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Velocity of Sound in a Many-Valley Conductor

Abstract: The effect on the velocity of sound corresponding to the “Keyes effect,”” for nonzero frequency and

finite wavelength, is calculated by means of the electron Boltzmann equation. The result may be expressed

as an effective electronic contribution to the elastic constant; the deviation, xdK, of 5K from the Keyes elec-

tronic contribution to the elastic constant, 3K,, is examined as a function of frequency and other parameters.

When the Fermi velocity v is much larger than the sound velocity s and the mean free path is of the same

order or larger than the acoustic wavelength, we find that x ~ (s/v)2. When the mean free path is small

compared to wavelength, y = o?/[0? + (v -+ 1/74)%], where v is the intervalley scattering rate and 7; is an

average diffusion relaxation time.

1. Introduction

This paper is concerned with the contribution to the sound
velocity in many-valley conductors that is attributable to
electron lattice interactions. In the presence of a static
strain, e, the band edge of each valley, i, is shifted by an
energy A;e, where A; is the deformation potential.”* The
resulting addition 8K, to the “lattice part™ of the elastic
constant, K;, was calculated by Keyes for degenerate
statistics using equilibrium statistical mechanics.®> The
general form of his result is

0K, = _Eigi(EF)[Ai - zjgi(EF)Ai/ngr]z: (1'1)

where g.(Ep) is the density of states at the Fermi level in
the " valley. Bruner and Keyes* demonstrated this effect
experimentally in degenerate germanium, where the con-
tribution can be several percent, by comparing the velocity
of sound with that in undoped germanium.

Since the electron distribution may not adjust itself
rapidly enough to be in adiabatic equilibrium with a time-
varying strain, it is not correct a priori to calculate the
sound velocity, s, from the static elastic constant by means
of the equation

MS2 = K, + 0 Ko, (1-2)

where M is the mass density. Solution of the dynamical
equations of motion that couple the lattice displacement
to the carrier density is necessary; one replaces 6K, in
(1.2) with a 8K which is in general a function of the fre-
quency of the sound. Weinreich,” and Weinreich, Sanders
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and White,” have made such a calculation in terms of
localized phenomenological transport relations and an
equation of charge continuity. Their formulation breaks
down when the applicable carrier mean free paths become
comparable to or greater than the ultrasonic wavelength,
a condition which occurs in pure bismuth at low temper-
atures. Under such conditions, the carrier distribution
must be calculated from more fundamental considerations.
The present paper calculates the “Keyes effect’” by means
of the electron Boltzmann equation.

In Sec. 2 the effective correction 6K to K,, resulting
from the interaction between the carriers and the lattice
strains, is found in terms of the deviations of carrier den-
sities from equilibrium caused by the sound wave. The
attenuation and sound velocity are then given by the real
and imaginary parts of §K. The deviations of the carrier
densities from equilibrium, to terms linear in the strain,
are calculated in Sec. 3 by means of the Boltzmann equa-
tion. The resulting change in the velocity of sound is
examined in detail, in Sec. 4, for the case of two non-
equivalent groups of valleys.

Blount® has calculated the attenuation of sound in a
many-valley conductor by means of the electron Boltz-
mann equation. For his purpose it was not necessary to
consider the reaction of the carriers back on the lattice,
as in the present paper, the attenuation being given directly
by the rate at which the carriers absorb energy from the
lattice wave.




2. Equations of motion of the lattice

The Lagrangian density of a single mode of displacement,
¢, propagating in the x direction, can be written

L = 1 M(3¢/0t)° — % Ko(00p/0x)"
— E,‘n,*A,‘ 6¢/6x. (2.1)

The first term on the right of (2.1) is the kinetic energy;
minus the second and third terms are, respectively, the
lattice part and the electron lattice interaction part of the
potential energy. The mass density, M, and the carrier
densities, n;, are both taken with respect to a volume ele-
ment which is fixed in the moving lattice. The coordinate
is also fixed in the lattice.

The equation of motion becomes
M(3*/35)p = Ko(9°/0x")p + 2:4:(8/0x)n;. (2.2)

Assuming that the space dependent part of n; is linear in
the strain, d¢/dx, for a traveling wave,

¢ = ¢ exp i(wt — kx),
(2.2) becomes

W M = kK°(K, + K)o, (2.3)
where

8K = 2,A,Ci(k, ) (2.4)
and the C; are defined by

nix, 1) = nd — Cik, w)ike. (2.5)

Here n} is the equilibrium density of carriers of type i.
We can calculate the phase velocity of sound, s, and
the attenuation, «, from (2.3). For 6K < K,,

a = —(w/s))s Im (6K/ K,) (2.6)
s = so[l + % Re (8K/ Ko)], (2.7)

where s, is the uncorrected phase velocity.

3. Calculation of the carrier densities

We seek the time and space dependent one-electron distri-
bution function, f,(p, x, 1), of a many-valley conductor
in the presence of an ultrasonic wave. We shall assume
degenerate statistics. The basis states whose occupation
numbers we calculate are Bloch functions periodic in the
unit cells of the strained lattice, the Orthogonalized De-
formed Bloch functions introduced by Whitfield? We
assume, then, as a first approximation, that the electrons
move in such a manner that their position is stationary
relative to the lattice.

To first order in the strain, the energy, E;, of an electron
in an O.D.B. state of momentum p in valley i is

E; = Eip) + Ap)e + ay'e. 3.1)

The unperturbed energy E9 is the energy in the absence of
the strain; the energy shift due to distortion of the shape
of the unit cell is A;e, the diagonal part of the deforma-
tion potential operator.” The term y'¢ is the long range
electrostatic potential, arising from carrier bunching,
which is not compensated by the change in ion density
due to the strain.

We shall assume the A; are independent of p and merely
result in a shift of the band edge. This assumption is cor-
rect when Ep ; << A;, where Ep; is the Fermi energy
measured relative to band edge i.

The distribution function satisfies the Boltzmann equa-
tion:

0f:/0t + v,.. 0f:/0x — 3fi/3p.(8/0x)gy'e + Ase)
= _afi/at‘oolls (3-2)

where we have used canonical coordinates and momenta
of the coordinate frame moving with the lattice.’

For elastic scattering of carriers, the collision term is
of the form”

o /ot = 27 [ LoD SCot — )

— fp)S(p; — p))] 8(E: — E;) dp/, (3.3

where the integration is over all momentum states in
valley j, the sum is over all valleys and both spin orienta-
tions, and S(p; — p?) = S(p} — p.). We make the assump-
tion that for i = j, S(p; — p!) depends only on the energy
and is isotropic in momentum space, and for i  j,
S(p; — p;) depends only on the valleys i and j. With these
assumptions,

afi(pi)/atlcoll = —Zwp,(EJf(p) — f_}(E,)], (3.9

where
vilE) = wS(p, — p) [ do} (B, — E)

= S(p; — p.)g;(E) (3.5)

and

FE) = 1 (E) [ 160 (B — E) apf. (3.6)

The symbol (7) will be used to denote an average of a
quantity over a constant energy surface.
We require f; up to first power in the strain. Let us write

fi = HLEND)] + (0£,/9E)A; + q¢
+ £i(p)]e + O() -+ (3.7

where ¢' and £ are independent of e, and (8f,/9E)¢:
represents the correction to the distribution function
which arises from its lack of adiabatic equilibrium with
the strain wave. Substituting (3.7) in the Boltzmann
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equation, (3.2), with (3.4) as the collision term and
€ = ¢, exp i(kx — wt), we get

i(kv. — @ — i/1)6:(0f/0EDe = [iw(A; + g¥)
+ E,»V,-,»g](aﬁ)/aE?)e.

Here 2; v;; = 1/7,, the total relaxation rate, and v, ,
is the component of the carrier velocity parallel to the
propagation direction.

We now turn our attention to the equation which de-
termines the electrostatic field ¥'e. The charge density
with respect to a unit volume which deforms with the
lattice is calculated by integrating the terms linear in the
strain on the right of (3.7) over all states, since the f, term
is just sufficient to neutralize the ion density. The error in
writing Poisson’s equation in the coordinates fixed in the
moving lattice instead of real space is of first power or
higher in the strain and can be neglected. Thus ¢'e is
determined by

“lez'VG = 47rziqgi<EF)[Ai + ‘I‘V + Ei(Ep)]e (3~9)

for degenerate statistics. Here ¢, is the lattice part of the
dielectric constant.

We desire the quantities £ and y'. We can transform
(3.8) into equations that involve only £; by dividing both
sides by i(kv; . — w ~— ir;") and integrating over all states
in valley i. Thus we get

(3.8)

Dig:‘ = [iw(A; + 4\01) - EiVug], (3-10)
where
7t = g [ dv, o[Es — Edp))]

ko, , — 730 — dw)”h. (3.11)
For a spherically symmetric valley,
D, = —(Gike) In <“’T‘(1 +oifs) = ’) , (3.12)

wr (1 —v/s) — i

where v; is the magnitude of the Fermi velocity. For an
arbitrary orientation of an ellipsoidal effective mass
tensor (3.12) remains unchanged; v, becomes the Fermi
velocity of an electron traveling in the direction of k.°
We next express ¢ as an explicit function of £ by adding
—iwg}; to both sides of (3.10), multiplying by 4wqg.(Ep),
and then summing over all i, Using (3.9) and the detailed
balancing principle, we get

¢! = —Z(iwg) " (T/KIRE. (3.13)
Here
I = (4rqg)"” &’ (3.14)
and
D, — 7' — iw = R,, (3.15)

which will be seen to play the role of the relaxation rate
due to diffusion.

With the use of (3.13) in (3.10), the equation which
determines £, becomes

(R; + iw)e; — ZpyE — E)

— 3T /k)°RE = —iwA;. (3.16)

It is seen that I'; is the inverse of the Debye shielding
length of carrier i. In a semimetal such as bismuth,
T & 10°*% cm ™, much larger than the ultrasonic wave
number, k=~ 10> cm™", at megacycle frequencies. Examina-
tion of (3.9) shows that when the electrons follow the strain
adiabatically (i.e., £ = 0), the electric potential is just
sufficient to cancel the average of the deformation po-
tential when the electrons are able to shield forces within
a wavelength (I' 3> k). Under these conditions, 6K is
identical with Keyes’ static result, (1.1).

A study of the two-valley case will suffice to show under
what conditions 8K differs significantly from éK,. For
propagation of a longitudinal wave in the trigonal direc-
tion electrons and holes in bismuth may be considered
as belonging to a pair of “valleys.” The two-valley model
also fits n-type germanium with longitudinal waves in the
[111] direction.

4. The two-valley case

The solution of (3.16) in the two-valley case is

B = (—iw)0 [{iw + v + [1 — (T2/k)*IR:} A,

+ e + (T/K)°R:AD, (4.1)
where
0 = {iv + v + [1 — (T2/k)’1R:} i + 91
+ (1 — I'y/k)°R;}
— 12 + (Do/R)°Ro)lras + (T1/k)"Ri]. (4.2)

Interchanging the indexes 1 and 2 in (4.1) gives us £5.
‘#1 = (QQ)_I{(FJ/k)ZRl[(iw + R, + V21)A1 + V12A2]
+ (To/k)’Ro[(iw 4+ Ry + »12)As + vnAV]}. (4.3)

In bismuth, (k/T)® < 1 up to microwave frequencies;
therefore, we can expand all quantities in powers of this
parameter and neglect all but the lowest order term. For
bismuth, I' =~ K ; thus the Boltzmann equation approach
cannot be used when I' & k and we will concern ourselves.
only with k/T' << 1. To lowest order in (k/T’,
Q = —(T'/k)'Ro(iw + v + R))

— (I'2/k)’Ry(iw + v + R.), (4.4)

Where V= Vg + Vo1
Using (4.4) along with our expressions for y' and £,




(4.3) and (4.2) respectively, in the expression for the par-
ticle density given by

n; = R;0 — gi(EF)(Ai + E + 4\01)6,
we can obtain 8K from Eq. (2.4):

oK = —glgz(gl + gz)_l(A1 - Az)z[l - i"’A]’ (4-5)

where

A = [(g, + g2)RiR:(g:R, + ngz)_l + v+ iw]ﬁl.
(4.6)

The factor 1 — Re(iwAd) is a correction factor to the
Keyes result. This is similar to the usual result o(w) =
oall — iw(y, 4 iw) '] for a linear response function ¢(w)
when one has a relaxation process. The total relaxation
rate, »,, for our case should be equal to the real part of
the first two terms in the bracket on the right side of (4.6).
In the long wavelength limit, we shall find that the real
part of the first term is identical with the usual relaxation
rate due to diffusion; the second term is the intervalley
scattering rate.

When the imaginary part of (4.5) is used to calculate
the attenuation coefficient, «, using (2.6), the result is
identical with the expression previously obtained by
Blount.® We shall examine the real part of 6K which de-
termines the sound velocity in (2.7). Setting R;* = X;
+ iY;, we find

Re (—iw A)

- w(gl + g2)(g1 Y, + &2 Yl) - 0)2 Igl/R2 -+ gz/R1|2_
Igl + g + (iw + V)(gl/RZ + g2/R1)IZ

(4.8)

Equation (3.12) can be rewritten in order to express D;
(and hence, by (3.15), R;) explicitly in terms of real and
imaginary parts:

D = 2ku{tan" (ki + wr) + tan™" (kI — wr)

i [1 + (kl)z + (r)’ + 2k1wr]}“ (4.9)
14+ &) 4+ (wr)°® — 2kt

where / = vr, the mean free path of electrons moving in
the direction of propagation of the sound. In bismuth
s/v & 107% so that (4.9), and thus (4.7), can be expressed
in a power series in s/v. Keeping the lowest power of s/,

X =7l —a ' + 0[(5)2] + .. (4.10a)
Y = Tf . (a2 _ 1
v(1 — a)? 1+ (k))*

+ o[(i)ail + ) (4.10b)

where @ = (kI)™' tan™" (kI). (4.10¢)

We are now in a position to examine the correction to
Keyes® expression as a function of &/ up to frequencies
where the inverse Debye shielding length T’ becomes com-
parable to k, provided s/v << 1.

o 1. Long wavelengths

In the long wavelength limit, &/ << 1, the forces on the
carriers are constant between collisions, and phenome-
nological transport equations, together with equations of
continuity, can be used to solve the problem. In this case,
we can display our result in terms of the diffusion relaxa-
tion rate and an intervalley scattering rate.

X = 37/K'l' = 1p;
Y = 7kis/v.

(4.11a)
(4.11b)

The real part of R™* in this limit is the diffusion relaxation
time; the imaginary part is negligible. Thus

Re (—iwd) = _wz/{wz 4+ 4 (g + g)
X (817'02 + gz"'m)_l]z}, (4~12)

which is precisely what one gets from the phenomenologi-
cal theory.’

There is the possibility of finding an appreciable cor-
rection to Keyes’ result in the range &/ < 1. The real
part of 1 — iwA is the correction factor to the static
value of the electron contribution to the elastic con-
stant and sound velocity (see (4.5)). This will differ sub-
stantially from unity when w = v and wrp = 1 (see 4.12).
Using (4.11a), the latter condition implies wr = (s/v)’. In
order for both conditions to hold simultaneously for some
value of w, we must have yr = (s/v)z, which means that
the intervalley scattering rate must be a small fraction of
the total scattering rate.

e 2. Very short wavelengths

In the other limit, X/ >> 1, the exact expression is quite
complicated, but we can establish an upper limit on
Re(—iwA). Expanding in powers of 1/kl,

X = @)™ + (/3 — DED2+ -] (4.133)
Y = (S/C)T[(ﬂ'z/z — 1)(kl)_l
+ (/2[4 + DEH + -+ -]. (4.13b)

We observe that the demominator of the right-hand
side of (4.8) approaches the value (g, -+ g,)° from above
as ki — oo, The numerator becomes

@/2 — D(g: + g)[g:(s/0))” + gi(s/v2)’]
— 7 lals/va) + gals/v)T. (4.14)
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Thus Re (iwA) *¢ (s/0)°, where 5 is an average Fermi
velocity in the sense of (4.14). It is not surprising that the
correction term Re (—iwA) is small, even at high frequen-
cies, when one considers that the diffusion relaxation
rate rises with decreasing wavelength.

e 3. Intermediate region

To get a feeling for the magnitude of Re (—iwA) for the
intermediate range of kI, we substitute X/ = 1 into Egs.
(4.10) and (4.8). We again find R(— iwAd) ~ (s/5).
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