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Displacement  Discontinuity  over  a 
Transversely  Isotropic  Elastic  Half -Space 

Abstract:  The paper presents a  solution  to  the  elas- 
ticity problem where the  discontinuity is in the 

displacement  component parallel to the plane area 
inside the transversely  isotropic medium. The work 
previously performed on discontinuity  problems is 
also  discussed. 

Introduction 

A close  relationship  exists  between the theory of dis- 
location and the displacement  discontinuity  problem  in 
the linear theory of elasticity. A displacement  discontinuity 
can be constructed by a sequence  of  imaginary  cutting, 
straining, and welding operations. For example  consider 
a surface S ,  inside an elastic  body,  over which an imagi- 
nary  cut  is  made.  Give the two  faces  of the imaginary 
cut a relative  displacement equal to a vector Bi(x, y ,  z )  
defined  over S. Material may  be  added or removed to 
preserve  material  continuity  across S. The entire imagi- 
nary  cut is then welded together.  There  is an internal stress 
field  caused  by this displacement  discontinuity, which  is 
wholly characterized by the vector Bi(x, y ,  z) defined 
over the surface S. One  may look at this problem from 
the point of  view  of the theory of continuous distributions 
of dislocations.  Instead of the imaginary cutting, straining, 
and welding operation, we consider a distribution of ele- 
mentary  dislocation loops over the surface S.  Imagine 
a Burgers  circuit  passing through S at a point (x ,  y ,  z). 
The Burgers  vector at  the point (x ,  y ,  z )  due to all the dis- 
location lines threading the circuit  is  identical to the dis- 
placement  discontinuity  described  earlier. 

Dislocation  is in fact a particular kind of line  defect. 
A distribution of dislocation  loops  over a closed  plane 
surface S represents a type of surface  defect  such as a 
thin crack in a crystalline  solid or slippage  between  crys- 
tals. The elastic  continuum analogue of this type of sur- 
face defect  is a displacement  discontinuity  over a plane 

bounded area. It is not expected that  the elasticity theory 
can give a detailed  description of the behavior of cracks 
or lattice defects. An immediate  result  obtained from the 
continuum  idealization  is in the energy  changes  associated 
with the presence of defects. The knowledge of the strain 
energy  may  have  some application in crack propagation 
and in  the change of orientation of crystal boundaries. 
We shall assume that  the elastic  body is homogeneous 
and transversely  isotropic. The general  discontinuity prob- 
lem  can  be  constructed from two  cases:  (a)  where the dis- 
continuity  vector is perpendicular to the surface S ,  and 
(b) where this vector  is  tangent to the surface S. The former 
case  has  been  solved by Berry and Sales;' and the present 
paper,  presenting the solution to the tangential  discon- 
tinuity  case,  completes the general  problem. 

Berry and Sales  have  applied  their solution to a physical 
situation of interest in mining and geology.  They  use the 
idealized  model of the earth as a homogeneous,  semi- 
infinite,  transversely isotropic, elastic  medium and apply 
the idea of a displacement  discontinuity to the study of 
subsidence in a mining  excavation at some depth below 
the earth surface.  They find  close  correspondence  between 
theoretical predictions and actual measurements obtained 
from some  British coal fields. It is  pointed out that al- 
though the displacement  itself  may be large (approxi- 
mately four feet)  compared to the usual elongation  meas- 
urement in testing laboratories, as long as the strain is 
classically  small,  linear  elasticity  theory  applies.  Such  is 435 
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the case outside the immediate  neighborhood of the 
excavation. 

The stress field due to  an arbitrary displacement  dis- 
continuity  over a bounded plane area in a semi-inlinite or 
infinite  solid, has been determined by Rongved and 
Frasier’, and Rongved3, when the elastic  medium is iso- 
tropic. As we have  mentioned  earlier,  Berry and Sales 
solved this problem for a transversely isotropic elastic 
medium  when the discontinuity was in the displacement 
component normal to the plane area. Their solutions were 
in terms of integrals  over the area of discontinuity.  Also, 
a special  case of constant discontinuity  over a rectangular 
area was  worked out in  closed form. In this paper, the 
elasticity  problem,  where the discontinuity  is in the dis- 
placement  component  parallel to the plane area inside the 
transversely isotropic medium,  is  studied 

The solution is  obtained in the form of stress  functions 
analogous to those used for isotropic materials. As in the 
isotropic case,  these  stress  functions are expressed in terms 
of integrals  over the area of discontinuity. First, the prob- 
lem is solved for an infinite  medium  with the displace- 
ment  discontinuity. From the conditions of continsty of 
certain  stress and displacement  components  across the 
plane  containing the discontinuity, it is  possible to reduce 
the general solution to a single “harmonic” function. 
Since the value of this function  is  known  in this plane,  it 
may be  determined by means of Green’s  formula. 

The case  where the discontinuity  lies in a semi-infinite 
medium  is  obtained by applying the method of  images 
and by introducing a residual solution which  gives the 
desired traction-free plane surface. A special  case of con- 
stant displacement  over a rectangular  plane area is pre- 
sented in closed form. If the discontinuity  occurs  over a 
circular area, the use  of  integrals of  Bessel functions 
simplifies the analysis  considerably. The result  is  presented 
in the Appendix. 

The analysis  in this paper is based on Rongved’s solu- 
tion to the isotropic elastic  problem (2), and the potential 
functions  method  first introduced by 

Finally, it is  pertinent to point out that steady state 
dynamic  elasticity  problems  with  moving boundary con- 
ditions, moving at a uniform  velocity  less than the propa- 
gation  velocities of the material, have the same  forms of 
potential  functions as the corresponding static problems. 
Therefore, a knowledge of the solution to a static problem 
will lead to the solution to the dynamic  problem through 
a slight  change in the analysis. The two  dimensional 
analog to this method  has been  discussed  by  Stroth’,  who 
treated material with  more  general anisotropy. This 
method and its restrictions will be  discussed in a forth- 
coming  note. It follows, that by the use  of this technique, 
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the present  infinite  solid solution is also valid if the dis- 
continuity  is  moving at a constant velocity  along the z-axis. 

Potential  functions 

In the linear  elasticity theory, the fundamental system of 
field equations are  the linearized  strain-displacement equa- 
tions, the linear  stress-strain  relations  (Hooke’s  Law), 
and the stress equations of equilibrium. We shall restrict 
ourselves to transversely isotropic, homogeneous  media 
with no body  forces. The symmetry  axis  of the material 
is taken to be the z-axis. The strain components are de- 
fined as 

where u, v, w are the displacement  components in the 
x, y ,  z direction. 
The equilibrium equations are 

- + - - - + - - - = o  an,,  an,, au,, 
ax ay az 

And  finally, the stress-strain  relations are 

uzz = cllez, + Clneyv + c13ezs 
uyv = cl2ezZ + Clleyu + c13ezz 
uEZ = c13(ez, + euu) + c33e.z (1 4 
cur = c14e,,. uzz = c14erz 

uzu = 3k11 - clz)ezu, 

where the ci are  the elastic  constants. 
It is  known4’* that Eqs. (la,  by c) are satisfied if the dis- 

placements and stresses are expressed in terms of three 
“harmonic” functions +’, + which are solutions of 

where 

z; = z / d v ,  ( i  = 1, 2 ,  3) ,  
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and 

2c44 
v3 = --. c11 - c12 
The displacement components in Cartesian coordinates 
are 

where k, ,   k,  are given  by 

From the above relations, three stress components of 
immediate interest are 

1 aZ* 
d; dYaZ3 

- ~ ~. 

The roots v,, v 2  may  be real positive or complex conju- 
gates. The root v3 is  always real and positive. It is speci- 
fied that in the case of complex roots, d; and 4; 
are  to have positive real parts. 

Infinite solid 

If the discontinuity in  displacement occurs over a plane 
bounded area A,  which  is thought of as coinciding  with 
the z = 0 plane, then the general problem may  be stated in 
terms of the two following conditions: 

(a) The stress components uEz, uzz, uuz are continuous 
everywhere across the plane z = 0. Displacements 
(u, u, w) are continuous across z = 0 except  over A, 
where the discontinuity is  prescribed. 

(b) Stresses and displacement  must vanish at infinity. 

The general case can be obtained by superposition of 
three different problems in  which the discontinuity occurs 
only in u, u, and w, respectively. The case  where  discon- 
tinuity exists only in  the component w has been  solved  by 
Berry and Sales.' It is clear that the analyses for the prob- 
lems  where there is  only a u component discontinuity or 
only a u component discontinuity are essentially the same. 
We shall therefore discuss the elasticity problem of an 
infinite solid with a displacement discontinuity in  the 
component along the x direction over an area A on the 
z = 0 plane. 

Let plain and the prime quantities be associated with 
half-spaces  defined by z 2 0, and z 5 0, respectively. Our 
boundary conditions are such that  at z = 0, 

Uz* = a:, (8) 

U E U  - U Z L !  (9) 

U P Z  = a:, (1 0)  

n + u = u '  (1 1) 

v = uf  (12) 

w = w f ,  (1 3) 

- I  

where n(x, y )  is the prescribed discontinuity over A, and 
is defined to be zero everywhere outside A.  

We are now concerned with two half  spaces z 2 0, 
z 5 0 to which are assigned the potential functions 
(&, 4,, #) and (& &, V )  respectively. The boundary 
conditions to be satisfied at z = 0 are Eqs. (8) to (13). 
Examine Eqs. (8) to (13) in terms of their potential func- 
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tion representations in  Eqs. (5) and (7). 

Let 

#(x,  Y ,  23) = -!bf(x, Y ,  -23) .  

Then Eqs. (8), (9), and (13) are satisfied. 
Let 

where V 2 H ( x ,  y, z )  = 0. 

This satisfies  Eq.  (10). 

Let 

This satisfies E q .  (12). In Eqs. (14) to (17),  we have made 
some intuitive guesses to the displacement field without 
violating the boundary conditions. 



Finally to satisfy Eq. ( l l ) ,  we write  continuity  problem.  The  displacement, and some of the 
stress  components  may  be  expressed  in  terms of integrals 
over the discontinuity. We write 

where  we define D ,  to be harmonic in z 2 0, equal to 
n(x, y )  on A at z = 0, and equal to zero  over  remaining 
portion of z = 0. It is  clear that the problem  is  reduced to 
finding a harmonic function regular in z > 0 with its 
boundary value  prescribed at z = 0, i.e., a Dirichlet prob- 
lem. We can  write 

where yo = (x - .$ + ( y  - p)' + 2'. 
we have from Eqs. (17), (18)) and (16) that 

Since H(x, Y ,  z) and $(x, y ,  z) and D ,  are all harmonic 

Equations (5),  (14), (15), (16), (21), and (22) form a 
complete solution to the elasticity  problem.*  Stresses and 
displacements are expressed  in  terms of partial derivatives 
of potential functions.  These  functions are known apart 
from arbitrary functions zf(x, y )  + g(x, y) .  They are 
usually  eliminated by the conditions of stress and dis- 
placement at infinity. 

It may  be  remarked that instead  of Eqs. (8) to (13) it 
is  possible to state the boundary condition more  explicitly 
(as by  Berry and Sales,'  Eq. 8). We can  consider the half- 
space z > 0, such that, on z = 0 

u = o  

uzz = 0 (23) 

Then, the displacement  components are 

Note I :  The stresses and displacements are all real even 
if vl, v2, and kl ,   k2  are pairs of complex  conjugates. 

Note 2: To continue the solution into the z < 0 space, 
it may  be  sufficient to state that, from  inspection of Eqs. 
(14) and (15), u and u are odd functions of z, while w is 
an even function of z ;  and in  terms of stress  components, 
az p ,  azz, ayy, and azu are odd functions of z, while az8, au, 
are even functions of z. 

Note 3: In the studies of crack propagation and of  dis- 
location theory, it is  often useful to know the elastic strain 
energy due to the displacement  discontinuity.  This strain 
energy,  sometimes  called the self-energy,  is  given  by 
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where A is the area over  which the displacement discon- 
tinuity occurs. 

Examples 

If $x, y )  = 1, and A is a rectangle defined by 

-a 5 x _< a, "b 5 y 5 b, then 

1 ar, I ?ax 

a - x  - tan-' (b  - y )  tan = tan" 
I 

2 ( ~- [(b - y)' + z;]"')I 
[ (b  - Y ) ~  + zq]l /z  + zi 

The  strain energy due to the dislocation has been found. 
It is 

Semi-infinite s o l i t  d 

We consider a discontinuity over a region A on  the plane 
z = h, inside the semi-infinite solid z 2 0. Superpose two 
discontinuities of equal strength and opposite sign at 
planes z = h, and z = -h inside a infinite solid. Then 
from Note 2 of the previous section, uzl = uur = 0 on 
the plane z = 0. It is now necessary to find a residual 
solution which  will not produce any singularity inside 
z 2 0, be free of shear stress on z = 0, and will annihilate 
the normal stress at  that plane. This is the same situation 
faced in some other half-space problems (Shield: E q .  4.2). 

The stress that we need to annihilate is 

Define a residual potential in terms of function H (see 
E q .  21). 

X [ H ( x ,  Y ,  zi + h1) - H ( x ,  Y ,  zi + hz)]. (33)  

It is found that  on z = 0, its surface traction due  to dR is 

C o s  = uyz = 0 

and 

Also + R  does not produce any singularity inside z 2 0. 
The  term c $ ~  therefore satisfies all the requirements of the 
residual potential. 

If the infinite solid potential functions as defined in 
Eqs. (14), (15), (16), (21), and (22) are called +:(x, y ,  z), 
&(x, y ,  z )  and #'(x, y ,  z), respectively, then the potential 
functions for  the semi-infinite solid can be written as 

41 = 4 X X ,  y, z - h) - &(x, y, z + h) + 4; 
$2 = & ( X ,  Y ,  z - h) - d ( ~ ,  y ,  z + h) + 4; (34) 

$ = $ ' (X ,  Y ,  z - h) - $'(X,  Y ,  z + A). 

These potential functions are represented in terms of 
the integrals over the area A .  Let 439 
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and let 

The displacement may be expressed as (for z > 12) 



The  double  bar  quantities are obtained by writing 
zi + hi for zi - hi in the single bar quantities. 

Figures 1 and 2 show the vertical component of the 
displacement at the free surface due  to a constant dis- 
placement discontinuity (or dislocation) in  the x-compo- 
nent over a rectangular area inside the elastic half-space. 
The calculations are based upon values of elastic con- 
stants contained in a paper by Huntington." 

The vertical displacement at  the free surface is found 
to be anti-symmetrical with respect to the y-axis. There- 
fore, only the quantities to the right of the y-axis are 
plotted. 

Figure 1 shows plots for the vertical displacement com- 
ponent  along the x-axis for  three different shapes of the 
rectangular area  and with the elastic properties of the 
half-space taken to be those of barium titanate ceramic. 

Figure I Surface vertical displacement  due to dis- 
location u, over a rectangular area  at 
depth h in barium titanate ceramic. Rec- 
tangle  is centered  on origin of x - y  axes  with 
length 2b in y-direction and  length 2a in 
x-direction.  Here, a = I O  units and depth 
h = 5 units. 

(LENGTH ALONG AXIS IN ARBITRARY UNITS 

BARIUM  TITANATE 
PLUS 5% CALCIUM 

I 
ILENGTH ALONG x AXIS IN ARBITRARY UNITS 

Figure 2 Vertical displacement at surface due to 
dislocation U ,  over a rectangular area  at 
depth h.  Rectangle  is located as in Fig. I 
with a = I O  units, b = I 2  units, and h = 
5 units. 

In Fig. 2 the vertical displacement along the x-axis is 
plotted for different elastic materials. In  both cases, the 
depth of the rectangular area  from the free surface is the 
same. 

Appendix 

If the  area of the displacement discontinuity is a circle, 
it is particularly convenient to use cylindrical co-ordinates. 
Consider a set of cylindrical co-ordinates (r, 0, z). Then, 
at  the plane z = 0, we have the following boundary con- 
ditions, corresponding to  Eqs. (8) to  (13): 

b z z  = d z  ug + ag = U ;  

e,* = a:, I(, + a, = u: 

gez = d z  w = w', (A.l) 

where the functions i i g  and a, represent the desired dis- 
continuity over a circle A of radius a and  are defined to 441 
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be zero everywhere outside this circle,  over the z = 0 This  solves the general  problem for a  circular  discontinuity. 
plane.  Again, let 

Example I 
If at z = 0, ii, = 0 and a e  = -2Ar, then from Eqs. (A.7), $ i ( r ,  8,  zi) = - M r ,  e, -zi) 

$(r,  0, ZJ = - V ( r ,  e, -z3) (A .2) (A.9) 

( k z  + 1) 
(k2 - k l )  0 E w ,  e, zl> (A.3) -a&) = Bo([) = - A  J1(rE)r* dr = -__ J2(Ea). 

Aa2 
" = 

and V Z H ( r ,  0, z )  = 0. 

(A .4) Example 2 

If at z = 0, 0, = 0 and t i z  = 1, then one  finds that 

Then at z = 0 In both of the examples  stresses and displacements  will 
involve  integrals of the type 

~ ( p ,  v ,  X) = [ e-PttiJ,,(at) J,(bt) d t .  
W 

J o  

( ~ $ 6 )  For discussion of properties of this type of integral in- 
cluding  elliptic integral representations  see Luke." Eason, 

tions and recurrence formulae of them, and have also 
composed tables for some  values of 01, v, X). 

1 - 2 ie"' lW [? h,(E) Jn(rt) -- 
2u8 = 

,="W Noble, and Sneddon"  have  given  power  series  representa- 
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