
Paul M. Marcus 

Calculation of the Capacitance of a 
Semiconductor  Surface, with Application to Silicon 

Abstract: The electrostatic problem of finding  the  surface  capacitance of a plane semiconductor  surface as 
a function of applied voltage is formulated and solved.  The solution takes  account of the space charge dis- 
tribution in the  semiconductor, of a surface  dielectric  layer, of the possible  presence of surface  states, and 

of  the exact  Fermi-Dirac  statistics for the  charge  carriers. The macroscopic  electrostatic problem  and  micro- 

scopic electronic  description  are  kept  separate,  convenient  reduced  units are introduced, and the differential 

capacitance  characteristic is expressed in a simple  parametric  form. For  bands of normal form, and for a sin- 

gle-level acceptor or donor  surface state, the  reduced  characteristic  depends  on eight reduced quantities for 

general statistics, and on  six for the  simpler  Boltzmann  limit;  the latter include  three  quantities  describing 

the  surface  state  level,  one for the  dielectric  layer,  one bulk semiconductor  parameter, and one  contact po- 

tential constant which  shifts  the  voltage scale. Explicit  calculations  are  made for silicon at 293°K for various 

doping levels,  dielectric  layers, and single-level surface  states; the variation of  the  characteristic dip in the 
capacitance is exhibited as a function of these  parameters. 

1. Introduction 

The present  work obtains the static capacitance of a plane 
semiconductor  surface and dielectric  layer,  Fig. 1, as a 
function of applied  voltage, and presents a series of these 
static capacitance  characteristics for silicon as  an aid  in 
interpretation of capacitance  measurements on silicon. 
The calculation takes due account of the special variation 
of the space  charge in the semiconductor as  the potential 
varies,  which  has  been  studied in numerous previous 

and which leads to the well-known  decrease  in 
the capacitance when the majority  carrier concentration 
diminishes5-’.  Such capacitance  characteristics  have been 
of direct  interest in the device  called the surface var- 
actor”’; an example of their use in the interpretation of 
the structure of thin films of silicon  dioxide on silicon  is 
given in a recent  paper by D. P. Seraphim et al.’ 

This  paper  extends the practical side of surface  capaci- 
tance  calculations by exhibiting the shape of capacitance 
characteristics for Si, as the doping level  is  systematically 
varied, and showing the effects  of sharp surface states of 

496 various  kinds,  strengths, and positions on these  shapes. 
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The theoretical  side of surface  capacitance  calculations 
is  somewhat  extended and simplified  here  by the follow- 
ing  features of the discussion, which is self-contained: 
(1) The macroscopic  electrostatic  problem  is kept separate 
from the microscopic  electronic  description so that the 
problem and its solution can be completely formulated 
without  describing the band structure or mentioning the 
Fermi level. (2) A systematic  simplification is achieved by 
the immediate introduction of convenient  reduced  (dimen- 
sionless)  variables and working  with them throughout; 
this  permits  easy count of the number of independent 
parameters which  specify a complete  reduced character- 
istic, and contributes to their classification as bulk or 
intrinsic,  semiconductor,  dielectric, or metal electrode 
parameters,  etc. (3) A discussion  is  given  of the contact 
potential constant which appears as an additive constant 
in the voltage  scale, and it is shown to depend on  the work 
function of both the metal  electrode and the semicon- 
ductor and on the free-surface  value of the relative  surface 
potential. (4) The general Fermi-Dirac statistics are re- 



M E T A L   D I E L E C T R I C  
SEMICONDUCTOR it would in a constant potential. The simplification that 

SURFACE BULIC 
occurs in the low-density approximation when the  Fermi- 

The results for general statistics depend on  just two  addi- 
tional dimensionless intrinsic parameters of the semicon- 
ductor  (for a conduction and valence band of normal 
shape). 

Section 4 gives explicit formulas for u(u,) for  the two 
simplest surface state distributions, namely a single accep- 
tor  or a single donor level. Three  parameters characterize 

LAYER  REGION Dirac functions are replaced by exponentials is then given. 

Figure I Configuration for capacitance  calculation 
showing metal electrode,  dielectric layer, 
and semiconductor slab, with external 
circuit  connections. The  surface charges 
urn and u and space charge q are indicated, 
as well as the  division of  the  semiconductor 
into a surface region and a bulk region, the 
drop  in potential across the dielectric P / c d  
and across the  surface layer v,, and the char- 
acteristic  parameters for  each  material. 

tained throughout  the formulation. Although general 
statistics are  not required to discuss silicon at 293'K, the 
formulation is then available for  application to cases 
which require it. The formulation is not much more com- 
plicated than  for Boltzmann statistics;  it requires only a 
simple generalization of the space charge functions of the 
Boltzmann case.g 

Section 2 gives the basic definition of the reduced capaci- 
tance c and  other quantities, and then deduces a simple 
parametric  representation of c and  the reduced applied 
voltage u as functions of the relative surface  potential of 
the semiconductor u, (relative to bulk material). The dis- 
cussion here is simple macroscopic electrostatics, hence 
no mention of the  band structure  is needed or made. 
However, the complications of the relation between space 
charge and potential in the semiconductor, which bring 
in the electron statistics, are deferred to Section 3, and 
merely summarized in  the  total space charge function 
F(u.). Explicit discussion of the contact  potential differ- 
ence,  which enters the relation between u and u,, is given 
within the macroscopic framework. Formal account is 
taken of the possible presence of a surface charge in sur- 
face states on  the semiconductor by means of a reduced 
surface charge density function a(v,). 

Section 3 gives the explicit formula for F(u,) using the 
general Fermi-Dirac statistics for the electron distribu- 
tion;  the macroscopic and microscopic problems are re- 
lated by the usual (Fermi-Thomas) assumption that  the 

either of these distributions, namely the strength, position, 
and degeneracy factor of the surface states. These very 
simple concentrated  distributions give the sharpest effects 
on  the problem, i.e., the most abrupt changes in  the c(u) 
curve. In  the absence of more specific knowledge, they are 
used to obtain possible extreme forms of the c(u) curves. 

Section 5 specializes the discussion to silicon, gives 
typical values of the eight parameters  entering directly 
into  the c(u) relation and,  in Figs. 2 through 9, exhibits the 
behavior of c(u) as certain of these parameters are syste- 
matically varied, particularly the bulk  carrier  concentra- 
tion. Table 1 presents corresponding values of the five 
equivalent parameters that describe the bulk carrier con- 
centration  (at 293°K); Table 2 presents various quantities 
characterizing the minimum in  the potential as  the bulk 
carrier concentration varies from strongly n-type to 
strongly p-type, and Fig. 10 plots the minimum capaci- 
tances. The effects  of a single-level acceptor or donor 
surface state of various strengths at various energy levels 
on c(u) are shown in Figs. 4, 8, and 11. 

2. Parametric formula for the  capacitance 
characteristic 

The reduced differential capacitance per unit  area, c, of 
a thick plane semiconducting slab  in contact with a plane 
metal electrode through a dielectric layer is defined by 

1 dZm - dum 
c = - - - - -  

(e/-yLD) d V do ' 
- 

where : 

I;" = charge per unit area  on  the metal electrode 
(coulombs/meter'); 

V = applied voltage (volts) = potential of the electrode 
with respect to the interior (bulk region) of the 
semiconductor. (The bulk region is far enough 
from the surface to be beyond the space charge 
region, hence is uncharged); 

E = dielectric constant of the semiconductor (dimen- 
sionless); 

y = dimensional constant in Poisson's equation, 

electron distribution at a point depends on  the local point d24 - -2 
value of the electrostatic potential in the same way that 

" 

d X 2  - E 
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in  which C#J = electrostatic potential (volts), p = 
space  charge  density (coul/meter3), and y = 1.131 X 
lo*' volt meter/coul in Gaussian MKSA units. 

L D  = the intrinsic  Debye  length of the semiconductor 
(meters),  defined by 

in which kT = absolute temperature in  energy  units = 
4.0446 X 10-21(T0K/293)  joules, e = the electronic 
charge (1.6021 X 1O-l' couls), and ni = a suitable 
reference  number  density of electrons, which  will 
later be  defined  definitely  (see  (22)), but will  essen- 
tially  be the intrinsic  number  density of electrons 
(or holes)  in the semiconductor. 

which  is the reduced  charge  per  unit area on metal elec- 
trode (dimensionless)  where  2nieLD(coul/meterZ)  has  been 
used  as the unit of surface  charge  density. 

u = -  e V  
kT ' 

which  is the reduced  applied  voltage  (dimensionless). 

The general relation between c and u may  be  expressed 
implicitly  by  giving  each in terms of the surface potential 
of the semiconductor, in the form 

= u, + -2- + w, F - u  
C 

and 

-=df" 1 1  1 
c c F' - U" 

where u, = reduced  surface potential of the semiconductor 
with  respect to the bulk (=e(+~,,,,,,,, - + ( b u l k ) ) / k T ) .  
F(u,) = - 4  where q = the total reduced  space  charge  in 
the semiconductor  per unit area of surface = s$ p(x)dx/ 
(2nieLD) (explicit  expressions for F for general Fermi 
statistics and for Boltzmann  statistics will be given in 
Section 3 in terms of various intrinsic and bulk param- 
eters); u(u,) = reduced  charge  per unit area in surface 
states on  the semiconductor  surface  (explicit  expressions 
for acceptor or donor states at a single  level  will  be  given 
in Section 4); and 

d = edLD c - -  
ed 

is the reduced  capacitance  per unit area of the dielectric 
layer, (~~/yd)/(e/yL~),  where ed is the dielectric constant 
and d is the thickness of the dielectric  layer. 
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The  charge  per  unit area on  the metal  electrode, which 
balances the space  charge and surface  charge on the semi- 
conductor, is therefore 

urn = F -  U .  (9) 

The total potential rise u in going from the bulk region 
of the semiconductor to the bulk region  (i.e., the interior) 
of the metal,  which is given in Eq. (6), is thus made up 
of a rise u. to the surface of the semiconductor, a rise 
(F  - u)/cd across the dielectric  layer, and a part w that 
is  independent of the applied  voltage.  See  Fig. 1. This 
constant part w, which is essentially a contact potential 
difference,  may  be  evaluated by considering the behavior 
of the potential when the metal  electrode and semicon- 
ductor are in their isolated neutral states, i.e., their free- 
surface states in which each  is  separately neutral and no 
charge  has yet  been  allowed to flow from one to the other 
to bring their mobile  charge distributions into statistical 
equilibrium,  with  equalization of the electrochemical 
potentials. In this isolated neutral state u equals the (re- 
duced)  work per unit charge carried from the semicon- 
ductor interior to the metal interior, which equals the 
work  per unit charge from semiconductor interior to ex- 
terior minus the work  per unit charge  from  metal interior 
to metal  exterior, or 

u = - W a c  + wm, (10) 

where 

w" = eXac/kT,  wm = eXm/kT, (1 1) 

xsc  = the work function of the semiconductor = work 
in carrying unit negative charge from interior to exterior, 
and xm is the similar quantity for the metal. Note that the 
exteriors of both metal and semiconductor are at the same 
potential everywhere  because the systems are neutral; 
hence no work is done in  carrying a charge  between the 
metal and semiconductor. The neutrality  of the free sur- 
face state of the semiconductor gives 

F ( d )  = d d > ,  (12) 

where u: is the free-surface  value of the relative surface 
potential. Hence from Eqs.  (6), (lo), and (12), 

* = wm - W a c  - (13) 

If we  were dealing  with  two  metals  in contact, the con- 
stant w would be  merely the difference  of  work functions, 
and the term ui in Eq. (13)  would  be  missing. The semi- 
conductor case  is  different,  however,  in that part of  the 
contact potential difference  is taken up over the space 
charge  layer, as well as between surface charges. 

Corresponding to the two  variable parts which contrib- 
ute to u in Eq.  (6),  namely, u, and (F - a)/cd, the ca- 
pacitance c in Eq. (7) is  made  up of two parts, namely, 



cd, and F' - u' = dF/du, - du/du,. These are (differ-  where 
ential) capacitances in series, in each of  which the charge 
per unit area  on  the metal electrode (F - u) is associated u, + up = -- kT - - -ZG, 
with a characteristic potential difference. Thus F' - U' 

corresponds to  the potential change u, between the bulk 
and  the surface of the semiconductor, and hence is a j !  /* e'-" ti + dt 1 ' 
capacitance referring only to the semiconductor (later 
called cSc); cd corresponds to the potential change across 

EG 
(20) 

%,(x) 3 - 

s?(x) +ez ,  S;(X) = S~-,(X). (21) 
Z"W 

the dielectric layer and is the familiar dielectric capaci- 
tance given in Eq. (€9." 

Thus the bulk behavior is  specified by three independent 
intrinsic parameters which characterize the  band struc- 

3. Space charge and potential in the semiconductor 

Evaluation of c(u) from E q .  (6) and E q .  (7) requires the 
function F(u,) relating total space charge (per unit area 
of surface) in  the semiconductor to  the relative surface 
potential u,. Poisson's equation, E q .  (2), for  the  potential 
must be solved with boundary conditions at  the surface 
and in the bulk material. In reduced units the  equation 
and boundary conditions are 

ture (Nc,  N, ,  E ~ )  and  one independent bulk parameter 
which depends on impurity  content and may be any  one 
of n b ,  p b ,  u,, or up. Further,  in introducing dimensionless 
parameters to replace N,,  N,, and nb, it is convenient to 
define a fifth parameter u b )  which also characterizes the 
impurity content or doping level. The  relations  among 
these five equivalent parameters are tabulated  for silicon 
in Table 1 (page 501). Thus we define intrinsic parameters 
ni, u,, and u ,  by 

where the reduced distance 7, potential u(7), and charge euu = N,/n i .  
density p are defined by 

Then,  from Eqs. (23),  (24) and (22), followed by (20), 

P"". P 
2n,e 

hence a bulk parameter U b  can be  defined  by 
(16) Ub = u, - u, = -u ,  - u,. (26) 

The formulation of the mathematical problem in Eq. 
(14) is completed by expressing p( 7) in terms of u( 7) using 
statistical formulas for  the electron distribution. This will 
be done in the spirit of the Fermi-Thomas  approximation 
using the local value of the potential in formulas  for  the 
electron density that hold in a constant  potential; this 
approximation  should be rather  good  here where the 
potential does not vary appreciably on  an atomic scale. 

The electrons are assumed to be distributed over con- 
duction and valence bands of normal form according to 
the Fermi-Dirac  distribution law (the simpler approxi- 
mate formulas for  the Boltzmann distribution are given 
at  the end of this section). Then  the bulk number densities 
of electrons nb and holes P b  can  be written" in terms of 
(reduced) chemical potentials for electrons u, and holes u, 
using Fermi-Dirac functions of order  one half 5+. Thus we 
have 

In  the same electron system, which is all  in statistical 
equilibrium, we consider the electron densities at a  point 
where the local (reduced) electrostatic potential is ~ ( 7 ) .  
The chemical potential of the electrons is increased there 
by u ( 7 )  (in contrast to  the electrochemical potential or 
total chemical potential which is the same everywhere) 
and  that of the holes is decreased by ~ ( 7 ) .  Consequently, 
using Eqs. (18), (19)) (23),  (24) and (26), the densities are 

n(d = nze-ucS1/4ub + u, + 47)) 
= n ,e -u r%1/4u (d  + u,>, 

~ ( 7 )  = n,e""5,,,(-ub - u, - u ( d )  

- (27) 

n,e""F,/,(-u(q) - u,), (28) 

where a new measure of the potential has been introduced, 

u(7) E ub + u(q) ,  (29) 

and we see that l i b  is the bulk value of u, while the surface 
value of u is 

(1 8) 
u, = Ub + u,. (3 0) 

The reduced space charge density can now be written, 
(19) assuming the bulk  is  neutral  (on including the contribu- 499 
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tions of all charged  impurity  centers), and using Eqs. (27) From Eq. (44)  we  see that ni may  be interpreted in the 
and (28),  low-density  limit as  the intrinsic electron  (or  hole)  den- 

sity,  since  intrinsic conditions mean = p b  ; from Eqs. 
(41) and (42), ub E 0 in intrinsic conditions, and u b  gives 
directly the increase of actual electron  density  over intrinsic 

p ( r l )  __ - P(?) P - p b  - ( n  - nb> 

2n,e 2n,  

= -$[.f’(u, uc, uo) - f’(ub, u c ,  uo)] (3 1) density. 

where 

f’(u, u,,  u,) = e-uc 5 1 / 2 ( U  + uJ The simplest and sharpest surface state distributions con- 

- euuS1,2(-u - uJ.  (32)  sist of a single  acceptor  level or a single donor level  with 
a certain area density at  the surface. The reduced  surface 

4. Surface  state  distributions 

Finally  Eq. (l4) is integrated,  using Eq* (3l)  for PY to charge  density  corresponding to these can be  specified 
give  by three parameters. 

m du For  the acceptor  case, an occupied  level  means a nega- F(UJ = -q(u,) = - j -  p dv = -> 
0 dl7 tive  charge,  hence 

= sign (us - ub)[f(us 9 uc, uu) - f (ub,  uc, uv) 

- (ua - ub)f’(ub, uc, u9~)1”~3 (3 3) 

where 

f ( u ,  u,,  u,) = e-uc53/2(u + a,) +eu”53,2(-u - uJ3 (34) 

and 

8.f f’(u, uc, u,) = - 
d U  

is  given in Eq. (32). 
Thus Eq. (33)  gives the required function, F(v,); then 

the function F‘(v8), which appears in Eq. (7),  is  given  by 

(3 5 )  

F’(u8) = [f’(u8 3 u c ,  u o )  - f’(ub, uc, un)l/2F(v.).  (36) 

In the low-density approximation, the arguments of the 
S j ( x )  functions are always  sufficiently  negative for the 
functions to be accurately  represented by exponentials 
(better than 1% for x < -4).  Then the parameters u,,  u, 
drop out and we have from Eqs.  (32),  (33),  (34) and (36)’2 

f(u, u,,  u,) E - 2  cosh u,  (3 7) 

f ’ ( u ,  u,,  u,) S 2 sinh u ,  (3 8) 

F(U,) Sign (U, - Ub)21/2[COSh U. - cash u b  

- (Us - Ub) sinh ub]1/2, (3 9) 

and 

F’(v,) S (sinh u, - sinh ub) /F(u, ) .  (40) 

Also, from Eqs.  (18), (19), and (26) 

nb g nieub (4 1) 

p b  E nie  (42) “ u 6  

n b  f P b  2ni cash l l b  (43) 

n b p b  n: (44) 

500 p E sinh u - sinh ub. (45) 

a(u8) = a(u, - u b )  = - “a 
1 + pne?sc-uc-u8 ’ (46) 

where 

6, = Na/2niLD, N, = number of acceptors  per unit 
area of surface; (47) 

Zac = the reduced  energy  level of the acceptor  with 
respect to the conduction band edge  cc(i.e., the (48) 
level is at E ,  + eat, cat = E , , / ~ T ) ;  

p. = the degeneracy factor of the acceptor state, 
with Pa = 4 if the (ionized) acceptor has two 
states with the same  energy,  either  of  which,  (49) 
but not both together, can be filled  by an elec- 
tron ; 

u, and u, are as defined  in Eqs. (23) and (30). 

Similarly, in the donor case, an unoccupied  level  means 
a positive  charge,  hence 

ff(U8) = ff(u* - ub) = ffd [ 1 - 1 + p d e g d c - U e - U 8  l l  

- - U d  
1 + 0-1 Z ( * + U c - C d C  

d e  

- g d  - 1 + p-1 U s + U v - ( ? d c + i O ) ’  (50 )  
d e  

where 

gd = Nd/2n1LB (51) 

and Nd is the donor area density; 
E d c  = the reduced  energy  level of the donor with  respect 

to the conduction band edge ( Z d c  + ZG is then the 
position  with  respect to the valence band edge); 
and 

Pd = the degeneracy factor of the donor state, with 
Pd = 1/2 if the (neutral) donor has two states at 
the same  energy,  either  of  which, but not both 
together, can  hold an electron. 
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Table I Equivalent parameters for the bulk carrier density in silicon at 293°K.a 

1 0 2 6  1.41 X 106 
1 0 2 4  1.58 X 10' 
1 0 2 3  1.60 X 1 0 8  
1 0 2 2  1.60  x 109 
1021 1.60 X 1Olo 
1 0 2 0  1.60 X 1011 

1.60 X 1011 1 0 2 0  

1.60 x 1010 1021 
1.60 x 1 0 9  1022 
1.60 X 108 1 0 2 3  

1.55 x 107 1024 
1.17 X 106 1025 

21.76 
19.34 
17.03 
14.73 
12.43 
10.12 

-10.12 
-12.43 
-14.73 
-17.03 
-19.38 
-21.95 

21.64 
19.33 
17.03 
14.73 
12.43 
10.12 

-10.12 
-12.43 
-14.73 
-17.03 
-19.37 
-21.96 

-0.87 
-3.29 
-5.60 
-7.90 

-10.20 
-12.51 
-32.75 
-35.06 
-37.36 
-39.66 
-42.01 
-44.59 

-43.50 
-41 .OS 
-38.77 
-36.47 
-34.17 
-31.86 
-11.61 
-9.30 
-7.00 
-4.70 
-2.36 
-1.22 

un + up = - 44.37. and ua = un f 22.63 = - up - 21.73. See Equations (18),  (19).  (41),  (42), (20), (26) ,  (22). (23), and (24). 
a Relations among the quantities above are given by: nb = 2.718 X ioz5 5+(u.) E meua, f i b  = 1.098 X F:(up) g nieya, ni = 4.012 X m-3, 

The  function u' in Eq. (7) has the form,  from Eqs. (46) 
and (50), 

(53) 

5. Parameter values and capacitance  characteris- 
tics for silicon 

Parameter dependences 

The parametric equations, Eqs. (6) and (7), for the re- 
duced  characteristic c(u) depend on eight  reduced quan- 

(kT = 4.0446 X joules), we take = 1.12eV = 
1.794 X lo-'' joules, N ,  = 2.718 X 1025m-3, and Nu = 
1.098 X 1025m-3. Then g G  = 44.37, n, = 4.012 X 101Sm-3, 
u, = -22.63, and u, = 21.73. 

From these intrinsic parameters, the magnitudes of the 
units used in defining  reduced quantities may  be  calculated 
as: unit of length LD = 4.564 X 10-5m, based on Eq. (3) 
with E = 12, e = 1.6021 X 10"' couls, and ni and kTas 
given above; unit of charge  density  2nie = 1.2855 X 
couls/m3; unit of surface  charge  density = 2nieLD = 
5.867 X lo-' coul/m2; unit of surface  density = 2niLD = 
3.662 X 10''m-2; unit of capacitance  per unit area = 
(E /TL~)  = 2.325 X lo-' faradslm'; and unit of poten- 
tial = (kT/e) = (0.02525) volts (1 volt = 39.61 units). 

tities for general  (Fermi-Dirac) statistics and  on six for Capacitaflce  characteristic curues for silicon no sur- 
1 Boltzmann  statistics.  (We  assume  bands of normal form face charge 

and a single-level  acceptor or donor state). 
For  the semiconductor in the general  case three param- 

eters enter into F(u.), as shown  by Eq. (33). These are 
the intrinsic quantities u, and u, and the bulk quantity ub; 
however, for Boltmann statistics, Eq. (39) shows that u, 
and u, drop out. 

The dielectric  layer enters only through the reduced 
capacitance cd given in ~q. (8). 

The single-level  acceptor or donor function u(u,) de- 
pends on three parameters: u,, ZaC, pa or on ud, Z d c ,  Pd, 
as shown by Eqs. (46) and (50). 

Finally, the contact potential constant w in Eq. (6), 
which translates the voltage  scale,  is  expressed in terms 
of the work  functions of the semiconductor and the metal 
electrode, Eq. (13), and of u;, the free-surface  value of u,, 
determined by Eq. (12). 

- 

The effect  of systematic variation of bulk carrier concen- 
tration on c(u) curves for Si is shown in Figs. 2 through 10. 
The parameter u b  varies in steps of 5 from +20 (strongly 
n-type) to - 15 (moderately  p-type) ; corresponding  values 
of other measures of bulk carrier concentration are pres- 
ented in Table 1. Note that the range I&,[ = 15 to 20 covers 
the range n b  or P b  = 1016/cm3 to 2 X 1018/cm3, the usual 
range of  physical  interest.  Only for lug[ 2 20, i.e., large 
carrier concentration, does the exact  value of u b  (in col- 
umn 3) for a given majority carrier concentration, differ 
significantly from the  Boltmann approximation In (nb/ni)  
(in  column 4). Also for these large carrier concentrations 
(majority  carrier  greater than IO'* ~ m - ~ )  the product nbpb 
is  less than n:, and the values  of [ub[  and of the minority 
carrier concentrations are unsymmetrical for the same 
majority  carrier  concentration-whereas both these  rela- 

Intrinsic parameters and reduced  unit  sizes for silicon tions hold in the Boltmann region.  Since  Table 1 shows 
that in the range of physical interest the Boltzmann ap- 

The values of u, and u, are given  by Eqs. (22), (23), and proximation  holds well, it has  been  used in all the calcu- 
(24) in terms of N,,  N,, and C G .  For calculation at 293'K lations given here. 501 
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The results given in Figs. 2 through 9 also  all  assume 
c d  = 36.63, corresponding to a dielectric layer with 
e d  = 3.85 and d = 4 X 10-7m,  and all but  the dashed 
curves of Figs. 4 and 8 assume that  the surface state den- 
sity is zero. In  the absence of specific knowledge, w has 
been taken  as  zero; alternatively, the u scale in  each figure 
can  be  interpreted as a (u - w) scale. 

The curves in Figs. 2 to 9 all show that,  for sufficiently 
positive or negative u, c returns to  the asymptotic value cd, 
corresponding to  the semiconductor  capacitance cSc = 
F' - u' becoming large when the carrier density of  elec- 
trons  or holes near the surface becomes large, and  the 
smaller dielectric capacitance  dominates.  At an inter- 
mediate u the carrier density diminishes and cSc and c have 
a minimum.  This occurs when u and u, oppose ub, and 
requires that (u,( be somewhat greater than (ubi (values 
up to a factor of two  are shown in Table 2 ) ;  we note, how- 
ever, that  although u(q) then changes sign between the 
surface and bulk, u( 7) and p ( q )  do not. The  dip  in c is seen 
to  be shallower for larger Iubl, to become quite asym- 
metric at  large [ub(  with c returning to cd much  more 
slowly on the majority  carrier side; c(u) for a given ub is 
symmetric with c(u) for  the negative of that ub.  

The values of various  quantities at the minimum  in c 
are  tabulated  in  Table 2. For large  bulk  carrier densities 
( Iub 1 - 20) remarkably  large values of the applied voltage 
at  the minimum u, are required (90 volts); the  dip is then 

quite smooth  and shallow (2%). (See Fig. 2.)  Most of this 
large u appears across the dielectric, while the  drop across 
the semiconductor u,, is quite small (-1 volt). Also tabu- 
lated  are c ,  and c: (the values of c and csc at the mini- 
mum), 8,' (the equivalent thickness of semiconductor 
with capacitance c z ) ,  and 4.605/(cosh ubs'2 (an estimate 
of the  depth containing 99% of the space  charge which 
is calculated as if the asymptotic  exponential for u( 7) and 
p(  q) held up  to  the surface). Both these thicknesses become 
very small  fractions of L ,  as lubl approaches 20. Finally 
the  total space  charge at  the minimum q ,  is tabulated,  and 
becomes quite large for large Iub[, corresponding to the 
large increase in c:. Note  that  the values of cry u,,, and 
q ,  permit calculation of c, and u, at  any d (for zero sur- 
face state density). In Fig. 10, c ,  and c z  are plotted 
against ub, showing  how c z  breaks  away from c, as cd 
is approached; curves for d = 4000 A, 2000 A, and 1000 A 
are shown. 

Surface state effects on the characteristics for  silicon 

In Figs. 4, 8, and 11 the effects of single-level surface 
states on  the c(u) curve are shown for various types (ac- 
ceptor or donor), energy levels, and strengths.  They are 
all shown superposed on the c(u) curve for zero  surface 
state density for u b  = + or "10, which shows a well- 
defined dip with a characteristic  shape. 

Table 2 Capacitance, potential, and space charge at the  capacitance minimum for silicon at 293°K with 
zero  surface  charge. 

Mqjoriiy 
carrier 

conceniraiion 4.605 
Ub Urn u,, CWl C,= dmdC/LD (cash U b ) *  9 m  

~~ 

0 4.01 x 109 
f 5  5.95 x 10" 
f7.5 7.25 X 10l2 

f 1 0  8.84 x 1 0 1 3  

f 1 1  2.40 x 1014 
f12 6.53 x 1014 
f 1 3  1.77 x 1015 
f14 4.82 x 1015 
f 1 5  1.31 X 1OI6 
f16 3.57 x 10'6 
f 17  9.69 X 1Ol6 
f 1 8  2.63 x 1017 
f 19  7.16 X lo1? 
f 20  1.95 X IO1* 

0.00 
-8.43 
-15.86 
-32.62 
-46.47 
-68.95 
-106.2 
-168.5 
-273.5 
-451.5 
-752.9 
F 1262 
-2125 
7 3584 

0.00 
-7.57 
712.0 
-16.6 
-18.5 
-20.4 
-22.3 
-24.2 
-26.1 
-28.0 
-30.0 
-31.9 
-33.8 
-35.8 

0.97 
2.40 
5.67 
12.68 
16.52 
20.59 
24.48 
27.86 
30.55 
32.54 
33.95 
34.90 
35.53 
35.93 

1 .OO 
2.57 
6.71 
19.39 
30.10 
47.02 
73.80 
116.3 
184.0 
292.0 
464.5 
740.7 
1184 
1895 

1 .00 
0.39 
.15 
.052 
.033 
.021 
.014 
.0086 
.0054 
.0034 
.0022 
.0014 
.OW84 
.00053 

4.61 
0.53 
.15 
.044 
.027 
.016 
.0098 
.0059 
.0036 
.0022 
.0013 
.OOO80 . @I049 
.OOO30 

0.00 
f3.143 X 10' 
f1.413 X lo2 
f5.868 X lo2 
f1.025 X lo3 

f3.072 X 103 
f5.285 X lo8 
f9.066 X 103 
f1.551 X 104 
312.648 X lo4 
f7.659 X 104 
f 1.300 X 106 

f1.778 x 103 

f4.506 x 104 

~ 

In  the table  above: vm = total  potential difference at  minimum c; vIm = potential  drop between semiconductor  surface  and  bulk at  minimum; cnr = total 
capacitance  (per  unit  area) at minimum; cm'~ = capacitance  (per  unit  area) of semiconductor a t  minimum = F' - u'; dmaC/Lg ~ l/cmno = equivalent  thick- 
ness in  Debye  lengths of semiconductor  with  capacitance c d c ;  4.605/(cosh us)* = approximate  depth (in Debye lengths)  containing 99% of space charge, 
assuming  asymptotic  form  for w(q). p ( g )  - exp[ "(cash ub)bg]; and qm = total  space charge in semiconductor at minimum = - F(vam). 

The  tabulated  majority  carrier  concentration = nb for ub > 0. p b  for u b  < 0; it is computed  from 4.012 X 1O8elubl ~ m - ~ .  For all results  in  the  table  it  has 
been assumed that cd = 36.63 (d  = 4 X 10-7. e = 3.85), and u = c' = 0 (no surface charge). 

The  total  and  partial voltages and  capacitances  above  are  related by wm = v a n  - qm/Cd, and l/cm = l/cmaC + 1/d. Values of cm and wm at  arbitrary dielectric 
thickness dl, dielectric  constant t l d  (and  the  same ub, and  zero  surface charge) may  then be calculated using c d l  = (4 X 10-7r~d/d~3.85)cd for cd. 502 
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Figures 2-9 Reduced  surface capacitance, c(v), for n-typer p-typer or  intrinsic  silicon at 293'K. Applicable 
conditions,  parameters, and  materials are indicated within  each  Figure. I n  Figs. 4 and 8, dashed  lines 
show  the  effect on c ( v )  of an  acceptor state  with the parameters given. 
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Figure 10 Reduced surface  capacitance of silicon at 
293°K at the minimum of the  c(v)  curve, 
as a function of the doping level speci- 
fied by u,,; c," is the value for  the semi- 
conductor alone; c, is  the value when 
dielectric layers of  various thicknesses d are 
present.  The limiting diebctric capacitance 
cd is indicated by  broken lines appearing 
above each curve. 

The dashed  lines in Figs. 4 and l l a  show the similar 
effects  of a midgap  acceptor state (& = -22.18) on n- 
type material (ub = +lo) and a midgap donor state on 
p-type material (ub = - 10); these are symmetrical  when, 
as here, the surface states have the same strength. In  the 
cases  shown u = 100,  corresponding to the moderate 
surface state density  of 3.66 X 10g/cm2 (and a free sur- 
face potential vi = - 1.1 for the n-type and + 1.1 for 
the p-type  material).  At  applied  voltage v = 0, the surface 
state in each  case  is  fully  charged,  hence the surface state 
contribution to the capacitance -u' is  negligible  (see 
Eq. (7)), but the surface potential is  changed in such a 
direction as to decrease F', the space  charge contribution 
to the capacitance  (again, see Eq. (7)), and the c(u) curve 
falls below the curve for zero  surface state density.  As u 
changes toward the value for minimum c(u), (correspond- 
ing to driving out the majority carrier), the surface state 
charge  decreases (the acceptor  empties, the donor filIs) 

504 and the capacitance cSc increases,  giving  rise to a peak. 

Figure 11 Reduced surface  capacitance  character- 
istic,  c(v), for p-type silicon, with U b  = 
- 10. Figure Ila is for silicon with cmd 
without a single-level midgap donor state 
(the dashed and continuous curves respec- 
tively)  with ud = 100, &, = .T22.18, and 
Pd = 0.5. Figure I l b  is for  sdrcon without 
a single-level midgap  acceptor state (the 
solid curve) and with  acceptor states in two 
strengths: ua = 100, Z., = -22.18, and p. 
- - -0.5 (the dashed curve); and ue = 
1000, Z,, = -22.18, and P. = 0.5 (the 
dotted  curve.) 

Then as D goes past the minimum to increase the minority 
carrier concentration, the surface state becomes  com- 
pletely  uncharged and csc returns quickly to the value for 
zero  surface state density. 

For a midgap  acceptor  surface state in p-type material, 
Fig. l l b  shows that the peaked structure in the center of 
the dip is the same, but now the acceptor  is  charged on 
the minority carrier side of the minimum. In contrast to 
Fig. l l a  the c(u) curve  now  falls below the curve for zero 
surface state density on that side of the minimum  (toward 
positive u). If the surface state density  is  increased to 
ua = 1000 (3.66 X 10" states/cmz), Fig. l l b  shows that 
the effects on the side of the dip where the surface states 
are charged are greatly  increased. 

Finally we note that if the surface acceptor in p-type 
material  has  its  energy level at the top of the valence band 
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( Zac = -44.37), this is low enough so that  the  state is 
filled and charged throughout  the voltage range of the 
dip. Then,  as shown in Fig. 8, the  surface  state merely 
shifts the voltage scale by cr,/cd (see Eq. (6)) ,  but does 
not  contribute to the  capacitance; it acts like the dashed 
line in Fig. l l a  on  the  right side of the dip.  However, if 
the acceptor should  be  at  the  bottom of the  conduction 
band (& = 0), it remains  empty and  neutral  throughout 
the  dip,  and  the c(v) curve is not significantly changed 
from  the curve for zero surface  state density. 
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