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Abstract: Algebraic methods that are useful in the reduction of EPR spectra to the magnetic parameters in
the phenomenoclogical Hamiltonian are summarized and programs presently available to accomplish the

necessary computations are described. Among the topics discussed are (i) the calculation of the spectrum of

the complete spin Hamiltonian for single-crystal experiments, with the principal axis system; (ii) the trans-
formation of the Hamiltonian to the magnetic quantization axes, which is convenient for perturbation
theory; (iii) the use of iteration methods to determine the parameters by a least-squares technique; (iv) the
detailed fitting of EPR spectra of polycrystalline or glassy-state magnetic sites; (v) the correlation methods
in the analysis of solution spectra; (vi) a novel integral transformation to improve the resolution; and (vii)

the calculation of the dipolar sum for line width studies.

Introduction

Electron paramagnetic resonance is a powerful technique
for the study of magnetic properties of solids and has seen
extensive use. Some of the systems studied are insulating
or semiconducting single crystals doped with transition
metal ions, defects and color centers in crystals, triplet
states, and free radicals. In general, one is interested in
learning the symmetry of the magnetic species, something
about its wave function, exchange interactions with neigh-
boring magnetic sites, chemical bonding, nuclear hyper-
fine interactions and nuclear quadrupole interactions, and,
for maser application and low temperature application, the
energy levels themselves and the relaxation rates.

In the past most of the analyses have been confined to
simple systems; or the analysis was done at the unique
crystal directions for which closed expressions were pos-
sible; or first- and second-order perturbation theory was
used. Currently computers have become available to the
point that most physicists and chemists have access to one.
Hence more complicated problems can be solved and a
more exact answer is readily available. Many times com-
plicated algebraic expressions can be avoided and per-
turbation theory need not be used. They can, however,

conveniently serve to obtain an approximate answer as
input for computation. Finally the computer, besides
merely being faster than a desk calculator, can be pro-
grammed to direct one toward the proper solution.

Many computer programs have been written and used
for the determination of spin energy levels, and frequently
these are briefly referred to in papers on paramagnetic
resonance. The purpose of this paper is (1) to summarize
some of the mathematical techniques useful in the calcu-
lation of spin energy levels, (2) to list some programs
available for the analysis of EPR spectra, and (3) to en-
courage more complete and accurate spectral analysis in
order to extract as much information as possible.

We shall first discuss the spin Hamiltonian and its appli-
cation to the analysis of single crystals. The simple spin
cases will be discussed and then followed by the more
complicated cases. The use of the least-squares technique
to arrive at the ‘““best fit” for the magnetic parameters will
be outlined. The line shape calculation for powder and
frozen solution (glassy state) will also be discussed.

The analysis of solution spectra is fairly straightforward
but can nevertheless be quite difficult if the number of
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lines is very large. Here the use of the correlation functions
and a simple integral transformation will be illustrated.
Finally, lattice sums and exchange effects will be discussed
in connection with line shapes.

Spin Hamiltonian

The spin Hamiltonian, derived by Abragam and Pryce,””
has the form

3 = BS-g-H + D[S; — S(S + 1)/3]
+ E(S; — S,) + [(a/180) + b][355;,
— 308(S + 1)87 + 2557 — 68(S + 1)
+ 38%(S + 1)°] + (a/48)(S% + SY) -+ S-A-1
+ ol — K1 + 1)/3]. n

Here the first term is the Zeeman term, with g the gyro-
magnetic tensor which may contain an orbital contribu-
tion to the magnetism. The spin operator S may be the
true spin operator or an effective spin operator defined
for the lowest level resulting from the splitting of an orbit-
ally degenerate ground state. Only when one relates the
results to the physics of the problem will the difference
between effective and true spins be apparent. The next
terms are the fine structure terms and are present only
when the spin § > 1/2; the terms in a and b appear only
for S > 2, such as the S-state ions. The last two terms
represent the hyperfine interaction and the nuclear quad-
rupole interaction, respectively. We have neglected the
nuclear Zeemap terms, which give only very small contri-
butions, and the exchange terms, which will be briefly
discussed later.

According to Koster and Statz*® and Bleaney®’ further
terms linear in the Zeeman operator with odd powers of
the spin operators are allowed by symmetry when S >
3/2; these have only rarely been required and will not be
included below. In addition, Griffith* shows that for an
even number of electrons, a ground doublet state may
require a zero-field splitting term of the operator form
GS,. Such a term may be derived from (1) for S = 1 or 2,
if D < 0 and if only the lowest pair of states is observed.
We shall therefore not discuss this further. Finally, in
the rare earth ions J is usually a good quantum number
and the spin Hamiltonian is written in terms of J.

In order to determine the eigenvalues of the Hamil-
tonian (Eq. (1)) it is necessary to evaluate the matrix ele-
ments and then diagonalize the matrix. Two convenient
directions of quantization are usually used: one is the
principal axis system of the g-tensor and the other is
closely related to magnetic field direction. Naturally these
are constrained to give the same spectra by a unitary
transformation, the rotational matrices’ D'(R). We give
both formulations, which are based on the familiar proper-
ties of angular momentum:®
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SIS, M> = S(§+1)|S, M >
S, |S,M>=M|S, M> (2)
S, S, M>=/S(S+1)—MM=*=1)|S,M = 1>

S. = S, + iS,

The matrix elements of the Hamiltonian (1) in the g-
tensor axis system can readily be written. All the elements
follow directly from Eq. (2), except those involving the
magnetic field. The Hamiltonian for these terms is

3 = Bg,,S,H cos 0 + Bg..S.H sin 8 cos ¢
+ Bg,,S,H sin 0 sin ¢, (3)

where 6 and ¢ are the conventional polar angles between
the g-tensor axes and the magnetic field direction. It has
been assumed that the principal axes of the fine structure,
hyperfine structure, quadrupole moment, and g-tensor are
all the same. In general, of course, these axis systems may
differ from each other and from the crystallographic axes.

Bleaney’ transformed the Hamiltonian for the axial
case to the magnetic axis and then applied second-order
perturbation theory to determine the eigenvalues. The
advantage of this technique is that the angular depend-
ences of the various terms are given in a fairly simple
way and only a few small second-order corrections need
be applied in many cases. This technique is quite useful
and has been utilized in the analyses of most reported
EPR spectra of single crystals. Low® has indicated a deri-
vation of Bleaney’s results and Weger and Low" have
extended the perturbation result to include the (S — S2)
term. The perturbation theory is accurate when the Zee-
man energy dominates the fine structure or when the
magnetic field is close to one of the principal axes. The
largest errors occur for # 2 45° and are of the order of
D/ 828H)°. Much of the data in the literature, however,
was derived from measurements along the principal axes
only. Also, if the Hamiltonian consists of the Zeeman
energy alone, the procedures outlined below are unneces-
sary, since the principal values and directions of the g-
tensor may be derived from rotation data about any three
mutually orthogonal axes.’

Since only the perturbation results are given we shall
show the transformed Hamiltonian from which these per-
turbations can be readily verified. When a computer is
used it is naturally convenient to enter all the elements
and obtain an exact solution. We shall treat the various
terms successively.

» Zeeman terms

The Zeeman part of the Hamiltonian in matrix notation
can be written as

5 = BS'gH, 4

where S is the adjoint of S and the principal directions of




g define the axes. It is now convenient to write S and H as

S+1 H+1
S=1|8 | and H = | H, (5)
S_, H_,

in order to conform to the rotation matrices
Sa = F8./12 (6a)
H. = FH./V2. (6b)
The g-tensor in Eq. (4) has the form

g 0 —¢
g= 0 8 0 | (M

g1 = %(gzz + gw)
g = 3(8e — 2uw)

8 = 8ze-

Now an irreducible tensor transforms according to the
relation®

T = 3 Diu(aBv)T.” (8)

which is conveniently written in terms of the M matrix
defined by Rose®

M=D ©)
TV = MT,
where
M(p, a)

e (14cos 0)/2 sino/N/2 e“(1—cos 7)/2
= | —e “sing//2 cos ¢ e’ sin o/ /2

e "(1—cos 0)/2 —sina/ V2 e*(14cos a)/2

(10)

Then we have the transformation

5=8S'gH=8SM'(p, )M(p, 0)gM (6, $)M(6, $)H,

(11)
0

H = M(6, $)H = | H, | and, S’ = M(p, 0)S. (12)
0

Here 8 and ¢ are Euler angles between the principal direc-
tions of g and the magnetic field; p and ¢ are chosen to
set the coefficients of S%; in (11) to zero and define the
convenient spin quantization direction.

g, = (g2, cos’ ¢ + g, sin® ¢)'*

g = (g} cos’ 8§ + g sin® §)'*

Cos p = g,, cosd/g, sinp = g, sinp/g.

coso = g, cos B/g sino = g, sin 8/g (13)
and
3 = g8SyH,. (14)

o Fine structure terms

The fine structure terms are given in matrix notation as
1

where the tensor D is

—D/3 0 —E
o 2p/3 o0 | (16)
—E 0 —D/3

Using the same transformation, M(p, o), we obtain the
following Hamiltonian:

3ps = {D[3g} cos’ 8/g> — 1]/2
+ 3E[(g:, cos’ ¢ — g}, sin” ¢)
~(sin® 6/¢")1/2}{ 82" — S(S + 1)/3}
+ {—D + E(g., cos’ ¢ — g}, sin’ ¢)/g1}
*(gyg1 cos 0 sin 6/2g%)
(s8] + SISL 4 SLSsL+ SIshy
+ iEg,.g,, sin ¢ cos ¢ sin 8{ S, S, + S§.8%
— SIS, — 8.8”}/gg. + {(Dgl sin® 6/4g")
+ E(g:; cos” ¢ — g, sin’ ¢)
(1 + gj cos® 6/g°)/4g1} { S + §7%}
+ iEg..2,, cos ¢ sin ¢g, cos 8/g1g{ S — 87}

(17)

o Hyperfine structure terms

The hyperfine terms follow in a similar manner, except that
we must define a new transformation M(y, x) which re-
lates to the hyperfine interaction axis:

Hure = S'AI = A4..S.1. + A.S.L + 4,S,1, (18)
and
4, 0 —A] 4, = 4.,
A4, = %(Azz + Aw)
A =4 — 4. (19)
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By setting the 4}, (and A4/_,) element to zero we arrive at
the well-known first-order perturbation energy

Ehfs = KMm, (20)
where
K = (Aig; cos’ 8 + B’g} sin” 6)*/g (21a)

B = (4.8, cos’ ¢ + A,,g,sin” ¢)/g., (21b)
cos Yy = A,g cos 8/ Kg siny = Bg, sin §/Kg
COS X = Au.8. cOS@/Bg, sinx = A,g,, sin ¢/Bg,.
The transformed Hamiltonian is then
Hure = KS I, + p(SLI, + SLIL)/2
+ if(SLIL — SLI)/2 — q(SL1. + S§.1,)/2
+ ir(SLIL — SL1L)/2 — tI(Sh + $1)/V2,
(22)
where
p = (4. 4,,/2B) + (4., 4../2K)
r = A,.8:8,8.. COS ¢ sin ¢ cos §
(4, — 42.)/(2BKglg)
q = (A, 4,,/2B) — (A.. 4,./2K)
t = gz cos 0sin 6(42%, — BY/(V2Kg).

o Quadrupole terms

And finally the quadrupole terms of the Hamiltonian are

3ee = 1'QI, (23)
where

-Q0/3 0 0
Q=| 0o 203 o0 | (24)

0 0 -0/3

and the transformed Hamiltonian is
oo = 3O[3 g} cos’ 6/(K'g") — 1]

27 = 11+ 1)/3]

— Q| 4,.Bgyg.. cos 0sin 8/(2K’g")]

N AT (AR AR |

+ O[B% sin” 0/(4K°g)(17 + 17).  (25)
o Calculations for single crystals

Where these various terms of the Hamiltonian are com-
bined and perturbation theory is applied we arrive at
Bleaney’s result”® and Weger and Low’s result® for the
axial and rhombic cases, respectively. In some instances,
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perturbation theory is inadequate; an extreme example,
for which the perturbation theory would not be used, is
provided by the much-studied resonance spectrum of ruby,
for which the zero-field splitting between the levels S, =
+3/2and S, = +1/2(0.76 em™) corresponds to K-band
microwave radiation. Schulz - du Bois'® illustrates how
for irradiation at 9.3 kMc/sec, the transition 1/2 <> —1/2
occurs twice, once for low magnetic field and once for high
magnetic field. The perturbation result, however, has the
transition frequency linear in the magnetic field and pro-
vides for only a single resonance. With a computer, it is
easy to include all the terms of the Hamiltonian and the
formulation in terms of the principal axes (Egs. (1), (2),
and (3)) or in terms of the magnetic axes (Eqgs. (2), (13),
a4, A7), (22), and (25)) can be used.

A number of calculations for ruby (Cr™"":Al,O;) have
been done for maser application. Schulz - du Bois'® used
the magnetic axis representation for the axial case with
no hyperfine terms. The effect of the anisotropy in the
g-tensor on the fine structure terms was, however, neg-
lected. Stahl-Brada and Low" used the principal axis
representation for the § = 3/2 case and present tables of
eigenvalues and matrix elements of S” and S for intensity
calculations at various selected values of the fine structure
terms. Chang and Siegmann'® have an extensive set of
tables for ruby. Fox and Swalen'® have written a program
to solve for the eigenvalues, eigenvectors, and transition
moments for the § = 3/2 case with the magnetic field
representation. In addition a provision is provided for a
“best fit” to experimental data. This point will be dis-
cussed below. Gladney'* has written a general program
for the cases from S = 1/2 to S = 5/2 with no hfs terms.
He used the principal axis representation and treated the
rhombic case. Gerritsen and Sabisky'® report a program
for the S = 2 case in which the energy levels are calculated.

From, Dorain, and Kikuchi'® recently report the use of
computer programs for S = 3/2 which adjust the values
of g, D, E, A, and the parameters for the hfs from ligand
atoms to fit the observed magnetic fields measured at
unique crystal directions. They then calculated the various
resonances as a function of the angles.

No doubt there are many more programs written to
determine the eigenvalues and eigenvectors. There are four
additional point:. worth mentioning:

1) In the usual EPR experiment one varies the magnetic
field strength and keeps the frequency constant. Hence
the difference in eigenvalues as a function of magnetic
field must be formed which corresponds to the microwave
frequency. In the programs of Fox and Swalen'® and of
Gladney, a technique involving Newton’s method is
used. The derivative dv/dH is calculated by differentials
for small displacements.

H(n+1) — H(n) + (VO i v("))/(dv/dH)("). (26)




The n 4+ 1°* value of magnetic field can be calculated
from the n'® value, the microwave frequency (v,), the
eigenvalue difference (»'), and the derivative of the eigen-
value difference with respect to magnetic field. This proc-
ess is iterated until convergence, which is very fast for pairs
of energy levels that are almost linear. Because of crossing
situations or large curvature various magnetic fields should
be used as starting points for the iteration in order to
ensure that all the resonance conditions between a pair
of levels are calculated. Occasionally an oscillation occurs
where two levels approach a resonance condition and then
are deflected away by some interaction. In our experience
convergence occurs within ten iterations or not at all. A
closer investigation of the eigenvalues can show if oscil-
lation is occurring.

2) A “best fit” of experimental values can be found
very conveniently by the computer and has been incor-
porated. The magnetic field for resonance depends on the
frequency, crystal angles, and the various magnetic param-
eters to be determined. By calculating the derivatives of
the magnetic field with respect to each magnetic parameter,
a set of linear equations can be written—one for each
transition observed at each different set of angles. By
a least-squares technique, a set of corrections to the
magnetic parameters can be determined and this process
repeated until the sum of residuals squared is a minimum.
oH" dH' _9H'

o, AN T g AR G

Axn = (H;bs - H:;ulc),

(27)
i = 1 to m, where m is the number of transitions observed.

3) In the case of rhombic symmetry in either representa-
tion the terms are complex. The complex eigenvector
problem,

Cx = Ax,

where C = A + B (28)
and X=u-+ i,

is equivalent to the simultaneous real eigenvector problems,
Au — By = My and (29)
Bu + Av = v, (30)
whose solutions occur in degenerate pairs, (t) and <_ v) ,
so that the diagonalization of a Hermitian n X n ma?rix

may be accomplished by selecting half the eigenvalues
and vectors of a related 2n X 2n real symmetric matrix.

4) The intensities of the transitions are given by:

Wi = [Gilse i) )/ k, (31

where (i|3C’|j) is the matrix element of the perturbation
from the microwave field, H,, inducing the transition
from i to j. The term f(») is the line shape function nor-
malized so the integral is equal to unity. Equation (31) can
be written more conveniently:

W = (%%) IS (32)

where S, is the component of spin along the space-fixed
axis of the microwave field and is a linear combination
of the components along the principal axes:

S, = aS, + bS, +¢cS,; (33)

here a, b, and ¢ are the direction cosines. The actual
value depends on the crystal orientation and the direction
of H,. Frequently the matrix elements of |{j|S’|i)|* are
calculated and assumed to be equivalent to |(j|S/|i)|".
This could be incorrect and Eq. (33) should be used. In
the principal axis system, the perturbation 3¢’ in the Zee-
man coordinate system must be transformed to the princi-
pal axis system by the inverse of M (Eq. (10)). In either
case, however, for orthorhombic symmetry an additional
angle is necessary to denote the rotation about the new
z axis, i.e., the magnetic field axis, giving the orientation
of the x’ and y’ axes. For example, if H, is perpendicular
to z/, then

S: = cos’ ¥S!® + sin® vS7°. (34)

Polycrystalline samples

The EPR spectrum of a polycrystalline or glassy-state
sample involves a spatial average over different magnetic
site orientations. The determination of magnetic param-
eters has been discussed by a number of authors, whose
usual method requires some assumption about the line
shape of a single magnetic site. Considerable information
is available from these spectra; detailed computation, to
plot estimates of the spectrum from assumed parameters,
has been useful, particularly in the more complex cases.
However, Weil and Hecht'” point out that if the line width
of a single site is small compared to differences in H,
and H,, most of the desired information, including line
shape, is available near cos’d = 1 in the form of absorp-
tion envelopes in the normal first derivative trace.

The simplest case is that of axial anisotropy in g with-
out fine structure or hyperfine structure terms. Bleaney'®
and Sands'® considered this situation and assumed a delta
function for the line shape of each crystallite; the absorp-
tion is
I(H) « [ {(H — H')sin 8 d8, (35)

where H’, the line center, depends on the orientation of
the magnetic site. For f as a delta function
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d(cos 6)

I(H) o« JH [ (36)
where H lies between H, and H,.

Since

hy = (g cos’ § + g\ sin® 6)'’8H, (37)
then

I(H) « H(HL — H)™”, (38)

where H, = hv/g, (3. This crude procedure gives only an
approximate relation to the expected line shape and can
be improved. Searl, Smith, and Wyard®; Chirkhov and
Kokin™; and Ibers and Swalen®® have included a Lorentz-
ian line shape for j(H — H’) and a variation in the tran-
sition probability according to Bleaney.”® The absorption

INTENSITY

MAGNETIC FIELD IN GAUSS

Figure 1 Caleculated EPR line shapes for polycrys-
talline samples. Lorentzian linewidths: (1)
1 G, (2) 10 G, (3) 50 G, (4) 100 G; H, =
3600 G, H, = 3300 G. (From Ref. 22,
Fig. 1).

Figure 2 EPR signal from K;CrOg at 20°C. H, =
3512.1 G, H, = 34298 G, b = 23.5. (From
Ref. 22, Fig. 3).

_____ EXPERIMENTAL
CALCULATED

g=2
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| |
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MAGNETIC FIELD IN GAUSS
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Figure 3 Powder EPR Specirum of CuF.:
0—0—0—0—0 Experimental spectrum
————————— Calculated spectrum.

H, = 2710 G; H, = 3154 G; W = 13.0 G.

curves for various Lorentzian line widths was given in
Ref. 22 and is shown in Fig. 1. Equation (36) represents
the limiting case. If one combines the algorithm for the
expected absorption spectrum as a function of a number
of parameters with the “best fit” procedure described for
single-crystal spectra, an iterative program has been de-
vised to improve the estimated parameterization.”*** The
only change from the previous procedure is that the fit
is to a large number of observed intensities at discrete
intervals of field rather than to a set of resonance fields
at specified angles. As examples there are shown, in
Figs. 2 and 3, results for powder samples of K;CrO; and
CuF,.

The extension to complete anisotropy (g. # g, & &.)
is possible, but a numerical integration would no doubt
be necessary. Kneubiihl® has treated this problem using
the delta-function approximation. As far as we know no
computer program has been written for this situation;
however, it would be straightforward by computing H for
various values of # and ¢ and then numerically integrating
Eq. (35) converted to a double integral by adding the ¢
dependence.

1) « [ as [ KO0 0iH — 50, 9)

-sin 6 d6 (39)

Here K is the transition probability which depends on 6
and ¢ and ¢, the angle between the molecular axis and
the oscillating magnetic field H,. Essentially one generates
a set of values of magnetic field for each value of 6 and ¢
and the envelope gives the line shape.

The inclusion of hyperfine structure terms was done by




Sands,”® Blinder,”® Neiman and Kivelson,” and Gers-

mann and Swalen.?® A delta-function line shape was used
in each case. In addition, Blinder used a Gaussian func-
tion but restricted the problem to an isotropic g value.
For the work in Ref. 28 a simple computer program was
written and used, with the Hamiltonian for an axial case
with hfs

X = g8S.H, + g.B8(S.H. + S,H,) + 48.1,

+ Ay (S.I. + S,1) (40)
or transformed to the magnetic field direction, in first order,
E = gBHM + KMm. (41)

Since g and K depend on the polar angle, 6, it is relatively
straightforward to calculate the magnetic field as a func-
tion of 6. With the delta-function approximation, Eq. (36)
will lead to an intensity calculation.

The current interest and research in triplet state molecules
started with the single-crystal work on naphthalene by
Hutchison and Mangum.?! Van der Waals and de Groot™
then observed the Am = 42 transitions in the glassy (ran-
dom orientation) state and Kottis and Lefebvre®* wrote a
computer program which evaluated the line shape by simu-
lating the delta function by a Gaussian function. Although
the Am = =1 transitions are hard to detect because they
are spread over a large magnetic field, the Am = 42 are
much less angle-dependent. Also, because the Zeeman
terms and the fine structure terms are of the same order of
magnitude there is sufficient intensity to be observed.
Yager, Wasserman and Cramer®® have, however, observed
also the Am = =1 transitions with the triplet state mole-
cules randomly oriented and have pointed out that the
edges of the line will be observable in a derivative record-
ing. Kottis and Lefebvre®™ have recently extended their
earlier work on triplet state molecules to include the Am =
-1 transitions and discuss the analysis of these spectra in
extensive qualitative and quantitative detail. The computer
program by Kottis and Lefebvre®'® to calculate the line
shape diagonalizes the 3 X 3 matrix, including the Zee-
man terms and the fine structure terms in the crystal
axis system by expanding the secular determinant into
a cubic equation. The eigenvalues are then the roots
of this equation which is solved by conventional methods.
Although the reduction to a cubic equation is a good
method, here it suffers from the disadvantage that it is
difficult to extend to larger cases, e.g., the inclusion of
hfs. We, therefore, recommend the calculation of magnetic
fields and the transition probabilities for various angles—
the grid being set by the desired accuracy—and then a
numerical integration of Eq. (39) with a Lorentzian or
Gaussian line shape fit to reproduce the whole line shape.
Snyder and Kornegay®” have recently described a program

performing this calculation. By this method, all the deter-
minable interaction terms can be included and matrix
techniques can be used.

The extension of these techniques to higher spin cases
is reasonably straightforward. Singer®* considered the line
shape for 1/2 «— — 1/2 transition in the S = 3/2 case
with D >> gBH. Van Reijen and Swalen®® considered the
other approximate case, i.e., D < gB8H. Computer tech-
niques with the methods described above, and the matrix
techniques described in the section on single-crystal work,
however, could be used quite effectively to calculate and
fit line shapes in order to determine the magnetic param-
eters. Van Reijen has very recently discussed the variation
of spectra of polycrystalline samples for various values of D.

Lefebvre® describes a program for the calculation of
the EPR line shapes for glassy-state radicals with an aniso-
tropy in g and hyperfine structure from nuclei with spin
1/2. This program has recently been extended to include
hyperfine structure from nuclei of spin 1 and 3/2. Young®”
described two programs which evaluate Gaussian or
Lorentzian lines to fit EPR spectra. These programs re-
quire the varijous positions of the lines to be entered.

Free radicals in liquids

A large class of organic free radicals in liquid solution
may be described by the spin Hamiltonian of (1), usually
with S = 1/2 and without zero-field or nuclear electric
quadrupolar terms. The effective Hamiltonian is further
simplified by rapid molecular tumbling which averages
the angular-dependent terms of (22). It may be written as

3 = gBHS, + D, AyS.Iy,

N

+ 32 AN(S. I + S_Iv.), (42)

where the summation is over magnetic nuclei. Usually the
Zeeman term is dominant and electronic and nuclear spins
are separately quantized (Paschen-Back effect). Then the
first two terms are diagonal in this representation, and the
final term contributes second-order corrections which will
be ignored below. In fact, most calculations to date have
not included second-order shifts in line positions or alter-
nations in line intensities.*®* Goldsborough and Koehler,*
however, wrote and used a program which diagonalized
for § = 1/2 the complete equation (42) augmented by a
nuclear Zeeman term; this study does not make the usually
valid assumption that the hyperfine interaction is rela-
tively small.

At constant frequency, for S = 1/2, there appear lines
at fields given by

H = HO + Z hNINz9 (43)
N

where iy = Ay/gB.
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Even for fairly simple molecules the spectrum (43) can
be quite complex, so that a number of numerical tech-
niques to aid the assignment of these spectra have been
investigated. Since the line position and intensity relation-
ships implied by (43) are straightforward, such EPR
spectra have been used to study general methods for as-
signing spectra in which there were many more structural
components than parameters to be assigned.

For very simple spectra of irradiated organic com-
pounds Marquardt, Bennett, and Burrell*® have applied
a least-squares analysis to fit theoretical spectra of Gaus-
sian lines; to test, using statistical criteria of goodness-of-
fit, the significance of extra freedom in the choice of hyper-
fine parameters; and to refine the parameters for spectra
with limited resolution. This technique seems to be limited
to cases of relatively few experimental parameters. Pro-
grams accomplishing exactly the same type of fit have
been described in studies on ultraviolet spectroscopy.*
The procedure is almost identical to that described for
polycrystalline samples.

Two other classes of numerical techniques have been
found to aid the decomposition of complex spectra—cor-
relation methods and integral transformation.*** The
numerical problem to which these have been addressed
is quite different from the problems discussed above for
single-crystal and polycrystalline spectra. In the latter
cases, generally the assignment of the spectrum is known
or can be easily deduced as one of a small number of
alternatives. For liquid solutions of free radicals with
hyperfine interactions, it is often difficult to choose the
parameters /; to provide a complete assignment of the
spectra. The problem studied**** was to find numerical
procedures for determining a set of /; which qualitatively
reproduces the spectrum in question, assuming the avail-
ability of a model of the spectrum relating the positions
and intensities of the lines to the values of the unknown
parameters. Of course, such a model is not always avail-
able; however, it should be noticed that the techniques
studied generally depend only on a few of the features of
the model. In (43), absorption lines are spaced at intervals

which are algebraic sums of the parameters 4;. The param-
eters appear as periodic distances along the magnetic field
axis. Where I(H) is the observed intensity, the autocorre-
lation integral

by

A(h) = Limi

Lim 52 | I(H — W) I(H) dH (44)

has its local maxima at periodic distances of I(H), so that
from a plot of A(h), algebraic sums of the hyperfine param-
eters may be quickly discovered. The relative intensities of
the peaks are a partial guide for removing from further con-
sideration algebraic sums of parameters (e.g., A,-+h—h).

Closely related to autocorrelation is the more powerful
technique of crosscorrelation; with whatever current in-
formation about a spectrum is available, a partial model
I,(H; hf) with undetermined parameters A7, may be con-
structed; when the undetermined h. take the values #,,
the cross-correlation

c) = [ L BVILCH; 1) aH )

has a local maximum. Since the method works when some
of the &) are set to zero, successive searches with fixed
values of previously discovered parameters are possible.
Typical results are illustrated by calculations on a sample
spectrum that corresponds to a hypothetical radical with
interactions from three groups of four equivalent protons
each; the spectrum, illustrated in Fig. 4, has parameters
hy = 191, hy, = 0.67, h; = 0.27. The line at (n.h, +
nyh, + nshs) has intensity proportional to the coefficient
of KEehy in IR + k)% In Fig. 5, the cross-corre-
lation graphs are given: the test function I, used to calcu-
late 5(a) has five lines, positioned as described in the
previous sentence, with #, = h; = 0 and /, as the inde-
pendent variable; that used for the correlation 5(b) has
25 lines, with /i, = 1.92, A; = 0 and variable £, ; finally,
the test function for 5(c) has 125 lines, which follow the
prescribed algorithm, with A, = 1.92, h; = 0.67 and vari-
able A;. We find that if the structure of the varying part
of the test pattern is qualitatively similar to some part of

Figure 4 A synthetic ESR spectrum, used to test correlation schemes.
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the spectrum being analyzed, it is not very important how
extensive the test pattern is. The most prominent peaks
of Fig. 5 correspond to coupling constants /; of the spec-
trum; subsidiary peaks for sums and differences of the
h;’s also appear. For more complicated spectra these con-
fuse the issue to the point that more powerful correlation
techniques were sought.*?

Attempts have been made to use the redundancy in-
herent in the hyperfine spectrum to discriminate against
the spurious maxima: the method is related to minimax
strategy of game theory. Cross-correlations of individual
lines were calculated—in each case the minimum corre-
lation of a set of lines was taken as representative of the
whole set. Success has been limited because a method has
not yet been found for corrections forced by overlap of
lines. For a much extended discussion of these correlation
methods, with detailed examples, the reader is referred
elsewhere.*

Recently, an integral transformation has been de-
scribed*®** with which, in principle, a spectrum I.,.(H)
whose lines all have the same shape and width may be
replotted as an ideal spectrum, I;4..:(H), in which the
line width is reduced to nil. The Fourier transform K(w)
of the kernel KX in the integral transformation

laol) = [ K(H = B L) art (46)

is the reciprocal of the Fourier transform of a single line;
i.e., if a single line at the origin is described by f(H), then

K(w) = [ f_ : dHei“”f(H):l_l. (47)

For Gaussian lines, with half-width W, the transformation
takes the final form

W&
Laon(H) = {1 " 41n2dH
w* d*

-+ : '}Iexpc(H)- (48)

32(n 2)° dH'
For Lorentzian lines a slightly more complicated formula
occurs. Because differentiation introduces inaccuracies,
the practical enhancement of resolution is not unlimited,
but very significant improvement has been obtained in a
number of cases. A very simple example of filtering to the
fourth derivative term is illustrated in Fig. 6. The method
is quite insensitive to the assumptions of line shape or
width; it has been implemented in an analog device
as well as digitally. Similar devices, empirically based,
have been previously described to deconvolute lines
broadened by slit width effects in infrared spectroscopy.*’
The present method, however, does not need to distinguish
between instrumental and natural broadening mechanisms.

Computer programs to accomplish each of the functions
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Figure 5 Cross-correlation for the synthetic spec-
trum of Fig. 4.
(a) S5-line test function
(b) 25-line test function. (h, = 1.92 G)
(¢) 125-line test function (h, = 1.92 G;
hy = 0.62 G).

above have been described.*® In addition there are a num-
ber of programs*®'***” to plot hyperfine spectra from a
series of assumed hyperfine parameters for comparison
with experimental spectra. One by Gladney plots spectra of
Lorentzian lines for radicals with up to twelve groups of
equivalent nuclei with nuclear spins up to 3/2.
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Lattice sums and line shape studies

Lattice sums over spherical harmonics are encountered in
studies of EPR line shapes*® and also in the estimation of
crystalline field potentials required for the theory of mag-
netic and optical properties of paramagnetic centers in
crystals. The dipole-dipole interaction contribution to the
second moment of magnetic resonance lines is given by

(AH 15010 = 3S(S + 1)g°6° 2 Bi
g (49)
B, = =3 [3v: — 31,

where (7, vv,) are the distance and direction cosine of the
k' magnetic center from the origin. Examples of evalu-
ation of this expression are given by Van Vleck*® for a
simple cubic lattice, by Ibers et al.* for a triclinic system
and by Shulman and Sugano®’ for the edge center of a
simple cubic system (the fluorine site in KNiF;). In the

Figure 6 Top: Synthetic ESR spectrum with line-
width 0.10, line positions 0.25 and 0.35.
Bottom: Spectrum filtered to fourth de-
rivative term. (From Ref. 44, Fig. 4).
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event that the sample is polycrystalline, the angular factors
may be averaged and (49) reduces to

(AH giporar = 3°B°S(S + 1) ; i’ (50)
This final sum has been calculated for a number of simple
arrays’”; the values appear in Table 1.

The dipole sums are sufficient to estimate line widths if
dipolar interactions are dominant. Often it is necessary
to include exchange interactions as well. As pointed out
by Van Vleck*® the isotropic exchange operator J;,S,-S,
does not contribute to the second moment of a resonance
line but does contribute to the fourth moment. No simple
relationship between dipolar interactions and curve shapes
therefore exists. Measurements of the second and, in par-
ticular, the fourth moments in order to determine the ex-
change interactions are not very accurate because they
depend on the wings of the line where the signal is weak.
With the theory of Anderson and Weiss,”® however, line
widths may be combined with the dipole sum calculations
to estimate exchange energies, w,:

(A = 2w, 50, . (51)

Here (Aw’) is the second moment calculated with dipole
sums and w,,; is the measured half-width of resonance.
Recently the results of this method have been substanti-
ated with EPR measurements of magnetic ion pairs as
crystal impurities. A cautionary note is necessary. Since
the convergence properties of dipole sums are not simple,
care is necessary in their evaluation and use, particularly
for powder samples for which size and shape effects can
be large.**

Nijboer and de Wette®® describe methods of performing
general types of sums and present a straightforward method
with good convergence properties. Adler®® discusses in
detail the Ewald method for a lattice sum sufficiently

Table 1 Dipole sums for simple lattices 3r;=®.

Lattice Same Ions* Counter Ions*
Simple cubic 8.402
Bee 29.03
Fce 115.6
NaCl type 115.6 422 .1
CsCl type 8.402 20 .65
hep 14 .45
CaF, type—for Ca 115.6 660 .5
for F 537.7 660 .5

* In units of a~%, where g is the edge of the unit cell, except
for hep crystals, where it is the side of the hexagon.




general for all the problems encountered in this field.
His formulae are in a form very convenient for pro-
gramming any particular case. Cohen and Keffer®” tabulate
for a series of points in K-space the dipole sums for the
simple cubic, face-centered-cubic and body-centered-cubic
arrays, and discuss their behavior for small X (the con-
ventional dipole-field sum has K = 0) for infinite and
finite lattices. Takahasi®® presents a table of the numerical
values of a dipole field for a close mesh of locations in
the unit cell of a cubic lattice.

A number of computer programs are available for the
evaluation of lattice sums. Weakliem and McClure® have
used a program specialized to Al,O;-type geometry for
crystal field estimations. This program has recently been
extended to assemblies of point electric and magnetic di-
poles by Artman and Murphy.*® Shulman®" has available
a dipole sum program which computes the elements of
the dipole field tensor at an arbitrary point due to an
array of parallel dipoles on any primitive lattice; complex
lattices may also be treated by combining separate calcu-
lations on simple sublattices.
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Note added in proof

A few further related papers have come to our attention.
R. L. White, G. F. Herrmann, J. W. Carson, and M.
Mandel (Phys. Rev. 136, A231 (1964)) discuss a perturba-
tion approach to the spin Hamiltonian for S-state ions.
Subtraction of the fields for transitions with M, <« M, — 1
and — M, + 1 «— — M, eliminates the even terms in
the perturbation series, so that the observed spectra may
be fit to third order. The same procedure may be applied
to the S = 3/2 Hamiltonian if the Zeeman terms dominate.
W. G. Nilsen and S. K. Kurtz (Phys. Rev. 136, A262
(1964)) mention a machine program to fit the parameters
of an § = 5/2 Hamiltonian to experimental results. They
also describe point charge calculations of lattice potentials
in zinc tungstate.

Errors in the measurement of moments of Gaussian
and Lorentzian lines are estimated by H. S. Judeikis
(J. Appl. Phys. 35, 2615 (1964)).

An IBM 1620 program for Eq. (40) with finite single-
center linewidth is described by T. Vinngard and R.
Aasa, Proc. Ist Int. Conf. Paramagnetic Resonance, Aca-
demic Press, New York, 1963; pp. 509.
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