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Displacement Discontinuity over a
Transversely Isotropic Elastic Half-Space

Abstract: The paper presents a solution to the elas-
ticity problem where the discontinuity is in the
displacement component parallel to the plane area
inside the transversely isotropic medium. The work
previously performed on discontinuity problems is
also discussed.

Introduction

A close relationship exists between the theory of dis-
location and the displacement discontinuity problem in
the linear theory of elasticity. A displacement discontinuity
can be constructed by a sequence of imaginary cutting,
straining, and welding operations. For example consider
a surface S, inside an elastic body, over which an imagi-
nary cut is made. Give the two faces of the imaginary
cut a relative displacement equal to a vector B.(x, y, z)
defined over S. Material may be added or removed to
preserve material continuity across S. The entire imagi-
nary cut is then welded together. There is an internal stress
field caused by this displacement discontinuity, which is
wholly characterized by the vector B,(x, y, z) defined
over the surface S. One may look at this problem from
the point of view of the theory of continuous distributions
of dislocations. Instead of the imaginary cutting, straining,
and welding operation, we consider a distribution of ele-
mentary dislocation loops over the surface S. Imagine
a Burgers circuit passing through S at a point (x, y, z).
The Burgers vector at the point (x, y, z) due to all the dis-
location lines threading the circuit is identical to the dis-
placement discontinuity described earlier.

Dislocation is in fact a particular kind of line defect.
A distribution of dislocation loops over a closed plane
surface S represents a type of surface defect such as a
thin crack in a crystalline solid or slippage between crys-
tals. The elastic continuum analogue of this type of sur-
face defect is a displacement discontinuity over a plane

bounded area. It is not expected that the elasticity theory
can give a detailed description of the behavior of cracks
or lattice defects. An immediate result obtained from the
continuum idealization is in the energy changes associated
with the presence of defects. The knowledge of the strain
energy may have some application in crack propagation
and in the change of orientation of crystal boundaries,
We shall assume that the elastic body is homogeneous
and transversely isotropic. The general discontinuity prob-
lem can be constructed from two cases: (a) where the dis-
continuity vector is perpendicular to the surface S, and
(b) where this vector is tangent to the surface S. The former
case has been solved by Berry and Sales;' and the present
paper, presenting the solution to the tangential discon-
tinuity case, completes the general problem.

Berry and Sales have applied their solution to a physical
situation of interest in mining and geology. They use the
idealized model of the earth as a homogeneous, semi-
infinite, transversely isotropic, elastic medium and apply
the idea of a displacement discontinuity to the study of
subsidence in a mining excavation at some depth below
the earth surface. They find close correspondence between
theoretical predictions and actual measurements obtained
from some British coal fields. It is pointed out that al-
though the displacement itself may be large (approxi-
mately four feet) compared to the usual elongation meas-
urement in testing laboratories, as long as the strain is
classically small, linear elasticity theory applies. Such is

435

IBM JOURNAL °* SEPTEMBER 1964




436

the case outside the immediate neighborhood of the
excavation.

The stress field due to an arbitrary displacement dis-
continuity over a bounded plane area in a semi-infinite or
infinite solid, has been determined by Rongved and
Frasier’, and Rongved®, when the elastic medium is iso-
tropic. As we have mentioned earlier, Berry and Sales
solved this problem for a transversely isotropic elastic
medium when the discontinuity was in the displacement
component normal to the plane area. Their solutions were
in terms of integrals over the area of discontinuity. Also,
a special case of constant discontinuity over a rectangular
area was worked out in closed form. In this paper, the
elasticity problem, where the discontinuity is in the dis-
placement component parallel to the plane area inside the
transversely isotropic medium, is studied

The solution is obtained in the form of stress functions
analogous to those used for isotropic materials. As in the
isotropic case, these stress functions are expressed in terms
of integrals over the area of discontinuity. First, the prob-
lem is solved for an infinite medium with the displace-
ment discontinuity. From the conditions of continuity of
certain stress and displacement components across the
plane containing the discontinuity, it is possible to reduce
the general solution to a single “harmonic” function.
Since the value of this function is known in this plane, it
may be determined by means of Green’s formula.

The case where the discontinuity lies in a semi-infinite
medium is obtained by applying the method of images
and by introducing a residual solution which gives the
desired traction-free plane surface. A special case of con-
stant displacement over a rectangular plane area is pre-
sented in closed form. If the discontinuity occurs over a
circular area, the use of integrals of Bessel functions
simplifies the analysis considerably. The result is presented
in the Appendix.

The analysis in this paper is based on Rongved’s solu-
tion to the isotropic elastic problem (2), and the potential
functions method first introduced by Elliott*®.*

Finally, it is pertinent to point out that steady state
dynamic elasticity problems with moving boundary con-
ditions, moving at a uniform velocity less than the propa-
gation velocities of the material, have the same forms of
potential functions as the corresponding static problems.
Therefore, a knowledge of the solution to a static problem
will lead to the solution to the dynamic problem through
a slight change in the analysis. The two dimensional
analog to this method has been discussed by Stroth’, who
treated material with more general anisotropy. This
method and its restrictions will be discussed in a forth-
coming note. It follows, that by the use of this technique,

* References 1 and 6 present further information on work in this field.
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the present infinite solid solution is also valid if the dis-
continuity is moving at a constant velocity along the z-axis.

Potential functions

In the linear elasticity theory, the fundamental system of
field equations are the linearized strain-displacement equa-
tions, the linear stress-strain relations (Hooke’s Law),
and the stress equations of equilibrium. We shall restrict
ourselves to transversely isotropic, homogeneous media
with no body forces. The symmetry axis of the material
is taken to be the z-axis. The strain components are de-
fined as

. 0w Lo w
zz ax: em[ ayy zz T az
_ (% 91) _ (95 6_w>
€y — (dz + ay > €z = aZ + ax (la)
Jdu dv
Gev = (By T 6x>’

where u, v, w are the displacement components in the
x, y, z direction.
The equilibrium equations are

do do,, do
Tr Z xz = 0
dx + dy + 0z
do, do,, do,
- 4 £ =0 1b
Ey + oy + 5% (1b)
do do, do
2T z zZ — 0
ox + dy + 0z
And finally, the stress-strain relations are
Oz = C11€2s + c12eml + C13€;;
Ty = C12€s: + Cuilyy + Cize.,
g, = Cl3(ezz + ez/:u) + 033ezz (lc)
Oyz = C44€y, Oz = C44€yp
a-zu = %(cll - cl2)ezy1

where the ¢, ; are the elastic constants.

It is known™® that Egs. (1a, b, ¢) are satisfied if the dis-
placements and stresses are expressed in terms of three
“harmonic” functions ¢,, ¢,, ¥ which are solutions of

(Vf + £§>¢f =0 G=1,2)
4
2 o
<V1 + a—)lﬁ =0, (2
T3
where
Zy =Z/\/”_z <l= L, 2, 3)’




2 2
V= 6—2 —6—'5, v, and », are roots of the equation
dax dy
6'110441’2 + [C13(2C44 + C'13) - 011013]1’ + ca3cqy = 0, (3)

and

2C44
Vg = ———— ° (4)
Ci1 — C12
The displacement components in Cartesian coordinates
are

36, | 9, 3Y

”=ax dx dy

_ 9% , 9¢. _9¢Y

v_6y+6y dx )
w— K 0b ke 0%,

'\/Vl 9z, \/1’—2 0z

where k,, k, are given by

y = kcas — k(Cls + C44) + Cag (6)
kcas + (013 + C44) C11

From the above relations, three stress components of

immediate interest are

T;. _ 02‘#1 ?_2£¢_2
. 1+ k) 2 + (1 + k) 9
g _ (Lt k) 8¢ | (1 + k) 8
Caa oy,  9x0z Vv, 0x0z
1 9y
= 7
+ '\/y3 00z, ( )
9 _ (L+ k) 3 | (14 k) 8°
Cay \Vp, 0x9z Vv, 0x0z
_ 1 v,
»\/1;—3 6yazg

The roots »,, v, may be real positive or complex conju-
gates. The root v, is always real and positive_. It is speci-
fied that in the case of complex roots, 1/, and /7,
are to have positive real parts.

Infinite solid

If the discontinuity in displacement occurs over a plane
bounded area A4, which is thought of as coinciding with
the z = 0 plane, then the general problem may be stated in
terms of the two following conditions:

(a) The stress components o,,, ¢.,, d,, are continuous
everywhere across the plane z = 0. Displacements
(u, v, w) are continuous across z = 0 except over 4,
where the discontinuity is prescribed.

(b) Stresses and displacement must vanish at infinity.

The general case can be obtained by superposition of
three different problems in which the discontinuity occurs
only in u, v, and w, respectively. The case where discon-
tinuity exists only in the component w has been solved by
Berry and Sales.” Tt is clear that the analyses for the prob-
lems where there is only a # component discontinuity or
only a v component discontinuity are essentially the same.
We shall therefore discuss the elasticity problem of an
infinite solid with a displacement discontinuity in the
component along the x direction over an area A4 on the
z = ( plane.

Let plain and the prime quantities be associated with
half-spaces defined by z > 0, and z < 0, respectively. Our
boundary conditions are such that at z = 0,

g, = ol (8)
7. = 0l 9)
0., = oL, (10)
i+ u=u (11)
v =1y (12)
w=w, (13)

where #(x, y) is the prescribed discontinuity over 4, and
is defined to be zero everywhere outside A.

We are now concerned with two half spaces z > 0,
z < 0 to which are assigned the potential functions
(@1, 92, ¥) and (@], @5, ¥') respectively. The boundary
conditions to be satisfied at z = 0 are Egs. (8) to (13).
Examine Egs. (8) to (13) in terms of their potential func-

tion representations in Egs. (5) and (7).

Let
¢i(xs Y, ZJ') = _¢1"(x’ Y, _zi') (-1 = 1’ 2) (14)
¢(x, Y, Z3) = _¢/(x’ Vs _ZS)- (15)
Then Eqgs. (8), (9), and (13) are satisfied.
Let
o = 0 gy, 2 (G=1,2 (16)
T k) T ’

where VV°H(x, y, z) = 0.
This satisfies Eq. (10).
Let

l(x y,2) = t dH(x, y, z)
ax 777 1+ k, dy

_ 1 0H(kx .2,

This satisfies Eq. (12). In Eqgs. (14) to (17), we have made
some intuitive guesses to the displacement field without
violating the boundary conditions.

(17)
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Finally to satisfy Eq. (11), we write

2{ 1 aH(x,y,z)+ 1 9H(x, y,2)
1+ & ox 1+ &, ax
a i 3
+ —'—P—(%i)} = —D,(x, y,2), (18)

where we define D, to be harmonic in z > 0, equal to
i(x, y) on A at z = 0, and equal to zero over remaining
portion of z = 0. It is clear that the problem is reduced to
finding a harmonic function regular in z > 0 with its
boundary value prescribed at z = 0, i.e., a Dirichlet prob-
lem. We can write

19 u(E "
—E %2 e dt du, (19)
where ro = (x — &'+ (v — W' + 2.

Since H(x, y, z) and ¥(x, y, z) and D, are all harmonic
we have from Egs. (17), (18), and (16) that

OH (L4 k) + k) @ [ ale, )

D.(x, y,2) =

o D = N Ty o) o K
(20)

ie.,

Hx, 3,2) =+ ;;(Q)(j ;;kﬁ

W 3. 2) = f HE Lo =t i g (22)

Equations (5), (14), (15), (16), (21), and (22) form a
complete solution to the elasticity problem.* Stresses and
displacements are expressed in terms of partial derivatives
of potential functions. These functions are known apart
from arbitrary functions zf(x, y) + g(x, y). They are
usually eliminated by the conditions of stress and dis-
placement at infinity.

It may be remarked that instead of Egs. (8) to (13) it
is possible to state the boundary condition more explicitly
(as by Berry and Sales," Eq. 8). We can consider the half-
space z > 0, such that,onz = 0

v=20

o.. =0 (23)
u= —1i on 4

u=20 elsewhere on z = 0.

However, it is felt that Egs. (8) to (13) are a more funda-
mental statement of the boundary conditions of a dis-

*1f A represents a circular area, the use of integrals of Bessel func-
tions gives much simpler results, They are presented in the Appendix.
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continuity problem. The displacement, and some of the
stress components may be expressed in terms of integrals
over the discontinuity. We write

= [ @ a (24)
_ V=
i = L roi(re; + 2;) 4E 1) o du. 22

Then, the displacement components are

k(l + k) 9L k(1 + k) 3l

dpw = ——= £AN
\/Vl(kz ~ ky) 24 \/vg(k2 — ky) 022
47|'1J=—1+k2 Qﬁ_{_l_*"kla_lz 6—13
(k2 - kl) ay (ky — kl) dy Ix
dru = __1_4;&%+_1_ﬂ1.§_1_2_5_é.
ke — ki) Ox (ks — k) Ox dy
(26)
4 (L4 k) A k) [am _ yz]
Cas ke — ki azf 322
r (k) +k2)[ 1 o'n
Cas ky — ky \/y_1 dx0z,
1o :’ 18U
/v, %02 A/ 070z,
4 _(F+ k) A kz)[ 1 &
Cyq v kz - kl \/Vl ayazl
_ 1 6212] 1 &J; . (27)
\/1/_2 dy0z; \/V_a 0x02z;

Note 1: The stresses and displacements are all real even
if vy, vy, and k,, k, are pairs of complex conjugates.

Note 2: To continue the solution into the z < 0 space,
it may be sufficient to state that, from inspection of Egs.
(14) and (15), 4 and v are odd functions of z, while w is
an even function of z; and in terms of stress components,
G .25 Ozzs Oyys and o, are odd functions of z, while ., 0,
are even functions of z.

Note 3: In the studies of crack propagation and of dis-
location theory, it is often useful to know the elastic strain
energy due to the displacement discontinuity. This strain
energy, sometimes called the self-energy, is given by

1
=3 f O unlran AU,

summed over m and n, and integrated over the entire
medium. Through the use of equations (la, b, ¢) and the
divergence theorem, it can be shown that

17,
E = fA (i0..)

z=01 dx dy:




where A is the area over which the displacement discon-
tinuity occurs.

Examples

If i(x, y) = 1, and 4 is a rectangle defined by

—a < x < g, —b < y < b, then
Q&_ [ry — v+ bl[rs; — y — b]
9z, = log [r2i — ¥ + bllry; — y — b] 28)
0J; _ ol _ (r; + z:)(rs; + z5)
ox 9 log 8 e + 2)ras + 2)) (29)
1oy,
2 0x
1 -1 b—y
_ tan_l {(a —_ .X) tan 5 <tan [( - x) + ]1/2)}
[(@ — x)" + 21" + 2z
1 -1 b+
1 tan-! {(a + x) tan > <tan [( T 7 1/2>]\
[(a +X) + z 1/2 +Z;, J’
J(a + x) tan 1 <tan_1 b )
+ tan™! 2 [(a + x)° + 22]"*
1 [(@ +x)" 4+ 2" + 2
1 f b
T tan! _J{(a — Xx) tan 3 <tan — x)+_|)i z~1/2>1
1 [(a — x)" + 212]1/) +z
(30)

(6 — )"+ 42z

a+ x
[+ » + 217

(b + y) tan % <tan“1
(B4 ») +217 4+ 2

>}
)

1 _ a— x
— tan! {(b — y) tan 5 (tan =7 + Z?]1/2>}
(
J
]
|

1 -1
(b + ) tan > <tan 5% )7 + 7

l

l (6 + »F + 217 + 2,
J(b — y) tan % (tanf1 at x
|

+ tan™’ (b — »)* + 2]
(6 —»)" + 217 + 2,
(31)
where
rii=(@—x)"4+0®-y +z
ri=(a+x+>b—y +z (32)

ri, =@+ x°+ @&+ » +2
ri; = (@a—x)"+ b+ ) + 2.

The strain energy due to the dislocation has been found.
It is
(Vi = Vu)(1 + k(1 + k)

4z \/VIVQ(kl — kz)

E, =

2 241/2
S 4 10g {(_a‘l‘_b}‘_‘hﬂ}
47p3 a —a

Semi-infinite solid

We consider a discontinuity over a region 4 on the plane
z = h, inside the semi-infinite solid z > 0. Superpose two
discontinuities of equal strength and opposite sign at
planes z = h, and z = —# inside a infinite solid. Then
from Note 2 of the previous section, ¢,, = o,, = 0 on
the plane z = 0. It is now necessary to find a residual
solution which will not produce any singularity inside
z > 0, be free of shear stress on z = 0, and will annihilate
the normal stress at that plane. This is the same situation
faced in some other half-space problems (Shield,’ Eq. 4.2).
The stress that we need to annihilate is

H(x,y, h) & Hlx,y, h)
O.p = —2C44 622 - azg .
1

Define a residual potential in terms of function H (see
Eq. 21).

24, (=)'
1+ k") [\/Vl - '\/Vz]
X[H(X, y,2z; + h1) — H(x,y,z; + h2)]- (33)

It is found that on z = 0, its surface traction due to ¢* is

¢ =+

UZZ = 0’1/2 = 0
and
H(x, v, h " H(x, y, h
G,z = +2C44l: ((9 zy 1) - ( 2y 2)]
Z1 9z,

Also ¢% does not produce any singularity inside z > 0.
The term ¢* therefore satisfies all the requirements of the
residual potential.

If the infinite solid potential functions as defined in
Egs. (14), (15), (16), (21), and (22) are called ¢X(x, y, 2),
&X(x, v, z) and x//I(x, ¥, z), respectively, then the potential
functions for the semi-infinite solid can be written as

¢ = ¢i(x, v,z — h) — ¢i(x, v,z + h) + ¢F
b = d5(x, v,z — h) — ¢s(x, v,z + B) + ¢r  (34)
=Y (x,y,2— h) — ¥(x, 9,2+ h.

These potential functions are represented in terms of
the integrals over the area A. Let
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ifii = (a - x)2 + (b - y)2 + (zi - hi)2 + 2ko(l + k) [6721 al:zz:l (40)
2 2 2 2 (ks — k)" — w*] L 8z 92,
P = (a+x)°+ (b — )"+ & — h) .
-2 2 2 Y _ _ 1 + k> 6_111 _ 6_711
Faie = (@a+x)°+ G+ 2"+ @ — k) Ll A [ o Tx ]
=2 . _ 2 2 L . 2 _ -
Fis = (a D+ 00+ + (z; hs) B 2\/v1(1 + &) B [‘ﬁn _ Lim]
= @Ot Gha C = k)7 =T Lox ~ o
Bro=(@+ 2"+ 06—+ @+ h) _a +kl>[g@_g@]
Foo=(a+ x4+ b+ »"+ @+ r)? ke = ki o =
2 = — ¥)? 2 2 2\/"2(1 + &) - [a_iz_l _ (9_1—22:'
Fui=(@a—x)"+ b+ 3"+ @ + h) + ks — k) — 777 | ox Ix
_(2)” - Y Y . — h 2 B
"2 (x O + (v w + (z ) + (6_.733 B %«3) (a1)
Foro = (x — 94+ (0 — ' + @& + b, oy ay
and let —dqv = ———& _‘__ :2) [3_11_1 — %:I
L= [ rpnbadl (36) - 2velek) ol ol )
07\ 05¢ i 1 ( _ kl) 172 1/2 ay ay
— Ha, p) df du
RA Foe s I Ik
- dt d — - -
f f I ")fz“) 5,1,)“ (39) 2l + k) [alm 3 gl_]
4 7074\ 057 i ( _ kl)[V1/2 . 1/2] ay ay
(v — wat, w) dt dp
R Koo Z + h) (39) = (—a—;; = %) (42)
The displacement may be expressed as (for z > h) Example
—drw = k(1 4 k) [lel _ 6_711] If u(¢, p) = 1, and A4 is a rectangular region with sides 2a
\/Vl(kz — k) L9z 021 and 2b parallel to the y and x axes respectively, then
_ 2k (1 + k) [6711 _ G_IE:l oL, (Fiyi — ¥ + B)(Foyi — » — b)
(o ~ k)BT — 7 Low oz, TRl s C——— 3)
vkz(l_—‘_ k_.__l) [Q& — .6_72_2] aiii (F]jr' + 3 — h1')(’_'37‘4' + 3 hr)
\/V2(k2 — k) 9z 0z, —5—)’_ = log (Fosi + 2, — hi)(7'4fi +z; — hi) (44)
1 -1 b—y
190 _ e o= n (o T 7).
2 dx [(a — x)2 + (z; — hi)2]1/2 + (z; — h;)

1 —-1 b+ y
+ tan—l J(a + x) tan 2 (tan [(a +‘x)2 + (Z,‘ . h,-)2]1/2>}
1 [(a + x)2 + (z; — h,‘)ql/z + =z — h,-)

J(a + x) tan % <tam_1 5 b=y A )1

. [(a + 9" + G + h)T”
+ tan 1 (@ + x)° + & — h)1'"? 4 (z; — ki)

J(a — x) tan % <tan_l 5 bty g _>}

. [(a — %)’ + @ — 1)
S R T ey o i
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1 -1 a — X -
LU 6 = 9 an (an [ ) + & — h)]>JL
2 0 (6 = 0"+ G ~ b))+ g — A

a -+ x

+ tan™" [

Ir(b + )t 1 (t -t **)]
G A N [0 0 ol B ol )
b+ W+ G@-— )"+ —hl

(
| 1 ( -1 a — x )
J(b + y) tan 5 (tan b+ )+ @ — n)]"

+ tan™" 1

I

[(b + J/)z + (z; — h;‘)z]”z + [z
a -+ x

1 -1
J(b — y) tan 5 (tan b= ) F &

+ tan™! W;k

The double bar quantities are obtained by writing
z; + h; for z; — h; in the single bar quantities.

Figures 1 and 2 show the vertical component of the
displacement at the free surface due to a constant dis-
placement discontinuity (or dislocation) in the x-compo-
nent over a rectangular area inside the elastic half-space.
The calculations are based upon values of elastic con-
stants contained in a paper by Huntington.*®

The vertical displacement at the free surface is found
to be anti-symmetrical with respect to the y-axis. There-
fore, only the quantities to the right of the y-axis are
plotted.

Figure 1 shows plots for the vertical displacement com-
ponent along the x-axis for three different shapes of the
rectangular area and with the elastic properties of the
half-space taken to be those of barium titanate ceramic.

Figure 1 Surface vertical displacement due to dis-
location u, over a rectangular area at
depth % in barium titanate ceramic. Rec-
tangle is centered on origin of x—y axes with
length 2b in y-direction and length 2a in
x-direction. Here, a = 10 units and depth

h = 5 units.
£
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Figure 2 Vertical displacement at surface due to
dislocation u#, over a rectangular area at
depth h. Rectangle is located as in Fig. 1
with a = 10 units, b = 12 units, and h =
5 units.

In Fig. 2 the vertical displacement along the x-axis is
plotted for different elastic materials. In both cases, the
depth of the rectangular area from the free surface is the
same.

Appendix

If the area of the displacement discontinuity is a circle,
it is particularly convenient to use cylindrical co-ordinates.
Consider a set of cylindrical co-ordinates (r, 6, z). Then,
at the plane z = 0, we have the following boundary con-
ditions, corresponding to Egs. (8) to (13):

P |
g, = U';Z Uy + Hg = Uy
—_ ’ - ’
Grz = O, U, + U, = U,
— 14 — 4

Ty, = 0Oy, w=w, (A.l)

where the functions i, and @, represent the desired dis-
continuity over a circle 4 of radius a and are defined to
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be zero everywhere outside this circle, over the z = 0
plane. Again, let

¢1’(r’ 0, Zi) = _¢§(r’ 6, _zf)

‘//(rs 9, 23) = —gV(r, 9, _23) (AZ)
¢ = %:—f—]% H(r, 0, 21) (A.3)
¢2 = _-Elki:—_ii(% H(r, 0, Zz) (A4)

and V2H(, 6, z) = 0.

H(r, 6, z) and {r, 8, z) are now expressed in terms of
integrals involving the Bessel function J.(r) as follows:

]

Hr, 0,2) = 2, ™ fo ’ 7o) J,(r) e ¥ at

W (A.5)
Y, 0,2) = ; —ie""efo ga(®) J.() e dk.
Thenatz= 0
o= 3 e [ @ ens
+ f— 2.(8) Jn(’é)] 3
(A.6)

—a, = 3 ie™ [ [f In(®) J(r8)

n=—0o0

+ £g.(8) Jé(ré)] dt.

Assume that i, and i, can be expanded in the form

—3a, = 2 e™a.(r)
e (A7)

o0
—3q, =i Z ™ o).
n=—00

Also

Then

G = f n(®) EJua(rE) dt — f BuE) ETun(rE)

i = f anl®) EJuoa(rt) dE + f Bo®) EJus (D) .
Therefore

a,(f) = % o st + Hpn)r dr
0 (A.9)

8.0 = =3 [ 1ues8)@n — w)r ar.
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This solves the general problem for a circular discontinuity.

Example 1
Ifatz= 0, 4, = 0and 7, = — 24r, then from Egs. (A.7),
(A9)

Ad’

£

—M9=M9=—A[A@Vw=— J(Ea) .

Example 2
Ifatz = 0,7, = 0and @, = 1, then one finds that

) = =L@ = 5“5 Ji(at)
and

H{r, 0,2) =

[N

cos 6 fwg Jo(ad) T, (rd)e™ ¥ dt

Ve 0 = dein g f wgg Ji(ak) Ji(rE)e™"" d.

In both of the examples stresses and displacements will
involve integrals of the type

I(u, v, \) = f e ' I (ar) J,(bi) dr.
]

For discussion of properties of this type of integral in-
cluding elliptic integral representations see Luke."* Eason,
Noble, and Sneddon'® have given power series representa-
tions and recurrence formulae of them, and have also
composed tables for some values of (u, v, \).
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