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Velocity of Sound in a Man y-Valley Conductor 

Abstract:  The  effect  on  the  velocity  of  sound  corresponding  to the “Keyes  effect,“ for nonzero  frequency and 

finite wavelength, is calculated by means of the  electron  Boltzmann equation. The  result may be expressed 

as an effective  electronic  contribution  to  the  elastic  constant;  the deviation, XdKo of 6K from the Keyes  elec- 

tronic  contribution  to  the  elastic  constant, 6K0, is examined as a function of frequency and other parameters. 

When the  Fermi  velocity v is much larger than the sound  velocity s and the mean free path is of the  same 

order or larger than the acoustic wavelength, we find that x - ( s / v ) ~ .  When the mean free  path is small 

compared to wavelength, X = w2/[o2 + (V + l/G#j, where v is the intervalley scattering rate and Gd is an 

average diffusion relaxation time. 

1. Introduction 

This  paper  is  concerned  with the contribution to the sound 
velocity in many-valley conductors that is attributable to 
electron lattice interactions. In the presence of a static 
strain, e, the band edge of each  valley, i, is  shifted by an 
energy A,€, where Ai is the deformation  potential.’’2 The 
resulting addition 6Ko to the “lattice part” of the elastic 
constant, KO, was calculated by  Keyes for  degenerate 
statistics  using  equilibrium statistical mechanics.’ The 
general form of  his result  is 

~ K O  = --Zigi(EF)[Ai - zigj(EF)Ai/-Zrgr12, (1.1) 

where gi(EF) is the density of states at the Fermi level  in 
the it” valley. Bruner and Keyes4 demonstrated this effect 
experimentally in degenerate  germanium, where the con- 
tribution can be several  percent, by comparing the velocity 
of sound with that in  undoped  germanium. 

Since the electron distribution may not adjust itself 
rapidly  enough to be in adiabatic equilibrium  with a time- 
varying strain, it is not correct a priori to calculate the 
sound  velocity, s, from the static elastic constant by means 
of the equation 

Ms2 = KO + 6 K o ,  (1 -2) 

where M is the mass  density.  Solution  of the dynamical 
equations of motion that couple the lattice displacement 
to the carrier  density  is  necessary; one replaces 6Ko in 
(1.2) with a 6K which  is in general a function of the fre- 

430 quency of the sound. Weinreich: and Weinreich,  Sanders 

and White: have  made  such a calculation  in  terms of 
localized  phenomenological transport relations and an 
equation of charge  continuity.  Their formulation breaks 
down  when the applicable carrier mean  free paths become 
comparable to  or greater than  the ultrasonic wavelength, 
a condition which occurs  in  pure  bismuth at low temper- 
atures.  Under  such  conditions, the carrier distribution 
must  be  calculated from more fundamental considerations. 
The present  paper  calculates the “Keyes  effect” by means 
of the electron  Boltzmann equation. 

In Sec. 2 the effective correction 6K to KO, resulting 
from the interaction between the carriers and the lattice 
strains, is found in  terms of the deviations of carrier  den- 
sities  from  equilibrium  caused by the sound wave. The 
attenuation and sound  velocity are then given  by the real 
and imaginary parts of 6K. The deviations of the carrier 
densities  from  equilibrium, to terms  linear  in the strain, 
are calculated in Sec. 3 by means  of the Boltzmann equa- 
tion. The  resulting  change  in the velocity  of sound is 
examined in detail,  in Sec. 4, for the case of two  non- 
equivalent  groups of  valleys. 

Blount‘ has  calculated the attenuation of sound  in a 
many-valley conductor by means  of the electron  Boltz- 
mann equation. For his purpose it was not necessary to 
consider the reaction of the carriers back on the lattice, 
as in the present paper, the attenuation being  given  directly 
by the rate at which the carriers absorb energy  from the 
lattice wave. 
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2. Equations of motion of the  lattice 

The  Lagrangian density of a single mode of displacement, 
+, propagating in the x direction, can be written 

L i M ( 1 3 + / a t ) ~  - +Ko(d+/d~)~ 

- ZiniAi &$/ax. (2.1) 

The first term on  the right of (2.1) is the kinetic energy; 
minus the second and  third terms  are, respectively, the 
lattice part  and  the electron lattice interaction part of the 
potential energy. The mass density, M, and  the carrier 
densities, ni, are  both  taken with respect to a volume ele- 
ment which is fixed in the moving lattice. The coordinate 
is also fixed in the lattice. 

The  equation of motion becomes 

M(a2/d t2 )+  = K0(d2/ax2)+ + ZiAi(d/ax)ni. (2.2) 

Assuming that  the space dependent part of ni is linear in 
the strain, &$/ax, for a traveling wave, 

+ = +o exp i(wt - kx), 

(2.2) becomes 

w2M+ = k2( KO + 6K)+, (2.3) 

where 

6K = ZiAiCi(k,  u) (2.4) 

and  the Ci are defined  by 

ni(x,  t )  = n: - Ci(k, w)ik+. (2.5) 

Here n: is the equilibrium density of carriers of type i. 

the attenuation, a, from (2.3). For 6K << KO, 

a = - (w/so)$  Im (6K/ KO) (2.6) 

s = so[l + 3 R e  ( 6 K / K o ) ] ,  (2.7) 

where so is the uncorrected phase velocity. 

3. Calculation of the carrier densities 

We seek the time and space dependent one-electron distri- 
bution  function, fi(p, x, t),  of a many-valley conductor 
in the presence of an ultrasonic wave.  We shall assume 
degenerate statistics. The basis states whose occupation 
numbers we calculate are Bloch functions periodic in the 
unit cells of the strained lattice, the Orthogonalized De- 
formed Bloch functions  introduced by Whitfield.’  We 
assume, then, as a first approximation, that  the electrons 
move in such a manner that their position is stationary 
relative to the lattice. 

To first order  in  the strain, the energy, Ei,  of an electron 
in an O.D.B. state of momentum p in valley i is 

We can calculate the phase velocity of sound, s, and 

Ei = E ~ ( P )  + A ~ ( P ) E  + q$’e- (3.1) 

The  unperturbed energy E: is the energy in the absence of 
the  strain;  the energy shift due to distortion of the shape 
of the unit cell is Ai€,  the diagonal part of the deforma- 
tion  potential operator.’ The  term # * E  is the long range 
electrostatic potential, arising from carrier bunching, 
which  is not compensated by the change in ion density 
due to the strain. 

We shall assume the Ai are independent of p and merely 
result in a shift of the  band edge. This  assumption is cor- 
rect when EF,( << Ai, where EFi is the Fermi energy 
measured relative to band edge i. 

The distribution  function satisfies the Boltzmann equa- 
tion : 

afi/at + ui,z afi/’ax - afi/aPz(a/aX)(q$’E + Ai€) 

= -af</atJooll, (3.2) 

where we have used canonical coordinates and momenta 
of the coordinate  frame moving with the lattice.‘ 

of the form’ 
For elastic scattering of carriers, the collision term is 

w i / a f I C O I 1  = I [fi(P:)s(P; + Pi) 

- ~ ~ ( P J S ( P ,  4 P:)I 6(Ei - Ei) d ~ : ,  (3.3) 

where the integration is over all  momentum  states in 
valley j ,  the sum is over all valleys and  both spin  orienta- 
tions, and S(pi -+ p:) = S(p: + pi). We make the assump- 
tion  that  for i = j ,  S(pi -+ pi) depends only on  the energy 
and is isotropic in momentum space, and  for i # j ,  
S(pi + pi) depends only on  the valleys i and j .  With these 
assumptions, 

a ~ i ( ~ z ) l a t l c o , l  = -zivij(Ei)[L(pJ - -Z.(~i)l, (3.4) 

where 

vii(Ei) = K 3 S ( p i  ”+ pi) / dp: 6(Ei - Ei) 

= S(Pi 4 pJg i (EJ  (3 3) 
and 

Si(Ei)  = / Z - ~ ~ ~ ( E , ) - ’   / / , ( p i )   6 ( E i  - Ei) dp:. (3.6) 

The symbol (-) will  be used to denote an average of a 
quantity over a constant energy surface. 

We require fi up to first power in  the strain. Let us write 

fi = fo[EP(P)l + (ah/aE)[Ai + 
+ .$(P)lE + O(e2) - * * (3.7) 

where #’ and ,$ are independent of E, and (afo/aE)t: 
represents the correction to the distribution  function 
which arises from its lack of adiabatic equilibrium with 
the strain wave. Substituting (3.7) in  the Boltzmann 43 1 
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equation, (3.2), with (3.4) as  the collision term and 
E = € 0  exp i(kx - ut), we  get 

i(ko,,, - w - i /r&:(dfo/dE;)e = [iw(Ai + q$l) 

+ Z f ~ i i g : ] ( d f O / d E t ) ~ .  (3.8) 

Here Z j  vii  = l/ri,  the  total relaxation rate, and 
is the component of the carrier velocity parallel to  the 
propagation direction. 

We now turn  our attention to the equation which de- 
termines the electrostatic field #le.  The charge density 
with respect to a unit volume which deforms with the 
lattice is calculated by integrating the terms linear in the 
strain on  the right of (3.7) over all states, since the f o  term 
is just sufficient to neutralize the ion density. The  error in 
writing Poisson's equation in the coordinates fixed in the 
moving lattice  instead of real space is of first power or 
higher in  the strain and can be neglected. Thus #'E is 
determined by 

"Elk2#'€ = 4 T Z i q g i ( E ~ ) [ A i  + qfil + z;(EF)]E (3.9) 

for degenerate statistics. Here is the lattice part of the 
dielectric constant. 

We desire the quantities ,$ and $'. We can  transform 
(3.8) into equations that involve only by dividing both 
sides by i(kvi,= - w - i T i l )  and integrating over all states 
in  valley i. Thus we get 

D f :  = [iw(A, + q$') - Z j v i f f : ] ,  (3.10) 

where 

0;' = g,'h-3 dpi S[Ep - E f ( p i ) ]  1 
. ( i k u , , ,  - r ,  - iw)-'.  (3.11) - 1  

For a spherically symmetric valley, 

where ui is the  magnitude of the Fermi velocity. For  an 
arbitrary  orientation of an ellipsoidal effective mass 
tensor (3.12) remains unchanged; ui becomes the Fermi 
velocity of an electron traveling in  the direction of k.' 
We next express #' as an explicit function  of by adding 

to  both sides of  (3.10), multiplying by  4Tqg,(&), 
and  then summing over all i. Using (3.9) and the detailed 
balancing principle, we get 

Here 

ri  = ( 4 ~ q  g i )  e l  2 1 / 2  -3 (3.14) 

and 

432 Di - ri - iw = Ri, (3.15) -1  

which  will be seen to play the role of the relaxation rate 
due to diffusion. 

With the use of  (3.13) in (3.10), the equation which 
determines ,$: becomes 

( R ~  + iw)gt - z ~ Y ~ ~ ( ~ :  - Et) 
- B j ( r i / k ) ' R j ~ :  = ".Ai. (3.16) 

It is seen that ri is the inverse of the Debye shielding 
length of carrier i. In a semimetal such as bismuth, 
I' % lo5 to ' cm", much larger  than  the ultrasonic wave 
number, k% 10' cm-', at megacycle frequencies. Examina- 
tion of (3.9) shows that when the electrons follow the  strain 
adiabatically (i.e., gi = 0), the electric potential is just 
sufficient to cancel the average of the deformation po- 
tential when the electrons are able to shield forces within 
a wavelength (I' >> k). Under these conditions, 6K is 
identical with Keyes' static result, (1.1). 

A study of the two-valley case will  suffice to show under 
what conditions 6K differs significantly from N o .  For 
propagation of a longitudinal wave in the trigonal direc- 
tion electrons and holes in bismuth may be considered 
as belonging to a pair of "valleys." The two-valley model 
also fits n-type germanium with longitudinal waves in  the 
[ 1 1 11 direction. 

4. The two-valley case 

The  solution of (3.16) in the two-valley case is 

g: = (- iw)Q"[{ iw + vZ1 + [1 - ( r 2 / k ) 2 1 R 2 ) A l  

+ [v,, + ( r l / k > 2 ~ l ~ ~ 2 1 ,  (4.0 

where 

Q = { iw + vZ1 + [ l  - ( I ' , / k )2 ]Rz )  { iw + v12 

+ (1 - rl/k)'RlJ 

- [vlz + ( r z / k ) 2 R J [ ~ z 1  + ( r l / k ) ' R J .  ( 4 . 2 )  

Interchanging the indexes 1 and 2 in (4.1)  gives us zi. 
#' = (qQ)" ( ( r 1 / k ) ' R l [ ( i w  + Rz  + vz l>Al  + vlzAzl  

+ (r2/k)'Rz[(iw + R 1  + v l z ) A ,  + v P l A l l ) .  (4.3) 

In bismuth, (k/I')' << 1 up  to microwave frequencies; 
therefore, we can  expand  all  quantities in powers of  this 
parameter and neglect all but  the lowest order term. For 
bismuth, r N" K F  ; thus  the Boltzmann equation approach 
cannot be used when r % k and we  will concern ourselves 
only with k / r  << 1. To lowest order in (k/I')', 

e = - ( I ' , /k )2Rz( iu  + v + R,) 

- ( r2 /k) 'Rl ( iw + v + R2) ,  ( 4 . 4 )  

where v = v12 + vZ1. 
Using (4.4) along with our expressions for #' and E:, 
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(4.3) and (4.2)  respectively,  in the expression  for the par- 
ticle  density  given  by 

n .  n .  a . 0  - gi(Ep)(Ai + $: + q + l ) E ,  

we can obtain 6K from  Eq.  (2.4): 

6K = -glgz(gl + gZ)-'(Al - Az>'[l - h A 1 ,  (4.5) 

where 

A = Kg1 + gz)R1Rz(g,R, + g2RJ1 + JJ + iw1-l. 
(4.6) 

The factor 1 - Re(iwA) is a correction factor to the 
Keyes result.  This  is  similar to the usual  result a(w) = 
ao[l - iw(v, + iw)"] for a linear  response function a(w) 
when one has a relaxation  process. The total relaxation 
rate, vt, for our case should be equal to the real part of 
the first  two  terms in the bracket on the right  side of  (4.6). 
In  the long  wavelength  limit, we shall  find that  the real 
part of the first term is identical with the usual relaxation 
rate due to diffusion; the second term is the intervalley 
scattering rate. 

When the imaginary part of  (4.5)  is  used to calculate 
the attenuation coefficient, a, using  (2.6), the result is 
identical  with the expression  previously obtained by 
Blount.' We shall examine the real part of 6K which de- 
termines the sound velocity in (2.7). Setting R;' = X ,  + iYi, we  find 

Re (" iwA)  

- - w(g1 + gz)(g1 Yz + gz YJ - 0' IgJRz + gz/R1l2* 

lgl + gz + (iw + v)(gl/Rz + gdR1)I2 

(4.8) 

Equation (3.12) can be  rewritten in order to express Di 
(and hence,  by  (3.15), Ri) explicitly  in terms of real and 
imaginary parts : 

tan" (k l  + w r )  + tan-' (kl - U T )  

+ hi In 1 + (kZ)' f (UT)' + 2klwr 
1 + (kZ)' + (UT)' - 2 k h r  I)' (4.9) 

where 1 = UT, the mean  free path of electrons  moving  in 
the direction of propagation of the sound. In bismuth 
S / D  e lo-' so that (4.9), and thus (4.7), can be  expressed 
in a power  series  in s/v. Keeping the lowest  power  of s/u,  

(4.10a) 

where a = & I ) - '  tan" (kl). (4 .10~)  

We are now in a position to examine the correction to 
Keyes' expression as a function of kl up to frequencies 
where the inverse  Debye  shielding  length I' becomes  com- 
parable to k, provided s/u << 1. 

1. Long wavelengths 

In the long wavelength  limit, kl << 1, the forces on the 
carriers are constant between collisions, and phenome- 
nological transport equations, together  with equations of 
continuity, can  be  used to solve the problem. In this case, 
we can display our result  in  terms of the diffusion  relaxa- 
tion rate and an intervalley  scattering rate. 

X = 3r/k2Z2 3 rD; (4.11a) 

Y = rkls/u. (4.1  lb) 

The real part of R-' in this limit is the diffusion  relaxation 
time; the imaginary part is  negligible. Thus 

Re ( " i w  A )  = - w z / / w 2  + [v + (gl + gz) 

X (giro2 + ~z~DJ-']'], (4.12) 

which  is  precisely  what one gets from the phenomenologi- 
cal t h e ~ r y . ~  

There  is the possibility of finding an appreciable cor- 
rection to Keyes' result in the range kl < 1. The real 
part of 1 - iwA is the correction factor to the static 
value  of the electron contribution to the elastic  con- 
stant and sound velocity  (see  (4.5)).  This  will  differ sub- 
stantially from unity when w ,> v and wrD ,> 1 (see  4.12). 
Using  (4.11a), the latter condition  implies wr 2 (s/u)'. In 
order for both conditions to hold  simultaneously for some 
value  of w ,  we must  have vr ,> (s/u)', which  means that 
the intervalley  scattering rate must  be a small fraction of 
the total scattering rate. 

2. Very short Wavelengths 

In  the other limit, kl >> 1, the exact  expression is quite 
complicated, but we can establish an upper  limit on 
Re(-iwA). Expanding in powers  of l/kl, 

X = r[(r(kZ)-l + (7r2/3 - l)(kZ)-' + .] (4.13a) 

Y = (s/c)r[(r2/2 - l)(kl)-I 

+ (r/2)(r2/4 f l)(kf)-' + * * e ] .  (4.13b) 

We observe that the denominator of the right-hand 
side of  (4.8) approaches the value (gl + gz)' from  above 
as kl + a. The numerator becomes 

(7r2/2 - Ng1 + gz>[gz(s/ul)2 + g1(s/uz)'l 

- r'[g,(s/Uz) + g2(~/~1)]'. (4.14) 433 
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