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Stability Criteria for Large Networks®

Abstract: An arbitrarily large network of bistable tunnel diode switching circuits is analyzed for stability.
One condition derived indicates that increasing the total “fan” of each circuit might tend fo make the
whole network unstable. This condition is independent of the tunnel-diode characteristic. Another condition
is also derived which depends on this characteristic but does not involve the total “fan”. Finally, two gen-
eral theorems which were proved in another paper are stated and discussed in terms of their applicability
to certain classes of large networks and of the types of conditions for stability that can be obtained.

Introduction

Methods for analyzing the global stability of electrical
networks have recently been developed"* which lead to
the possibility of treating large networks such as those
used in computers. Previously, to the best of this author’s
knowledge, it was usually possible to analyze only a small
section of the computer network, e.g., the so-called switch-
ing circuit, with the rest of the network being replaced by
some simulated load.

In this paper a large network is considered which is
composed of many arbitrarily interconnected copies of a
particular bistable switching circuit; specifically, the cir-
cuit is one containing a negative-resistance device such
as a tunnel diode. An important question, and one un-
answered so far, is how the size or “dimension” of a net-
work made up of many copies of a single circuit might
affect its stability or reliability. For instance, suppose
it is known that a particular switching circuit with some
simulated load is stable if some stability criterion holds.
Will the same criterion guarantee stability of the entire
network? If not, how should such a criterion be altered
to guarantee stability? In this paper we attempt to answer
these questions for this special switching circuit and to
indicate how they might be answered for other large
networks.

In the example considered, two sufficient conditions for
stability are derived. The first is independent of the non-
linearity of the negative-resistance device but depends on

*The results reported in this paper were obtained in the course of re-
search sponsored jointly by the Air Force Office of Scientific Research
[Contract AF 49(638)-1139] and IBM.
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the maximum number of connections to a switching cir-
cuit (sometimes called the total fan). In other words, the
dimension of the network is in some sense represented
by the total fan. This result indicates that increasing the
dimension might tend to cause instability. It is also indi-
cated how such stability conditions, which depend on the
dimension but are independent of the nonlinearity, may
be derived for other networks by applying Theorem A,
below.

The second condition, which is stated but not proved
here, is independent of the “dimension” of the network
but depends on the nonlinearity, and it is indicated how
such statements of this nature might be obtained for other
networks by applying Theorem B, below.

The network

We consider the switching circuit shown in Fig. 1. Here
f(v) is a nonlinear function which gives the current through
the box in the direction shown. Both E and R are chosen
so that the circuit is bistable. The network considered is
made of a multiplicity of such circuits interconnected
at a node, labeled “A” in Fig. 1a, by a series RL combi-
nation such as shown in Fig. 1b. To illustrate a section
of the network we denote the switching circuit by the sym-
bol shown in Fig. 1c, and the connecting RL line by a
single line. These symbols are used in Fig. 2 to show a
section of the large network. No restriction is placed on
the number of switching circuits in the network. However,
we shall require that the number of connections to any
one circuit (the maximum total fan) be bounded and




denote the maximum number by ». In Fig. 2, for example,
nis 5.

Stability theorems
For any network of switching circuits as described we now

state a condition which ensures that the network is stable.

& Theorem 1
y[ fd— e a bl e
]

and
L,/(RIC) + 2nL,/(R:C) < 1,

where n is the maximum number of connections to any
circuit, then every solution of the differential equations of
the network approaches an equilibrium solution as t —

We note that the network has many equilibrium states.
The above condition guarantees that any solution ap-
proaches one of these states as ¢t — . The condition of
Theorem 1 is independent of the number of circuits in
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Figure 1 (a) Tunnel-diode switching circuit; (b)
equivalent circuit of line connecting two
switching circuits; (¢) symbol denoting
switching circuit of Figure 1(a).

Figure 2 Section of large network with switching
circuits and interconnecting lines shown
symbolically.

the network and the manner in which the circuits are
actually connected with each other. We also note that the
nonlinearity f(v) does not enter. Furthermore, if » = 0,
the criterion reduces to that for the single circuit with
no load.

The differential equations governing such large net-
works can, in principle, be derived in the usual manner
from Kirchhoff’s laws, etc. However, it is essential for
the proof of our statement to express these equations in
a form which reflects the particular physical situation in
a clear and compact way. For this purpose we find it
appropriate to use the theory developed in Ref. 1. There,
the differential equations are derived from a “potential
function” which is built up additively from the different
components and which contains a connection matrix
describing their connection. A summary of this theory
can be found in Ref. 2. Although our derivation was moti-
vated by this theory, the following proof is self-contained.

& Proof of Theorem 1

The differential equations for the network can be written
in the form

di, 9P
1 dt - Gi,, > P - 19 3 r
di,., dP
Ly—— = s = s T 1
®odr di,iy o =1 S M
dv, JdpP _
dt v’ p=1 !
where i, - -+ , i, are the currents through the inductors

with inductance L,; i, .4, - -+, i,., are the currents through
the inductors with inductance L,; and vy, - -- , v, are the
voltages across the capacitors. The potential function P is

P(i,v) = —3R, X i
p=1
R X i+ X[ ) da
o=1 p=1 0

+ Zl lp(E - Up) + z:l ir+v(vv(v) - Uu(”))’
p= o=

where »(c) gives the smaller of the indices of the circuits
to which the ¢t branch is connected and u(s) gives the
larger index. The validity of Eq. (1) can be verified directly
by simply differentiating P(i, v) and substituting into Eq.
(1). The existence of such functions in general for recip-
rocal networks is derived in Ref. 1.

We now construct the following function

1 T
P*=P+4 — 3 (E—v, — Ri,)’
Rl p=1

1 < .
+ R—2 Z; (_—R211+47 + Uyiey — u;f.(v))2
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and we will show that:

(a) For any solution i(9), v(?) of Eq. (1) except an equi-
librium solution, P*(i(¢), v(?)) is a decreasing function
of time;

() P* > b > — and P*(i,v)— o if |i| + || = <.}
Then the complete stability of this network will follow
from the theory of Liapunov functions (see Ref. 4).

To show (a), we differentiate P((), v(¢))

g_f_):Zanl_l_i ar dl,+,,+2(91’dv,,

dt o1 0i, dt =1 0i, .. dv, dt
= (di,\ A divel)
=L —”) L <_’ﬂ>
! Z‘: <dt + L ; dt
T @)2
¢ 2 (dt ’ 2
Now
ap* _ dp ; dv, c_@)
— + Z (E — Rlzp)( o~ R
5 E (—Riirio + Usiey — Vuior)
2 o=1
_ dl.r.',,, dU,,(,,) dU#(a)>
< R = T dar /°
However,
. apr di
E_v"_R‘l"=6—i,,: Llj)
and
. 9P di, s
—R21r+¢7 + Uyoy — Uu(a') = 5;:; = L2 —:1?'
Therefore,
dP* 2L, <~ di, ( dv, di,)
dt dt + R, ; dt a Ry

2L, < di,+,,< di,., . AV, dvu(,)>
=2 —R — .
R, Z; dr 2 T ar dt

Combining the above with Eq. (2), we have

dP* _ r (ﬂg)2 L] (dir+,7)2
dt Ll,,z;;dt L 2, dt

=
e L) - Rt
g ) o

With

x, = L % ,

Yo = L” % ,
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z, =C a

Eq. (3) becomes

T 8 1/2 r
2
= _Z(xp+zi) - Zy«?- 1/2 przp
p=1 =1

[

2L,
+ R2C1/2 ; y«r(zv(v) - ZM{J))

r 1/2 2
= - ‘; (xp + R,C7* Zp)
3 < L;/Z
- Yo — 5172 (o
; R2C1/2 ( (o)

2
- Zu(v)))

L T L 2 T

1 2 2 2 2

+ z, + RC _Zu(v)) - Z Zp-
=1 2L =1 p=1

Thus if

R C Z (zv(a) Z;u(a))2 < ; zia (4)

then P*(i(0), v(¢)) is a decreasing function of 7. However,
note that

Z @@ — Zu(a)) 2 sz(a) + Zy(a) =2 Z an,,

where n, is the number of connections to the p* circuit.
Thus, we have (since n, < n)

s

- Zu(fr))2

RC

L, 2L2 )
< <R 2c T Z Zps

which gives the inequality of (4) if

L, 2L,
RiC T R:C

n<1l1. (5)
To show (b), above, we rewrite P* in a positive form

P* 2R1 Z (E Rliﬂ) + (E - vﬂ)

p=1

+ ;foﬂf@dv+2—k‘

s
X Z ("'Rzir+a + Uyo)y — UM(U))2
g=1

+ (vv(v) - U#(o))z'

Therefore, P* > 0, and it is also obvious from the above
form that P*(i, v) — o if |i] + |po] — . Applying the
Liapunov theorem found in Ref. 4, this concludes the
proof of the theorem.

Another way of proving this same theorem is to apply
Theorem 3 of Ref. 1, which is restated below as Theorem A.




o Theorem A

If the potential function for a network has the form’
P(i,v) = —1(i, 4i)) + Bl) + i,y — a)

and the equations are given by*

\di _ap
L) dt i
do apP
) dt o’

then assuming L(i), C(v) are symmetric, positive definite
matrices, A is a positive definite matrix, B@) + |yv| — «
as [v| > « and

L2 4y )| < 1,7 (6)

the corresponding circuit is completely stable.

Thus, the proof of the complete stability of the network
which we have considered reduces, through the use of the
above theorem, to showing that condition (5) implies the
inequality (6). This theorem is applicable to a large class
of networks where all the nonlinearities are voltage con-
trolled. For example, a network in which all the nonlinear
elements are tunnel diodes would have the correct form
for the potential function. The problem of stability re-
duces to finding the conditions under which the inequality
(6) is satisfied.

A different type of stability statement may be obtained
for this network by applying Theorem 5 of Ref. 1, which
is restated below as Theorem B.

o Theorem B

Suppose the potential function for a network has the form

P(i,v) = — A() + B@) + (i,vw — a),

where the equations are L di/dt = dP/0i, and C dv/dt =
—AP/dv, and L, C are constant symmetric positive defi-
nite matrices. Also assume P*(i, v) — « as |i| + |v] = «
where

P*(i,v) = (L‘%’E)P(i, v)

L(a2 g 0)  1(08 2P
+2<6i’L ai +2 6U’C o

and u,, u, are the smallest eigenvalues of L_%(azA / é)iz)L_%L
and C~ %(OZB/ aHC™ *, respectively. Then, if

i+ ope >0, (7)

the corresponding network is completely stable.

For this theorem it is not required that all the non-
linearities be voltage controlled. However, note that
condition (7) will depend on the nonlinearities. Theorem
B applied to the special network being considered yields
the following theorem.

e Theorem 2

If

4
min (Iz—i , %) + mvin % > 0, (8)
where () = df(v)/dr, then the network is completely
stable.

Although this theorem gives a stability condition (8)
which depends on f'(v), it is independent of the total fan n.
Thus, if » were large, condition (8) would be preferable
to condition (5).

Necessity of the stability conditions

The stability conditions derived for this network are suffi-
cient but not necessary. The conditions (5) and (8) have
been derived from the general theorems, A and B, and it
is to be expected that stronger conditions should be avail-
able. However, these will probably have to be obtained by
use of more specific knowledge about the network, and
one would expect that they might be very hard to obtain.
On the other hand, there are some networks where Theo-
rems A and B yield necessary and sufficient conditions for
stability (see Sections 9 and 10 of Ref. 1) so that it cannot
be expected that the conditions given in these theorems
can be improved.

Conclusions

In this paper two general theorems have been stated
and applied to a particular large network. The intent has
been to show how these theorems might be applied and
to furnish some insight about the kind of network to
which they are applicable and the kind of stability results
they yield. Theorem A applies to networks in which the
nonlinearities are voltage controlled and yields a stability
criterion which is independent of the nonlinearity. How-
ever, because the matrix v, which is related to the manner
in which the network is interconnected, appears in the
stability criterion, it is to be expected that this criterion
will depend on some “dimension” of the network. Theo-
rem B does not require that the nonlinearities be voltage
controlled. The stability criterion will depend on the non-
linearities but, since the condition of (7) does not contain
the ‘“‘connection” matrix v, one might expect that the
resulting stability criterion is independent of “dimension.”
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