496

Paul M. Marcus

Calculation of the Capacitance of a
Semiconductor Surface, with Application to Silicon

Abstract: The electrostatic problem of finding the surface capacitance of a plane semiconductor surface as
a function of applied voltage is formulated and solved. The solution takes account of the space charge: dis-
tribution in the semiconductor, of a surface dielectric layer, of the possible presence of surface states, and
of the exact Fermi-Dirac statistics for the charge carriers. The macroscopic electrostatic problem and micro-
scopi¢c electronic description are kept separate, convenient reduced units are introduced, and the differential
capacitance characteristic is expressed in a simple parametric form. For bands of normal form, and for a sin-
gle-level acceptor or donor surface state, the reduced characteristic depends on eight reduced quantities for
general statistics, and on six for the simpler Boltzmann limit; the latter include three quantities describing
the surface state level, one for the dielectric layer, one bulk semiconductor parameter, and one contact po-
tential constant which shifts the voltage scale. Explicit calculations are made for silicon at 293°K for various
doping levels, dielectric layers, and single-level surface states; the variation of the characteristic dip in the

capacitance is exhibited as a function of these parameters.

1. Introduction

The present work obtains the static capacitance of a plane
semiconductor surface and dielectric layer, Fig. 1, as a
function of applied voltage, and presents a series of these
static capacitance characteristics for silicon as an aid in
interpretation of capacitance measurements on silicon.
The calculation takes due account of the special variation
of the space charge in the semiconductor as the potential
varies, which has been studied in numerous previous
papers' ~* and which leads to the well-known decrease in
the capacitance when the majority carrier concentration
diminishes®~®, Such capacitance characteristics have been
of direct interest in the device called the surface var-
actor7’8; an example of their use in the interpretation of
the structure of thin films of silicon dioxide on silicon is
given in a recent paper by D. P. Seraphim et al.!

This paper extends the practical side of surface capaci-
tance calculations by exhibiting the shape of capacitance
characteristics for Si, as the doping level is systematically
varied, and showing the effects of sharp surface states of
various kinds, strengths, and positions on these shapes.
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The theoretical side of surface capacitance calculations
is somewhat extended and simplified here by the follow-
ing features of the discussion, which is self-contained:
(1) The macroscopic electrostatic problem is kept separate
from the microscopic electronic description so that the
problem and its solution can be completely formulated
without describing the band structure or mentioning the
Fermi level. (2) A systematic simplification is achieved by
the immediate introduction of convenient reduced (dimen-
sionless) variables and working with them throughout;
this permits easy count of the number of independent
parameters which specify a complete reduced character-
istic, and contributes to their classification as bulk or
intrinsic, semiconductor, dielectric, or metal electrode
parameters, etc. (3) A discussion is given of the contact
potential constant which appears as an additive constant
in the voltage scale, and it is shown to depend on the work
function of both the metal electrode and the semicon-
ductor and on the free-surface value of the relative surface
potential. (4) The general Fermi-Dirac statistics are re-
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Figure 1 Configuration for capacitance calculation
showing metal electrode, dielectric layer,
and semiconductor slab, with external
circuit connections, The surface charges
o™ and o and space charge q are indicated,
as well as the division of the semiconductor
into a surface region and a bulk region, the
drop in potential across the dielectric o™/ c®
and across the surface layer v,, and the char-
acteristic parameters for each material.

tained throughout the formulation. Although general
statistics are not required to discuss silicon at 293°K, the
formulation is then available for application to cases
which require it. The formulation is not much more com-
plicated than for Boltzmann statistics; it requires only a
simple generalization of the space charge functions of the
Boltzmann case.’

Section 2 gives the basic definition of the reduced capaci-
tance ¢ and other quantities, and then deduces a simple
parametric representation of ¢ and the reduced applied
voltage v as functions of the relative surface potential of
the semiconductor v, (relative to bulk material). The dis-
cussion here is simple macroscopic electrostatics, hence
no mention of the band structure is needed or made.
However, the complications of the relation between space
charge and potential in the semiconductor, which bring
in the electron statistics, are deferred to Section 3, and
merely summarized in the total space charge function
F(v,). Explicit discussion of the contact potential differ-
ence, which enters the relation between v and o,, is given
within the macroscopic framework. Formal account is
taken of the possible presence of a surface charge in sur-
face states on the semiconductor by means of a reduced
surface charge density function o(v,).

Section 3 gives the explicit formula for F(v,) using the
general Fermi-Dirac statistics for the electron distribu-
tion; the macroscopic and microscopic problems are re-
lated by the usual (Fermi-Thomas) assumption that the
electron distribution at a point depends on the local point
value of the electrostatic potential in the same way that

it would in a constant potential. The simplification that
occurs in the low-density approximation when the Fermi-
Dirac functions are replaced by exponentials is then given.
The results for general statistics depend on just two addi-
tional dimensionless intrinsic parameters of the semicon-
ductor (for a conduction and valence band of normal
shape).

Section 4 gives explicit formulas for ¢(v,) for the two
simplest surface state distributions, namely a single accep-
tor or a single donor level. Three parameters characterize
either of these distributions, namely the strength, position,
and degeneracy factor of the surface states. These very
simple concentrated distributions give the sharpest effects
on the problem, i.e., the most abrupt changes in the c(v)
curve. In the absence of more specific knowledge, they are
used to obtain possible extreme forms of the ¢(v) curves.

Section 5 specializes the discussion to silicon, gives
typical values of the eight parameters entering directly
into the c(v) relation and, in Figs. 2 through 9, exhibits the
behavior of ¢(v) as certain of these parameters are syste-
matically varied, particularly the bulk carrier concentra-
tion. Table 1 presents corresponding values of the five
equivalent parameters that describe the bulk carrier con-
centration (at 293°K); Table 2 presents various quantities
characterizing the minimum in the potential as the bulk
carrier concentration varies from strongly n-type to
strongly p-type, and Fig. 10 plots the minimum capaci-
tances. The effects of a single-level acceptor or donor
surface state of various strengths at various energy levels
on c(v) are shown in Figs. 4, 8, and 11.

2. Parametric formula for the capacitance
characteristic

The reduced differential capacitance per unit area, ¢, of
a thick plane semiconducting slab in contact with a plane
metal electrode through a dielectric layer is defined by

1 dz" _ do"
=T N 31 —7 (1)

where:

2" = charge per unit area on the metal electrode
(coulombs/meter”);

V = applied voltage (volts) = potential of the electrode

with respect to the interior (bulk region) of the
semiconductor. (The bulk region is far enough
from the surface to be beyond the space charge
region, hence is uncharged);

e = dielectric constant of the semiconductor (dimen-
sionless);

v = dimensional constant in Poisson’s equation,
¢ vp
— = -1 2
dx” € ( )
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in which ¢ = electrostatic potential (volts), p =
space charge density (coul/meter’), and v = 1.131 X
10" volt meter/coul in Gaussian MKSA units.

Ly = the intrinsic Debye length of the semiconductor
(meters), defined by

_{ &T \?
Ly = <2e2n¢'y) ’ 3)

in which kT = absolute temperature in energy units =
4.0446 X 10'21(T°K/ 293) joules, ¢ = the electronic
charge (1.6021 X 107*° couls), and n; = a suitable
reference number density of electrons, which will
later be defined definitely (see (22)), but will essen-
tially be the intrinsic number density of electrons
(or holes) in the semiconductor.

mo__ 2’"
2}1,€LD ’

(4)

which is the reduced charge per unit area on metal elec-
trode (dimensionless) where 2n;eL,(coul/ ‘meter’) has been
used as the unit of surface charge density.

eV

b= (5

which is the reduced applied voltage (dimensionless).

The general relation between ¢ and v may be expressed
implicitly by giving each in terms of the surface potential
of the semiconductor, in the form

F —
b=v, + T+ oW, (6)
and
11 1
;—cd‘,‘F/_a/, (7)

where v, = reduced surface potential of the semiconductor
with respect to the bulk (=e(@ surface) — Pvurmy)/kT).
F(v,) = —q where g = the total reduced space charge in
the semiconductor per unit area of surface = [ p(x)dx/
(2n;eLp) (explicit expressions for F for general Fermi
statistics and for Boltzmann statistics will be given in
Section 3 in terms of various intrinsic and bulk param-
eters); o(v,) = reduced charge per unit area in surface
states on the semiconductor surface (explicit expressions
for acceptor or donor states at a single level will be given
in Section 4); and

d
d €Lp
¢ ="

ed

(8)

is the reduced capacitance per unit area of the dielectric
layer, (¢°/vd)/(e/vLy), where ¢ is the dielectric constant
and d is the thickness of the dielectric layer.
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The charge per unit area on the metal electrode, which
balances the space charge and surface charge on the semi-
conductor, is therefore

o = F — ¢. )

The total potential rise v in going from the bulk region
of the semiconductor to the bulk region (i.e., the interior)
of the metal, which is given in Eq. (6), is thus made up
of a rise v, to the surface of the semiconductor, a rise
(F— o)/ ¢ across the dielectric layer, and a part w that
is independent of the applied voltage. See Fig. 1. This
constant part w, which is essentially a contact potential
difference, may be evaluated by considering the behavior
of the potential when the metal electrode and semicon-
ductor are in their isolated neutral states, i.e., their free-
surface states in which each is separately neutral and no
charge has yet been allowed to flow from one to the other
to bring their mobile charge distributions into statistical
equilibrium, with equalization of the electrochemical
potentials. In this isolated neutral state v equals the (re-
duced) work per unit charge carried from the semicon-
ductor interior to the metal interior, which equals the
work per unit charge from semiconductor interior to ex-
terior minus the work per unit charge from metal interior
to metal exterior, or

v = —w’4+ w", (10)
where
w =ex"/kT, w" = ex"/kT, (11)

x'° = the work function of the semiconductor = work
in carrying unit negative charge from interior to exterior,
and x™ is the similar quantity for the metal. Note that the
exteriors of both metal and semiconductor are at the same
potential everywhere because the systems are neutral;
hence no work is done in carrying a charge between the
metal and semiconductor. The neutrality of the free sur-
face state of the semiconductor gives

F(v) = o(vy), (12)

where v! is the free-surface value of the relative surface
potential. Hence from Egs. (6), (10), and (12),

w=w"— w — . (13)
If we were dealing with two metals in contact, the con-
stant w would be merely the difference of work functions,
and the term v/ in Eq. (13) would be missing. The semi-
conductor case is different, however, in that part of the
contact potential difference is taken up over the space
charge layer, as well as between surface charges.
Corresponding to the two variable parts which contrib-
ute to v in Eq. (6), namely, v, and (F — o)/c?, the ca-
pacitance ¢ in Eq. (7) is made up of two parts, namely,




¢, and F' — ¢’ = dF/dv, — do/dv,. These are (differ-
ential) capacitances in series, in each of which the charge
per unit area on the metal electrode (F — ¢) is associated
with a characteristic potential difference. Thus F/ — ¢’
corresponds to the potential change v, between the bulk
and the surface of the semiconductor, and hence is a
capacitance referring only to the semiconductor (later
called ¢*°); ¢ corresponds to the potential change across
the dielectric layer and is the familiar dielectric capaci-
tance given in Eq. (8)."°

3. Space charge and potential in the semiconductor

Evaluation of ¢(v) from Eq. (6) and Eq. (7) requires the
function F(p,) relating total space charge (per unit area
of surface) in the semiconductor to the relative surface
potential v,. Poisson’s equation, Eq. (2), for the potential
must be solved with boundary conditions at the surface
and in the bulk material. In reduced units the equation
and boundary conditions are

d’v(n) _
7§~ = “P('ﬂ), U(O) = Us, u(oo) =0, (14)

n
where the reduced distance 7, potential v(%), and charge
density p are defined by

=T (15)
v(n) = g’d;{(_;) , (16)
p= 2,;;- (17)

The formulation of the mathematical problem in Eq.
(14) is completed by expressing p(4) in terms of v(#) using
statistical formulas for the electron distribution. This will
be done in the spirit of the Fermi-Thomas approximation
using the local value of the potential in formulas for the
electron density that hold in a constant potential; this
approximation should be rather good here where the
potential does not vary appreciably on an atomic scale.

The electrons are assumed to be distributed over con-
duction and valence bands of normal form according to
the Fermi-Dirac distribution law (the simpler approxi-
mate formulas for the Boltzmann distribution are given
at the end of this section). Then the bulk number densities
of electrons n, and holes p, can be written' in terms of
(reduced) chemical potentials for electrons u, and holes u,
using Fermi-Dirac functions of order one half ;. Thus we
have

n, = Ncgl/2(un)1 (18)

Dy = Nngl/Z(up), (19>

where
ty o+ uy = =2 =~ (20)
1 [ fdr
gi(x) = ]’ o et—z + 1 s
Fi(x) —> €, Fix) = F;_.(x). (21)

z—— 0

Thus the bulk behavior is specified by three independent
intrinsic parameters which characterize the band struc-
ture (N,, N,, e¢) and one independent bulk parameter
which depends on impurity content and may be any one
of ny, ps, u,, or u,. Further, in introducing dimensionless
parameters to replace N,, N,, and =, it is convenient to
define a fifth parameter u,, which also characterizes the
impurity content or doping level. The relations among
these five equivalent parameters are tabulated for silicon
in Table 1 (page 501). Thus we define intrinsic parameters
n;, u., and u, by

ni = N,Ne ¢, (22)
e = N,/n,, (23)
e’ = N,/n;. (24)

Then, from Egs. (23), (24) and (22), followed by (20),
e — U, = —& = U, T U, (25)

hence a bulk parameter u;, can be defined by
Uy = U, — U, = —U, — U,. (26)

In the same electron system, which is all in statistical
equilibrium, we consider the electron densities at a point
where the local (reduced) electrostatic potential is v(7).
The chemical potential of the electrons is increased there
by v(%) (in contrast to the electrochemical potential or
total chemical potential which is the same everywhere)
and that of the holes is decreased by v(n). Consequently,
using Eqgs. (18), (19), (23), (24) and (26), the densities are

n(n) = ne T + u. + ()

= ne T, (uln) + u.), 27
p(n) = ne"Fr(—u, — u, — v(n))

= n,e"F,,(—uln) — u,), (28)
where a new measure of the potential has been introduced,
u(n) = uy + v(n), (29)

and we see that u, is the bulk value of u, while the surface
value of u is

U, = uy + v,. (30)

The reduced space charge density can now be written,
assuming the bulk is neutral (on including the contribu-
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tions of all charged impurity centers), and using Eqgs. (27)
and (28),

o) _p—p —(n—m)

p(n) = 2n.e 2n;
= —3[f"(u, u, w) — fuy, ue, )] (31)
where
fu, u,, u,) = e Fy5(u + u,)
— Ty p(—u — u,). (32)

Finally Eq. (14) is integrated, using Eq. (31) for p, to
give

Fo) = —afe) = = [ pan = —2
= sign (4, — w)[f(u,, u, u,) — fluy, u,, u,)
— (s — w)f (uys ue, w)]"% (33)
where

f(ll, U,y Il,,) = e_wg3/2(u + uc) +euvg3/2(—u - M,,), (34)

and

, _ 9
S uey w) = 5o (35)
is given in Eq. (32).

Thus Eq. (33) gives the required function, F(v,); then
the function F’(v,), which appears in Eq. (7), is given by

F'v)) = [f(u, ey w) — f'(uy, ue, u,))/2F@,).  (36)

In the low-density approximation, the arguments of the
F,(x) functions are always sufficiently negative for the
functions to be accurately represented by exponentials
(better than 19, for x < —4). Then the parameters u,, u,
drop out and we have from Egs. (32), (33), (34) and (36)"

Sflu, u., u,) =2 cosh u, 37)
Sf'(u, u,, u,) = 2 sinh u, (38)
F(v,) = sign (u, — u,)2"*[cosh u, — cosh u,

— (4, — uy) sinh 1], (39)
and
F'(v,) = (sinh u, — sinh u,)/ F(v,). (40)

Also, from Egs. (18), (19), and (26)

ny, =2 ne”’ (41)
Py X ne™ (42)
n, + py = 2n; cosh u, (43)
mpy =} (44)
p =< sinh u — sinh u,. (45)
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From Egq. (44) we see that »; may be interpreted in the
low-density limit as the intrinsic electron (or hole) den-
sity, since intrinsic conditions mean n, = p,; from Eqs.
(41) and (42), u, =2 0 in intrinsic conditions, and u, gives
directly the increase of actual electron density over intrinsic
density.

4. Surface state distributions

The simplest and sharpest surface state distributions con-
sist of a single acceptor level or a single donor level with
a certain area density at the surface. The reduced surface
charge density o corresponding to these can be specified
by three parameters.

For the acceptor case, an occupied level means a nega-
tive charge, hence

—0,

—_— 46
1+ Betrm™™™ (46

olw,) = olu, — u,) =

where

¢, = N,/2n,L,, N, = number of acceptors per unit
area of surface; “n

&. = the reduced energy level of the acceptor with
respect to the conduction band edge ¢,(i.e., the (48)
level is at ¢, + €., €, = €./kT);

B. = the degeneracy factor of the acceptor state,
with 8, = % if the (ionized) acceptor has two
states with the same energy, either of which, (49)
but not both together, can be filled by an elec-
tron;

u, and u, are as defined in Eqs. (23) and (30).

Similarly, in the donor case, an unoccupied level means

a positive charge, hence
ov,) = olu, — w,) = odI:I — ——1—_—_;:]
1 + Bde(dc Ue 3

- %9
1+ﬁ‘;leu.+uc-—edc
(]
= 1 + Bd—leue+w*(éu+éo)’ (50)
where
g = Nd/2n,-LD (51)

and N, is the donor area density;

€;. = the reduced energy level of the donor with respect
to the conduction band edge (é;. + €¢ is then the
position with respect to the valence band edge);
and

B; = the degeneracy factor of the donor state, with
B4 = 1/2 if the (neutral) donor has two states at
the same energy, either of which, but not both
together, can hold an electron.




Table 1 Equivalent parameters for the bulk carrier density in silicon at 293°K.2

ny(m=3%) py(m™3) Uy In (ny/n;) Un Up
1028 1.41 X 108 21.76 21.64 —0.87 —43.50
1024 1.58 X 107 19.34 19.33 -3.29 —41.08
1023 1.60 X 108 17.03 17.03 —5.60 —38.77
1022 1.60 X 10°? 14.73 14.73 —7.90 —36.47
102 1.60 X 10w 12.43 12.43 —10.20 —34.17
1020 1.60 X 101 10.12 10.12 —12.51 —31.86
1.60 X 10u 1020 —10.12 —10.12 -—32.75 —11.61
1.60 X 10w 102t ~12.43 —12.43 —35.06 —9.30
1.60 X 10° 1022 —14.73 —14.73 —37.36 —17.00
1.60 X 108 1023 —17.03 —17.03 —39.66 —4.70
1.55 X 107 1024 —19.38 -19.37 —42.01 —2.36
1.17 X 108 1028 —21.95 —21.96 —44.59 —1.22

@ Relations among the quantities above are given by: ny = 2.718 X 102 F1(un) = nievb, pp = 1.098 X 10% F1(up) = mie™wd, mi = 4.012 X 1015 m73,
#n + tp = — 44.37, and up = un -+ 22.63 = - up — 21.73. See Equations (18), (19), (41), (42), (20), (26}, (22), (23), and (24).

The function ¢’ in Eq. (7) has the form, from Egs. (46)
and (50),

(kT = 4.0446 X 107 joules), we take ¢g = 1.12eV =
1.794 X 107 joules, N, = 2.718 X 10®m ™, and N, =
1.098 X 10m ™. Then é¢ = 44.37, n; = 4.012 X 10°m %,

o) = do _ 0(1 + ‘L) (acceptor case), (52) U, = —22.63, and u, = 21.73.
dv, Ta From these intrinsic parameters, the magnitudes of the
units used in defining reduced quantities may be calculated
o'(v,) = —a(l - :—) (donor case). (53) as: unit of length L, = 4.564 X 10™°m, based on Eq. (3)
d

5. Parameter values and capacitance characteris-
tics for silicon

o Parameter dependences

The parametric equations, Eqs. (6) and (7), for the re-
duced characteristic c(v) depend on eight reduced quan-
tities for general (Fermi-Dirac) statistics and on six for
Boltzmann statistics. (We assume bands of normal form
and a single-level acceptor or donor state).

For the semiconductor in the general case three param-
eters enter into F(v,), as shown by Eq. (33). These are
the intrinsic quantities #, and », and the bulk quantity «,;
however, for Boltzmann statistics, Eq. (39) shows that u,
and u, drop out.

The dielectric layer enters only through the reduced
capacitance ¢ given in Eq. (8).

The single-level acceptor or donor function o(v,) de-
pends on three parameters: o,, €., 8. or on a4, €y, B,
as shown by Egs. (46) and (50).

Finally, the contact potential constant w in Eq. (6),
which translates the voltage scale, is expressed in terms
of the work functions of the semiconductor and the metal
electrode, Eq. (13), and of vy, the free-surface value of v,,
determined by Eq. (12).

o Intrinsic parameters and reduced unit sizes for silicon

The values of #, and u, are given by Egs. (22), (23), and
(24) in terms of N, N,, and &g. For calculation at 293°K

with ¢ = 12, e = 1.6021 X 107" couls, and #; and kT as
given above; unit of charge density 2n,e = 1.2855 X 107°
couls/m3; vnit of surface charge density = 2meL, =
5.867 X 107® coul/m"; unit of surface density = 2m,L, =
3.662 X 10"m™?; unit of capacitance per unit area =
(¢/vLp) = 2.325 X 107° farads/m’; and unit of poten-
tial = (k7/e) = (0.02525) volts (1 volt = 39.61 units).

o Capacitance characteristic curves for silicon with no sur-
face charge

The effect of systematic variation of bulk carrier concen-
tration on ¢(v) curves for Si is shown in Figs. 2 through 10.
The parameter u, varies in steps of 5 from 420 (strongly
n-type) to —15 (moderately p-type); corresponding values
of other measures of bulk carrier concentration are pres-
ented in Table 1. Note that the range |u,| = 15 to 20 covers
the range n, or p, = 10*°/cm® to 2 X 10**/cm®, the usual
range of physical interest. Only for |u,| > 20, ie., large
carrier concentration, does the exact value of u, (in col-
umn 3) for a given majority carrier concentration, differ
significantly from the Boltzmann approximation In (r,/n;)
(in column 4). Also for these large carrier concentrations
(majority carrier greater than 10'* cm™®) the product n,p,
is less than n?, and the values of |u,| and of the minority
carrier concentrations are unsymmetrical for the same
majority carrier concentration—whereas both these rela-
tions hold in the Boltzmann region. Since Table 1 shows
that in the range of physical interest the Boltzmann ap-
proximation holds well, it has been used in all the calcu-
lations given here.

501

CAPACITANCE OF A SEMICONDUCTOR SURFACE




The results given in Figs. 2 through 9 also all assume
¢® = 36.63, corresponding to a dielectric layer with

= 3.85and d = 4 X 10 'm, and all but the dashed
curves of Figs. 4 and 8 assume that the surface state den-
sity is zero. In the absence of specific knowledge, w has
been taken as zero; alternatively, the v scale in each figure
can be interpreted as a (v — w) scale.

The curves in Figs. 2 to 9 all show that, for sufficiently
positive or negative v, ¢ returns to the asymptotic value c*,
corresponding to the semiconductor capacitance ¢’° =
F’ — ¢’ becoming large when the carrier density of elec-
trons or holes near the surface becomes large, and the
smaller dielectric capacitance dominates. At an inter-
mediate v the carrier density diminishes and ¢’° and ¢ have
a minimum. This occurs when v and v, oppose u,;, and
requires that |v,| be somewhat greater than |u,| (values
up to a factor of two are shown in Table 2); we note, how-
ever, that although u(#) then changes sign between the
surface and bulk, v(%) and p(y) do not. The dip in ¢ is seen
to be shallower for larger [u;], to become quite asym-
metric at large |u,| with ¢ returning to ¢’ much more
slowly on the majority carrier side; c(v) for a given i, is
symmetric with c(v) for the negative of that u,.

The values of various quantities at the minimum in ¢
are tabulated in Table 2. For large bulk carrier densities
(Jus] ~ 20) remarkably large values of the applied voltage
at the minimum v,, are required (90 volts); the dip is then

quite smooth and shallow (29). (See Fig. 2.) Most of this
large v appears across the dielectric, while the drop across
the semiconductor v,,,. is quite small (~1 volt) Also tabu-
lated are ¢, and ¢, (the values of ¢ and ¢*° at the mini-
mum), d.° (the equivalent thickness of semiconductor
with capacitance ¢5°), and 4.605/(cosh 1,)"/* (an estimate
of the depth containing 999, of the space charge which
is calculated as if the asymptotic exponential for v(n) and
o(n) held up to the surface). Both these thicknesses become
very small fractions of L, as |u;| approaches 20. Finally
the total space charge at the minimum gq,, is tabulated, and
becomes quite large for large |us[, corresponding to the
large increase in c¢;;. Note that the values of ¢’, u,,,, and
q., permit calculation of ¢,, and v,, at any d (for zero sur-
face state density). In Fig. 10, ¢,, and ¢}’ are plotted
against u,, showing how ¢° breaks away from c,, as ¢®
is approached; curves for d = 4000 A, 2000 A, and 1000 A
are shown.

o Surface state effects on the characteristics for silicon

In Figs. 4, 8, and 11 the effects of single-level surface
states on the c(v) curve are shown for various types (ac-
ceptor or donor), energy levels, and strengths. They are
all shown superposed on the c(v) curve for zero surface
state density for 4, = + or —10, which shows a well-
defined dip with a characteristic shape.

Table 2 Capacitance, potential, and space charge at the capacitance minimum for silicon at 293°K with

zero surface charge.

Majority
carrier
concentration 4.605
Uy em™3 Um Vem Cm Cm? dn®/Lp (cosh uy)? qm
0 4.01 X 10° 0.00 0.00 0.97 1.00 1.00 4.61 0.00
+5 5.95 X 101 =8.43 =7.57 2.40 2.57 0.39 0.53 +3.143 X 10
£7.5 7.25 X 1012 +15.86 =12.0 5.67 6.71 .15 .15 +1.413 X 102
+10 8.84 X 103 *32.62 *16.6 12.68 19.39 .052 .044 +5.868 X 102
+11 2.40 X 104 *46.47 +=18.5 16.52 30.10 .033 .027 +1.025 X 102
+12 6.53 X 10© +=68.95 *20.4 20.59 47.02 .021 .016 +1.778 X 108
+13 1.77 X 101 +106.2 =22.3 24.48 73.80 .014 .0098 +3.072 X 103
+14 4.82 X 105 =168.5 *24.2 27.86 116.3 .0086 .0059 +5.285 X 108
+15 1.31 X 10 =273.5 *26.1 30.55 184.0 .0054 .0036 +9.066 X 103
+16 3.57 X 10 *451.5 *=28.0 32.54 292.0 .0034 .0022 +1.551 X 10¢
+17 9.69 X 10 *=752.9 =30.0 33.95 464.5 .0022 .0013 +2.648 X 10¢
+18 2.63 X 107 =1262 +31.9 34.90 740.7 .0014 .00080 +4.506 X 104
+19 7.16 X 107 2125 =33.8 35.53 1184 .00084 .00049 £7.659 X 104
+20 1.95 X 108 +3584 *35.8 35.93 1895 .00053 .00030 +1.300 X 105

In the table above: »m = total potential difference at minimum ¢; van = potential drop between semiconductor surface and bulk at minimum; ¢m = total
capacitance (per unit area) at minimum; ¢mf¢ = capacitance (per unit area) of semiconductor at minimum = F’ — ¢’; dm*o/Lp = 1/cm?¢ = equivalent thick-
ness in Debye lengths of semiconductor with capacitance ¢mo¢; 4,605/ (cash ua)’ = approximate depth (in Debye lengths) containing 99% of space charge,
assuming asymptotic form for v(»), p(n) ~ exp[—(cosh ub)*n]; and gm = total space charge in semiconductor at minimum = — F(vsm).

The tabulated majority carrier concentration = us for us > 0, s for us < 0; it is computed from 4.012 X 10%!utl cm~3, For all results in the table it has
been assumed that ¢¢ = 36.63 (d = 4 X 1077, ¢ = 3.85), and ¢ = ¢’ = 0 (no surface charge).

The total and partial voltages and capacitances above are related by om = vem — gm/cd, and 1/¢m = 1/cm?e + 1/cd. Values of ¢m and vm at arbitrary dielectric
502 thickness dy, dielectric constant €14 (and the same us, and zero surface charge) may then be calculated using ¢¢! = (4 X 1077€,4/d13.85) ¢4 for cd.
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Figures 2-9 Reduced surface capacitance, ¢(v), for n-type, p-type, or intrinsic silicon at 293°K. Applicable
conditions, parameters, and materials are indicated within each Figure. In Figs. 4 and 8, dashed lines
show the effect on c(v) of an acceptor state with the parameters given.
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Figure 10 Reduced surface capacitance of silicon at
293°K at the minimum of the c¢(v) curve,
as a function of the doping level speci-
fied by u,; c.’ is the value for the semi-
conductor alone; ¢, is the value when
dielectric layers of various thicknesses d are
present. The limiting dielectric capacitance
c* is indicated by broken lines appearing

above each curve.

The dashed lines in Figs. 4 and 11a show the similar

effects of a midgap acceptor state (¢,, = —22.18) on &-
type material (4, = -}10) and a midgap donor state on
p-type material (4, = —10); these are symmetrical when,

as here, the surface states have the same strength. In the
cases shown ¢ = 100, corresponding to the moderate
surface state density of 3.66 X 10°/cm’® (and a free sur-
face potential v/ = —1.1 for the n-type and 1.1 for
the p-type material). At applied voltage v = 0, the surface
state in each case is fully charged, hence the surface state
contribution to the capacitance —o’ is negligible (see
Eq. (7)), but the surface potential is changed in such a
direction as to decrease F’, the space charge contribution
to the capacitance (again, see Eq. (7)), and the ¢(v) curve
falls below the curve for zero surface state density. As v
changes toward the value for minimum ¢(v), (correspond-
ing to driving out the majority carrier), the surface state
charge decreases (the acceptor empties, the donor fills)
and the capacitance ¢’° increases, giving rise to a peak.
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Figure 11 Reduced surface capacitance character-
istic, ¢(v), for p-type silicon, with v, =
—10. Figure 1la is for silicon with and
without a single-level midgap donor state
(the dashed and continuous curves respec-
tively) with o, = 100, ¢, = —22.18, and
Bs = 0.5. Figure 11b is for silicon without
a single-level midgap acceptor state (the
solid curve) and with acceptor states in two
strengths: ¢, = 100, €,, = —22.18, and B,
= —0.5 (the dashed curve); and o, =
1000, ¢,, = —22.18, and B, = 0.5 (the
dotted curve.)

Then as v goes past the minimum to increase the minority
carrier concentration, the surface state becomes com-
pletely uncharged and ¢’® returns quickly to the value for
zero surface state density.

For a midgap acceptor surface state in p-type material,
Fig. 11b shows that the peaked structure in the center of
the dip is the same, but now the acceptor is charged on
the minority carrier side of the minimum. In contrast to
Fig. 11a the c(v) curve now falls below the curve for zero
surface state density on that side of the minimum (toward
positive v). If the surface state density is increased to
o, = 1000 (3.66 X 10" states/cm®), Fig. 11b shows that
the effects on the side of the dip where the surface states
are charged are greatly increased.

Finally we note that if the surface acceptor in p-type
material has its energy level at the top of the valence band




(&. = —44.37), this is low enough so that the state is
filled and charged throughout the voltage range of the
dip. Then, as shown in Fig. 8, the surface state merely
shifts the voltage scale by o,/ c* (see Eq. (6)), but does
not contribute to the capacitance; it acts like the dashed
line in Fig. 11a on the right side of the dip. However, if
the acceptor should be at the bottom of the conduction
band (¢, = 0), it remains empty and neutral throughout
the dip, and the ¢(v) curve is not significantly changed
from the curve for zero surface state density.
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