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Abstract: An arbitrarily large network  of  bistable  tunnel  diode  switching circuits is analyzed for stability. 

One condition derived indicates that increasing  the total ”fan” of each  circuit might tend  to make the 

whole network unstable. This condition is independent  of  the  tunnel-diode  characteristic.  Another  condition 

is also derived which  depends  on this characteristic  but  does  not involve the total “fan”.  Finally, two gen- 

eral theorems which were proved in another paper are stated and discussed in terms of their applicability 

to certain classes of large networks and of the types of conditions for stability that can be obtained. 

Introduction 

Methods for analyzing the global  stability of electrical 
networks  have  recently been  developed’”  which lead to 
the possibility  of treating large  networks  such as those 
used in computers.  Previously, to the best of this author’s 
knowledge, it was  usually  possible to analyze  only a small 
section of the computer  network, e.g., the so-called  switch- 
ing  circuit,  with the rest of the network  being  replaced by 
some  simulated load. 

In this paper a large network  is  considered which is 
composed of many arbitrarily interconnected  copies of a 
particular bistable  switching  circuit ; specifically, the cir- 
cuit is one containing a negative-resistance  device  such 
as a tunnel diode. An important question, and one  un- 
answered so far, is  how the size or “dimension” of a net- 
work  made up of many  copies of a single  circuit  might 
affect its stability or reliability. For instance,  suppose 
it is  known that a particular switching  circuit  with  some 
simulated load is  stable if some  stability criterion holds. 
Will the same criterion guarantee stability of the entire 
network? If not, how  should  such a criterion be  altered 
to guarantee stability? In this  paper we attempt to answer 
these  questions for this special  switching  circuit and to 
indicate  how  they  might  be  answered for other large 
networks. 

In  the example  considered,  two  sufficient conditions for 
stability are derived. The first  is  independent of the non- 
linearity of the negative-resistance device but depends on 
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the maximum  number of connections to a switching  cir- 
cuit  (sometimes  called the  total fan). In other words, the 
dimension  of the network  is in some  sense  represented 
by the  total fan. This result  indicates that increasing the 
dimension  might tend to cause  instability. It is also indi- 
cated how such  stability  conditions, which depend on  the 
dimension but are independent of the nonlinearity,  may 
be  derived for other networks by applying  Theorem  A, 
below. 

The second condition, which  is stated but not proved 
here,  is  independent of the “dimension” of the network 
but depends on the nonlinearity, and it is  indicated  how 
such statements of this nature might  be obtained for other 
networks by applying  Theorem B, below. 

The network 

We consider the switching  circuit  shown in Fig. 1. Here 
f(v) is a nonlinear function which  gives the current through 
the box  in the direction  shown.  Both E and R are chosen 
so that the circuit  is  bistable. The network  considered  is 
made of a multiplicity of  such  circuits  interconnected 
at a node,  labeled “A” in Fig. la, by a series RL combi- 
nation such as shown in Fig. lb. To illustrate a section 
of the network we denote the switching  circuit  by the sym- 
bol shown in Fig. IC, and the connecting RL line by a 
single  line.  These  symbols are used in Fig. 2 to show a 
section of the large network. No restriction is placed on 
the number of switching  circuits in the network.  However, 
we shall require that  the number of connections to any 
one circuit (the maximum total fan) be bounded and 
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We note that  the network  has  many  equilibrium  states. 
The above condition guarantees that any solution ap- 
proaches one of these states as t -+ a. The condition of 
Theorem 1 is  independent of the number of circuits  in 

denote the maximum  number by n. In Fig.  2, for example, 
n is 5. 

Stability theorems 

For any  network of switching  circuits as described we  now 
state a condition which ensures that the network  is  stable. 

Theorem I 

If j '  f ( v )  dv -+ as [ V I  + co 

and 

L/(RTc) + 2 n ~ / ( & ~ )  < 1, 

where n is the maximum number of connections to any 
circuit, then every solution of the differential equations of 
the network approaches an equilibrium solution as t + 00. 

P 

Figure I (a) Tunnel-diode  switching  circuit; (b) 
equivalent circuit of line connecting two 
switching  circuits;  (c)  symbol denoting 
switching  circuit of Figure l(a). 

Figure 2 Section of large network with switching 
circuits and interconnecting  lines  shown 
symbolically. 

\ /  

the network and the manner in which the circuits are 
actually  connected  with  each other. We also note that  the 
nonlinearity f(v) does not enter. Furthermore, if n = 0, 
the criterion  reduces to that for the single  circuit  with 
no load. 

The differential equations governing  such large net- 
works can, in principle,  be  derived in the usual manner 
from Kirchhoff's  laws,  etc.  However, it is  essential for 
the proof of our statement to express  these equations in 
a form which  reflects the particular physical situation in 
a clear and compact way. For this purpose we find it 
appropriate to use the theory developed  in  Ref. 1. There, 
the differential equations are derived from a "potential 
function" which  is  built up additively from the different 
components and which contains a connection  matrix 
describing their connection. A summary of this theory 
can be found in Ref. 2. Although our derivation was moti- 
vated by this theory, the following  proof  is  self-contained. 

Proof of Theorem I 
The differential equations for the network  can  be  written 
in the form 

Lz- -" - ,  di,,, dP 
dt  di , , ,  

- fJ 1 ,  . . .  
9 s  

where i,, , i ,  are  the currents through the inductors 
with  inductance L, ; i ,  +,, . , i , , ,  are the currents through 
the inductors with  inductance L,; and v,, . . . , v, are the 
voltages  across the capacitors. The potential function P is 

p = l  

- $Rz 2 i:,, + j" '  f (u)  du 
,= 1 p = 1  0 

p = l  ,= I 

where v(a) gives the smaller of the indices of the circuits 
to which the uth branch is  connected and p(u) gives the 
larger  index. The validity of Eq. (1) can be verified directly 
by simply  differentiating P(i, v) and substituting into Eq. 
(1). The existence  of  such functions in general for recip- 
rocal  networks is  derived  in  Ref. 1. 

We  now construct the following  function 

p* = P + - 1 ( E  - up - R,i,)' 
RI  p = l  
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and we will  show that: 
(a) For any solution i(t),  u(t) of  Eq. (1) except an equi- 

librium solution, P*(i(t),  u(t)) is a decreasing function 
of time; 

(b) P* 2 b > -a and P*(i, v)-+ a if l i I  + ( V I  -+ a .3 

Then the complete stability of this network  will  follow 
from the theory of Liapunov functions (see Ref. 4). 

To show (a), we differentiate P(i(t),  u(t)) 

- c 2 
p = l  

Now 

dP* d P  2 ’ - = - + - ( E  - u p  - R l i p )  
dt  dt R ,  p = l  dt 

However, 

a p   d i  E - v, - R l i p  = - = L1 ” , 
d i,  dt 

and 

Therefore, 

Combining the above with Eiq. (2), we have 

dt  dt 

With 

x,  = L ; / 2  di, 
dt ’ 

1/2 di,,, 
468 Y ,  = Lz dt ’ 
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where n,, is the number of connections to the pth circuit. 
Thus, we have  (since n p  6 n) I 
which  gives the inequality  of (4) if I 
7 + - - ~ n <  1 R I C  R,C 
L1 2L2 

To show (b), above, we rewrite P* in a positive form I 

* 
X ( -Rzi ,+,  f u v ( m )  - 

.?= 1 

+ ( U m  - U , ( J .  
Therefore, P* 2 0, and it is also obvious from the above 
form that P*(i, u) ”+ 03 if l i l  + ( u I  -+ m. Applying the 
Liapunov theorem found in Ref. 4, this concludes the 
proof of the theorem. 

Another way  of proving this same theorem is to apply 
Theorem 3 of Ref. 1, which  is restated below as Theorem A. 



I Theorem A 

If the potential function for a  network has the form5 

I P ( i ,  v) = - $ ( i ,  Ai )  + B(u) + ( i ,  yu - a)  

and the equations are giuen by6 

I di dP 
L ( i )  - = - 

dt d i  

du a p  
dt du ’ C(U) - = -- 

then assuming L(i),  C(v) are symmetric,  positive definite 
matrices, A is a positive definite matrix, B(u) + lyul+ m 

as IuI + and 

I lL”’(i) A - ~ ~ c ” ” ( v )  I I < 1, ’ (6) 

the corresponding circuit is  completely stable. 
Thus, the proof of the complete  stability of the network 

which  we have  considered  reduces, through the use  of the 
above  theorem, to showing that condition (5) implies the 
inequality (6). This  theorem  is  applicable to a large  class 
of networks  where all the nonlinearities are voltage  con- 
trolled. For example, a network  in which all the nonlinear 
elements are tunnel diodes would have the correct form 
for the potential function. The problem of stability  re- 
duces to finding the conditions under which the inequality 
(6) is  satisfied. 

A different type of stability  statement may be obtained 
for this network by applying  Theorem 5 of Ref. 1, which 
is restated below as Theorem B. 

Theorem B 

Suppose the potential function for a  network has the form 

P ( i ,  v) = - A( i )  + B(u) + ( i ,  yu - a ) ,  

where the equations are L di /dt  = dP/di ,  and C du/dt = 
-dP/du,  and L ,  C  are constant symmetric  positive defi- 
nite matrices. AIso assume P*(i, u)+ m as lil + Iv[ + m 

where 

and p l ,  p2 are the smallest eigenvalues of L-f(a2A/ai2)L-+ 
and C-’((a2B/dv2)C-’, respectively.  Then, if 

121 + 122 > 0, (7) 

the corresponding network  is  completely stable. 
For this theorem it is not required that all the non- 

linearities be voltage  controlled.  However, note that 
condition (7) will  depend on the nonlinearities.  Theorem 
B applied to  the special  network  being  considered  yields 
the following  theorem. 

Theorem 2 

If  

where f’(u) = df(u)/dr, then the network  is  completely 
stable. 

Although this theorem gives a stability condition (8) 
which depends on f’(v), it is  independent of the total fan n. 
Thus, if n were large,  condition (8) would  be  preferable 
to condition (5). 

Necessity  of the stability conditions 

The stability  conditions  derived for this network are suffi- 
cient but not necessary. The conditions (5) and (8) have 
been  derived from the general  theorems, A and B, and it 
is to be  expected that stronger conditions should be  avail- 
able.  However,  these  will  probably  have to be obtained by 
use  of more specific  knowledge about the network, and 
one would  expect that they  might  be  very hard to obtain. 
On the other hand, there are some  networks  where  Theo- 
rems A and B yield  necessary and sufficient conditions for 
stability (see Sections 9 and 10 of Ref.  1) so that it cannot 
be  expected that the conditions given  in these  theorems 
can  be  improved. 

Conclusions 

In this paper  two  general  theorems  have been stated 
and applied to a particular large network. The intent has 
been to show  how  these  theorems  might  be  applied and 
to furnish  some  insight about the kind of network to 
which they are applicable and the kind of stability  results 
they  yield.  Theorem A applies to networks in which the 
nonlinearities are voltage controlled and yields a stability 
criterion which  is  independent of the nonlinearity.  How- 
ever,  because the matrix y, which  is  related to  the manner 
in which the network is interconnected, appears in the 
stability criterion, it is to be  expected that this criterion 
will depend on some  “dimension” of the network.  Theo- 
rem B does not require that  the nonlinearities  be  voltage 
controlled.  The  stability criterion will  depend on the non- 
linearities but, since the condition of (7) does not contain 
the “connection” matrix y, one might  expect that  the 
resulting  stability criterion is  independent of “dimension.” 
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