swalen2’ have included a Lorentz- 
ian line shape  for f(H - H’) and a variation  in the  tran- 
sition probability according to Bleane~.’~  The absorption 

IMAGNETIC FIELD IN GAUSS 

Figure I Calculated EPR line shapes for polycrys- 
talline samples. Lorentzian linewidths: ( 1 )  
1 G, (2)  10 G, (3)  50 G,  (4)  100 G; HI, = 

3600 G, H ,  = 3300 G. (From  Ref.  22, 
Fig.  1). 

Figure 2 EPR signal from K3Cr08  at 20°C. HI, = 
3512.1 G ,  H ,  = 3429.8 G, b = 23.5.  (From 
Ref.   22,  Fig. 3).  
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Figure 3 Powder EPR Spectrum of CuF2: 
o u ” - o - o  Experimental  spectrum 

HI, = 2710 G;  H ,  = 3154 G; W = 13.0 G. 
Calculated spectrum. 

curves for  various  Lorentzian line widths was given in 
Ref. 22 and is shown  in Fig. 1. Equation (36) represents 
the limiting case. If one combines the algorithm for  the 
expected absorption  spectrum  as a function of a number 
of parameters with the “best fit” procedure described for 
single-crystal spectra, an iterative program has been de- 
vised to improve the estimated pa rame te r i za t i~n .~~’~~  The 
only change from  the previous procedure is that  the fit 
is to a large  number of observed intensities at discrete 
intervals of field rather than  to a set of resonance fields 
at specified angles. As examples there arc shown, in 
Figs. 2 and 3, results for powder samples of K3Cr08  and 

The extension to complete anisotropy (gz # g, # 8.) 
is possible, but a numerical integration would no  doubt 
be necessary. KneubiihlZ5 has treated  this problem using 
the delta-function approximation. As far  as we know no 
computer  program  has been written for this situation; 
however, it would be  straightforward by computing H for 
various values of 0 and 4 and then numerically integrating 
EQ. (35) converted to a double  integral by adding the 4 
dependence. 

CUF~. 

I(f4 OC l r d m  / ‘K (B,  49 #)f(H - H’(O,I#J)) 

.sin B dB (3 9) 

Here K is the transition  probability which depends on 0 
and I#J and #, the angle between the molecular axis and 
the oscillating magnetic field HI. Essentially one generates 
a set of values of magnetic field for each value of B and 4 
and  the envelope gives the line shape. 

The inclusion of hyperfine structure  terms was done by 
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Sands:'  Blinder: Neiman and Kive l s~n?~  and Gers- 
mann and Swalen.28 A delta-function line shape was used 
in each case. In addition, Blinder used a Gaussian func- 

1 tion but restricted the problem to  an isotropic g value. 
For  the work in Ref. 28 a simple computer  program was 

' written and used, with the Hamiltonian  for an axial case 
with hfs 

or transformed to the magnetic field direction, in first order, 

E = g a H o M  + K M m .  (4 1) 

i Since g and K depend on the polar angle, 0, it is relatively 
I straightforward to calculate the magnetic field as a func- 

tion of 0. With the delta-function approximation, Eq. (36) 
will lead to  an intensity calculation. 

The current interest and research in triplet state molecules 
started with the single-crystal work on naphthalene by 

. Hutchison and M a n g ~ m . ~ ~  Van der Waals and de  Groot3' 
then observed the Am = f 2  transitions in the glassy (ran- 

1 dom orientation) state  and Kottis and Lefebvre3' wrote a 
computer  program which evaluated the line shape by simu- 
lating the delta  function by a Gaussian function. Although 
the Am = f l  transitions are  hard  to detect because they 
are spread over a large magnetic field, the Am = f 2  are 
much less angle-dependent. Also, because the Zeeman 
terms and  the fine structure  terms are of the same order of 
magnitude  there is  sufficient intensity to be observed. 
Yager, Wasserman and C ~ - a m e r ~ ~  have, however, observed 
also the Am = f 1 transitions with the triplet state mole- 
cules randomly oriented and have pointed out  that the 
edges of the line will be observable in a derivative record- 
ing. Kottis and L e f e b ~ r e ~ ~  have recently extended their 
earlier work on triplet state molecules to include the Am = 
f 1 transitions and discuss the analysis of these spectra in 
extensive qualitative and quantitative detail. The  computer 
program by Kottis and L e f e b ~ r e ~ l ' ~ ~   t o  calculate the line 
shape diagonalizes the 3 X 3 matrix, including the Zee- 
man  terms and the fine structure  terms in the crystal 
axis system by expanding the secular determinant into 
a cubic equation. The eigenvalues are then  the  roots 
of this equation which is solved by conventional methods. 
Although the reduction to a cubic equation is a good 
method, here it suffers from  the disadvantage that  it is 
difficult to extend to larger cases, e.g., the inclusion of 
hfs. We, therefore, recommend the calculation of magnetic 
fields and the  transition probabilities for various angles- 
the grid being set by the desired accuracy-and then a 
numerical integration of Eq. (39) with a Lorentzian or 
Gaussian  line  shape fit to reproduce the whole line shape. 
Snyder and K ~ r n e g a y ~ ~  have recently described a program 

I 

performing this calculation. By this method, all the deter- 
minable interaction terms  can be included and matrix 
techniques can be used. 

The extension of these techniques to higher spin cases 
is reasonably straightforward. Singer34 considered the line 
shape  for 1/2 +- - 1/2 transition in the S = 3/2 case 
with D >> gBH. Van Reijen and S ~ a l e n ~ ~  considered the 
other  approximate case, i.e., D << gPH. Computer tech- 
niques with the methods described above, and  the matrix 
techniques described in  the section on single-crystal work, 
however, could be used quite effectively to calculate and 
fit line shapes in order to determine the magnetic param- 
eters. Van Reijen has very recently discussed the variation 
of spectra of polycrystalline samples for various values of D. 

Lefebvre3' describes a program for  the calculation of 
the EPR line shapes for glassy-state radicals with an aniso- 
tropy in g and hyperfine structure from nuclei with spin 
1/2. This  program has recently been extended to include 
hyperfine structure from nuclei of spin 1 and 3/2. Young3'I 
described two  programs which evaluate Gaussian or 
Lorentzian lines to  fit EPR spectra. These programs re- 
quire  the various positions of the lines to be entered. 

Free radicals in liquids 
A large class of organic free radicals in liquid solution 
may be described by the spin Hamiltonian of (l), usually 
with S = 1/2 and without zero-field or nuclear electric 
quadrupolar terms. The effective Hamiltonian is further 
simplified by rapid molecular tumbling which averages 
the angular-dependent terms of (22). It may be written as 

where the summation is over magnetic nuclei. Usually the 
Zeeman term is dominant and electronic and nuclear spins 
are separately quantized (Paschen-Back effect). Then the 
first two terms are diagonal in this representation, and the 
final term  contributes second-order corrections which  will 
be ignored below. In fact, most calculations to  date have 
not included second-order shifts in line positions or alter- 
nations in line intensities?' Goldsborough and Koehler;' 
however, wrote and used a program which diagonalized 
for S = 1/2 the complete equation (42) augmented by a 
nuclear Zeeman term; this study does not make the usually 
valid assumption that  the hyperfine interaction is rela- 
tively small. 

At constant frequency, for S = 1/2, there appear lines 
at fields  given  by 

(43) 

where h N  = A,/gP. 52 1 
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Even for fairly  simple  molecules the spectrum (43) can 
be quite complex, so that a number of numerical  tech- 
niques to aid the assignment of these  spectra  have been 
investigated. Since the line  position and intensity  relation- 
ships  implied by (43) are straightforward, such EPR 
spectra  have been  used to study general  methods for as- 
signing  spectra  in  which there were many  more structural 
components than parameters to be  assigned. 

For very  simple spectra of irradiated organic  com- 
pounds Marquardt, Bennett, and Burrel14' have  applied 
a least-squares  analysis to fit theoretical spectra of Gaus- 
sian lines; to test, using statistical criteria of goodness-of- 
fit, the significance of extra  freedom  in the choice of hyper- 
fine parameters; and to refine the parameters for spectra 
with  limited  resolution.  This  technique seems to be  limited 
to cases of relatively  few  experimental  parameters. Pro- 
grams  accomplishing  exactly the same  type of fit  have 
been  described in studies on ultraviolet spectros~opy.~' 
The procedure is almost  identical to  that described for 
polycrystalline  samples. 

Two other classes of numerical  techniques  have been 
found to aid the decomposition of complex  spectra-cor- 
relation  methods and integral tran~formation.4~'~~ The 
numerical  problem to which these  have been addressed 
is quite different from the problems  discussed  above for 
single-crystal and polycrystalline  spectra. In the latter 
cases,  generally the assignment of the spectrum  is  known 
or can  be  easily  deduced as one of a small  number of 
alternatives. For liquid  solutions of free  radicals  with 
hyperfine interactions, it is  often  difficult to choose the 
parameters hi to provide a complete  assignment of the 
spectra. The problem was to find  numerical 
procedures for determining a set of hi which qualitatively 
reproduces the spectrum in question,  assuming the avail- 
ability of a model of the spectrum  relating the positions 
and intensities of the lines to the values of the unknown 
parameters. Of course,  such a model  is not always  avail- 
able; however, it should  be  noticed that the techniques 
studied  generally  depend  only on a few  of the features of 
the model. In (43), absorption lines are spaced at intervals 

which are algebraic  sums of the parameters hi. The param- 
eters  appear as periodic  distances  along the magnetic  field 
axis.  Where Z(H) is the observed  intensity, the autocorre- 
lation integral 

A(h) = Lim - 1 Z(H - h ) Z ( H )  d H  

has  its  local  maxima at periodic  distances of Z(H), so that 
from a plot of A@), algebraic  sums of the hyperfine  param- 
eters may  be  quickly  discovered. The relative  intensities of 
the peaks are a partial guide for removing  from further con- 
sideration  algebraic  sums of parameters (e.g., h,+h,-h,). 

Closely related to autocorrelation is the more powerful 
technique of crosscorrelation; with  whatever current in- 
formation about a spectrum  is  available, a partial model 
Zt(H; hi )  with  undetermined  parameters h:, may  be  con- 
structed; when the undetermined h: take the values hi, 
the cross-correlation 

C(h:) = 1 Zexp t (H)Zt (H;  h:) dH (45) 

has a local  maximum.  Since the method  works when  some 
of the h: are set to zero, successive searches  with fixed 
values of previously  discovered  parameters are possible. 
Typical  results are illustrated by calculations on a sample 
spectrum that corresponds to a hypothetical radical with 
interactions  from three groups of four equivalent protons 
each; the spectrum,  illustrated in Fig. 4, has  parameters 
h,  = 1.91, h, = 0.67, h3 = 0.27. The line at (nlhl + 
nzhz + n3h3) has  intensity proportional to the coefficient 
of h;'h~'h~" in IIi(hT' + hi)4. In Fig. 5, the cross-corre- 
lation graphs are given: the test function Z, used to calcu- 
late 5(a) has five  lines,  positioned as described in the 
previous  sentence,  with h, = h3 = 0 and hl as the inde- 
pendent variable; that used for the correlation 5(b)  has 
25 lines,  with h, = 1.92, h3 = 0 and variable h,;  finally, 
the test function for 5(c) has 125 lines,  which  follow the 
prescribed algorithm, with hz = 1.92, h3 = 0.67 and vari- 
able hl. We find that if the structure of the varying part 
of the test pattern is  qualitatively  similar to some part of 

l T  
T+* 2T -T 

(44) 

m 

"00 

Figure 4 A synthetic ESR spectrum,  used  to  test correlation schemes. = 
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the spectrum being analyzed, it is not very important how 
extensive the test pattern is. The most prominent peaks 
of Fig. 5 correspond to coupling constants hi of the spec- 
trum; subsidiary peaks for sums and differences of the 
hi’s also appear. For more complicated spectra these con- 
fuse the issue to the point that more powerful correlation 
techniques were 

Attempts have been made to use the redundancy in- 
herent in the hyperfine spectrum to discriminate against 
the spurious maxima: the method is related to minimax 
strategy of game theory. Cross-correlations of individual 
lines were  calculated-in each case the minimum corre- 
lation of a set of lines was taken as representative of the 
whole  set.  Success has been limited because a method has 
not yet  been found for corrections forced by overlap of 
lines. For a much extended discussion of these correlation 
methods, with detailed examples, the reader is referred 
elsewhere.43 

Recently, an integral transformation has been de- 
~ c r i b e d ~ ~ ’ ~ ~  with which, in principle, a spectrum Zexpt(H) 
whose lines all have the same shape and width may be 
replotted as  an ideal spectrum, z idea l (H) ,  in which the 
line width is reduced to nil. The  Fourier transform K(w) 
of the kernel K in the integral transformation 

lideal(ff) = 1 K ( H  - H’)zexpt(H’) dH’ 
m 

(46) 
-m 

is the reciprocal of the Fourier transform of a single line; 
i.e., if a single line at  the origin is described by f(H), then 

For Gaussian lines, with half-width W ,  the transformation 
takes the final form 

W 2  d2 
Zideal(H) = 1 - { 4 In 2 dH’ 

For Lorentzian lines a slightly more complicated formula 
occurs.  Because differentiation introduces inaccuracies, 
the practical enhancement of resolution is not unlimited, 
but very  significant improvement has been obtained in a 
number of cases. A very simple example of filtering to the 
fourth derivative term is illustrated in Fig. 6. The method 
is quite insensitive to the assumptions of line shape or 
width; it has been implemented in an analog device 
as well as digitally. Similar devices, empirically based, 
have been  previously described to deconvolute lines 
broadened by slit width effects in infrared spectros~opy.~~ 
The present method, however, does not need to distinguish 
between instrumental and natural broadening mechanisms. 

Computer programs to accomplish each of the functions 
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Figure 5 Cross-correlation for the synthetic spec- 
trum of Fig. 4. 
( a )  5-line  test  function 
(b)  25-line test function. (h = 1.92 G )  
(c)  125-line  test  function (h, = 1.92 G; 

h, = 0.62 G) .  

above have been described.43 In addition there are a num- 
ber of  program^^^'^^'^^ to plot hyperfine spectra from a 
series of assumed hyperfine parameters for comparison 
with experimental spectra. One by Gladney plots spectra of 
Lorentzian lines for radicals with up to twelve groups of 
equivalent nuclei with nuclear spins up to 3/2. 523 
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lattice sums and line shape  studies 

Lattice sums  over  spherical  harmonics are encountered in 
studies of EPR line  shapes4' and also in the estimation of 
crystalline field potentials  required for the theory of  mag- 
netic and optical  properties of paramagnetic  centers in 
crystals.  The  dipole-dipole interaction contribution to the 
second  moment of magnetic  resonance  lines  is given  by 

(Aff')dipole = ?ZS(S 1)g2P2 & 
(49) 

B,+ = - 3 ~ k  [ p y k  - 33, 
where (rk,  -yk) are the distance and direction  cosine of the 
kth magnetic  center from the origin.  Examples of evalu- 
ation of this  expression are given  by  Van  Vleck4' for a 
simple  cubic lattice, by Ibers et ai." for a triclinic  system 
and by Shulman and Sugano5' for the edge  center of a 
simple  cubic  system (the fluorine site in  KNiF,). In the 

-3 3 2 

FigurP 6 Top:  Synthetic ESR spectrum with line- 
width 0.10, line positions 0.25 and 0.35. 
Bottom:  Spectrum filtered to fourth de- 
rivative term. (From Ref. 44, Fig. 4). 

I 

event that the sample  is  polycrystalline, the angular factors 
may  be  averaged and (49) reduces to 

( A H ' ) d i p o l s r  = gg2P2S(S + 1) r,?. (50)  

This  final  sum has been calculated for a number of simple 
arrayssz ; the values  appear  in Table 1. 

The  dipole  sums are sufficient to estimate  line  widths if 
dipolar interactions are dominant. Often it is necessary 
to include  exchange interactions as well.  As pointed out 
by  Van  Vleck4' the isotropic exchange operator J l z s l . S 2  
does not contribute to the second  moment of a resonance 
line but does contribute to  the fourth moment. No simple 
relationship  between dipolar interactions and curve  shapes 
therefore  exists.  Measurements of the second and, in par- 
ticular, the fourth moments in order to determine the ex- 
change interactions are  not very accurate because  they 
depend on the wings  of the line  where the signal  is weak. 
With the theory of Anderson and we is^:^ however,  line 
widths may  be  combined  with the dipole sum calculations 
to estimate  exchange  energies, w,  : 

Here (A@') is the second  moment  calculated  with  dipole 
sums and w I l 2  is the measured  half-width of resonance. 
Recently the results of this method have been substanti- 
ated with EPR measurements of magnetic  ion  pairs as 
crystal  impurities. A cautionary note is  necessary.  Since 
the  convergence  properties  of  dipole  sums are  not simple, 
care is  necessary in their  evaluation and use,  particularly 
for powder  samples for which  size and shape effects can 
be  large.54 

Nijboer and de Wette55  describe  methods of performing 
general  types of sums and present a straightforward  method 
with  good  convergence  properties.  Adler"  discusses  in 
detail the Ewald  method for a lattice s u m  sufficiently 

Table I Dipole sums for simple  lattices Srj-6. 

Lattice Same Ions* Counter Ions* 

Simple  cubic 8.402 
BCC 29.03 
FCC 115.6 
NaCl type 115.6 422.1 
CsCl  type 8.402  20.65 
hCP 14.45 
CaF, type-for Ca 115.6  660.5 

for F 537.7  660.5 

* In units of u-6, where u is the  edge of the unit cell, except 
for hcp crystals, where it is the side of the hexagon. 
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general for all the problems encountered  in  this field. 
His formulae are  in a form very convenient for  pro- 
gramming  any  particular case. Cohen and Keffer5' tabulate 
for a series of points  in K-space the dipole sums for  the 
simple cubic, face-centered-cubic and body-centered-cubic 
arrays, and discuss their behavior for small K (the  con- 
ventional dipole-field sum  has K = 0) for infinite and 
finite lattices. Takahasi5' presents a table of the numerical 
values of a dipole field for a close mesh of locations in 
the unit cell of a cubic lattice. 

A number of computer  programs are available for  the 
evaluation of lattice sums. Weakliem and McClure5' have 
used a program specialized to Al,O,-type geometry for 
crystal field estimations. This  program has recently been 
extended to assemblies of point electric and magnetic di- 
poles by Artman  and Murphy." Shulrnan'l has available 
a dipole sum program which computes the elements of 
the dipole field tensor at an  arbitrary  point  due  to  an 
array of parallel dipoles on  any primitive lattice; complex 
lattices may also be  treated by combining separate calcu- 
lations on simple sublattices. 
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Note  added in proof 

A few further related papers have come to our attention. 
R. L. White, G. F. Herrmann, J. W. Carson, and M. 
Mandel (Phys.  Rev. 136, A231  (1964)) discuss a perturba- 
tion  approach to the spin  Hamiltonian for S-state ions. 
Subtraction of the fields for transitions with M ,  +- Ma - 1 
and - M ,  + 1 + - Ma eliminates the even terms in 
the  perturbation series, so that  the observed spectra may 
be fit to third order. The same  procedure  may  be applied 
to the S = 3/2  Hamiltonian if the Zeeman terms  dominate. 
W. G. Nilsen and S. K.  Kurtz (Phys. Rev. 136, A262 
(1964)) mention a machine  program to fit the parameters 
of an S = 5 / 2  Hamiltonian to experimental results. They 
also describe point  charge calculations of lattice  potentials 
in zinc tungstate. 

Errors in the measurement of moments of Gaussian 
and Lorentzian lines are estimated by H. S. Judeikis 
(J .  Appl.  Phys. 35, 2615  (1964)). 

An IBM 1620 program for Eq. (40) with finite single- 
center linewidth is described by T. Vanngard and R. 
Aasa, Proc. 1st Int. Conf.  Paramagnetic  Resonance, Aca- 
demic Press, New York, 1963; pp. 509. 
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