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Simulation of a  Hydraulic  Actuator 

Abstract:  A  simple mathematical model  of  a hydraulic actuator is formulated, and the differential equations 

describing the model are derived. Experimental data and a  computational solution of the  model are deter- 

mined. Results  correspond favorably  with oscilloscope  velocity  traces;  hence the  model could  serve a  useful 

purpose in mechanical  design. 

Introduction 

The purpose of the investigation described in this  paper 
was to simulate the  operation of one  of  the positioning 
systems used in the hydraulic actuator  for  the IBM 1301 
Disk Storage Unit.‘ The  actuator  has  two positioning 
systems: (1) the glob adder hydraulic system, which trans- 
fers a measured volume of fluid to the slave cylinder to 
move the slave piston, and (2) the piston  adder, which 
moves the complete floating slave cylinder assembly 
shown in Fig. 1. The combined  glob and piston adder 
motions give the  load motion. In this  paper we treat only 
the  glob adder system. 

The hydraulics for  the  actuator  motion  are contained 
in the closed system (Fig. 1) which connects the slave 
cylinder, shuttle valve, and glob adders. There are six 
glob  adder pistons. One side of each  piston is connected 
to a control valve. Each of the six control valves con- 
nects one of the pistons with either sump (20 psi) or sys- 
tem pressure (550 psi). Because the piston rod  in  the slave 
cylinder is biased by the system pressure  acting on half 
the piston area, the pressure between the glob  adders 
and  the slave cylinder stabilizes at  the  end of every motion 
at half the system pressure. Therefore,  changing a control 
valve from  sump  to system pressure will cause a displace- 
ment of the glob piston and hence the slave piston  in the 
“out” direction, the length of the  stroke depending on  the 
volume displacement of the glob  Changing a 
control valve from system pressure to sump causes a simi- 
lar displacement in the  opposite “in” direction. The de- 
tent fixes the position of the slave piston rod after the glob 
adders have  completed  their  strokes and corrects  small 
positioning errors  due to leakage. 

A schematic model of the hydraulics is shown  in Fig. 2. 
The orifice a(A) in the  control valve connects the region 

at  the applied  pressure P with Region A.  Region A is in 
turn connected  with B on  the left by three parallel  paths: 

(a) A check valve a(&) allows flow into  the cylinder only. 

(b) A needle valve a(Bn) allows flow in  both directions 
through a small adjustable orifice. The needle valve is 
used in  the final tuning of the  actuator. 

(c) An undercut a(Bu) also provides flow in  both direc- 
tions, as long  as the glob  piston  does not cover it. The 
location of the undercut is such that  the piston will cover 
it when the piston  completes half of its stroke. Each glob 
piston  has two damping  cuts at each end. The purpose 
of these  cuts is to provide a controlled  deceleration of the 
glob  piston and hence of the load. 

Region C on  the right of the glob  piston is connected  with 
Region D by three  analogous  paths, a(Cc), a(Cn), and 
Q( CU). 

The following assumptions and approximations have 
been made  to facilitate analysis: 

(a) Only the  operation of the  actuator before detenting is 
treated. Any motion of the  shuttle valve before detenting 
is neglected. In this version of the model, leakage is also 
neglected. 

(b) The  operating temperature  can vary from  the nominal 
120°F; however, it is assumed that  any  one  motion can 
be treated adiabatically. 

(c) An essentially one-dimensional lumped  parameter 
model is treated. The equivalent orifice approximation is 
used. The theory is based on  the continuity equation 
which assumes steady flow and  thus certain  dynamic 329 

IBM JOURNAL * JULY 1964 



I I  A +  B GIVES 128 1 

PISTON ADDER CONTROL  VALVE (61 t 

Figure 2 Hydraulic actuator for the IBM 1301. 
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effects are neglected. However, pressure wave propagation 
need not  be considered since the acoustic wave velocity 
is much  greater than  the maximum  piston velocities. In 
treating the fluid, viscous and body forces are neglected. 
Also, the model  does not have any provision for cavitation 
effects. 

~ Analysis of the  one-dimensional  model 

If we  define‘ 

d P  
= s,. p(p> ’ 

where P is the pressure, p the weight density of the fluid, 
and P, atmospheric pressure, then the fluid flow through 
an orifice (Fig. 3) between Regions A and B can be  ap- 
proximated  by 

(Ca)Rp(PB)[2glf(PA) - f ( p B ) 1 1 1 ’ 2  

GB = I  . sgn (PA - PB) if PA 2 PB (2)  
(Ca)LP(PA)[2glf(pA) - f ( p B )  

. sgn (PA - PB) if PA < PB . 

Here c is the discharge coefficient of the orifice of area a,  
the subscripts R and L denote flow either to the right or 
to  the left, and sgn (x) designates the sign of x: 

I + 1  if x >  0 

sgn (x) = O if x = o (3) 

- 1  if x < O  

The difference in f(P) has been used in (2)  because the 
fluid is compressible, whereas for  an incompressible fluid, 
(2)  would involve a difference of P.  

For a volume V at pressure P, the continuity equation 
states 

Net flow = - [ p (  p )  v] d 
dt 

= ,i v + v p .  (4) 

The adiabatic bulk modulus of the fluid provides a relation 
between the density and  the pressure derivatives: 

Figure 3 Orifice flow. 

in  Regions B and C are linearly dependent upon  the po- 
sition of the glob adder piston. If A is the  area  and L is 
the maximum glob  piston displacement, and if x repre- 
sents the displacement of the piston from rest (against the 
left end  of  the cylinder) 0 5 x 5 L, then  the volume in 
Region B is A x  + V B  and  that in  Region C is A(L - x) + 
V c ,  where V B  and V c  represent  small volumes remaining 
in  Region B at x = 0 and in region C at x = L, respec- 
tively. Now, if G A  is the weight flow from  the region of 
applied pressure to Region A,  and if GB is the flow from 
Region A to B, and G D  the flow from C to D, from these 
observations we can immediately write the differential 
equations 

The  motion of a piston of mass M and  area A with 
pressure P B  on  the left and P C  on  the right  must, of course, 
obey Newton’s second law : 

where F is the frictional  force  acting on  the mass. 
Now we turn  our  attention to the slave piston. The 

volume in region D is linearly dependent upon  the position 
of the slave piston. As before, application of (6) and New- 
ton’s second law yields 

Substituting  in (4), 
where and A S R  are  the  areas of the slave piston on 
the left and right, xs is the position, M s  the mass, and 
Fs the frictional  force. 

(6)  Integration with respect to time of the system of Eqs. 
(7), (S), (9), (lo), (ll), and (12) yields curves for  the vari- 

Figure 2 reveals that  the volume in Region A for every ables x, P A ,  P B ,   P C ,  xs, and P D ,  which completely de- 

v ]  . 

glob adder is constant, say V A .  Furthermore,  the volumes scribe our model. For any one  motion  there will be one 33 1 
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set of Eqs. (7), (8), (9), and (10) for every  moving  glob 
adder. For N moving  glob adders, 1 5 N 5 6, there are 
4N + 2 equations to solve.  Since the system  is  reduced 
to a !%st order one for numerical computation by the 
substitutions y = x and y ,  = xs, the number of equations 
is  actually 5N + 3. This  number can be  reduced  by a 
consideration of the orifices in the model. In comparison 
to the others, the orifices in the check  valves, a(Bc) and 
a(Cc), are large, as are the orifices  of the undercuts, 
a&) and a(Cu), when the glob adder piston  does not 
partially  cover  them. The dynamic situation requires 
that  the pressures in two  regions  separated by a large 
orifice tend to remain equal, so that we can to a good 
approximation combine the regions.  Since a check  valve 
allows  flow into the cylinder  only, it is  clear that a(Bc) 
is  closed for a glob instroke and similarly for a(Cc) on 
outstroke. Therefore, if every  moving  glob adder is 
classified as either an outstroke or an instroke, we can 
combine  Region A into Region B, deleting  (7) for the out- 
strokes, and combine  Region C into Region D, deleting 
(9) for the instrokes. Thus, the number of equations is 
reduced to 4N + 3. 

A further partial reduction in the number of equations 
to be integrated can  be  made if the motion of each  glob 
adder  is  divided into two  stages,  acceleration and de- 
celeration. The acceleration  stage is approximately  half 
of the motion, before the piston  begins to block the under- 
cut  orifice. For an outstroke in  acceleration the undercut 
a(Cu) is unblocked, and Region C can  be  combined into 
D, deleting (9). Similarly,  for an instroke in  acceleration 
(7) can  be  deleted. Of course, if a glob adder is stationary 
or has  completed  its stroke, its equations do not have to 
be considered. Thus, we have three equations for every 
glob  adder  in  acceleration, four for every  glob  adder in 
deceleration, and three for the slave  piston to be integrated 
at any  time  step. 

Since P G  is constant (system  pressure), P D  stabilizes at 
the end of  every motion to P D ( A S R / A S L ) .  This  is then 
the initial condition for P D  and P C ,  For an outstroke the 
applied  pressure P is changed  (linearly by assumption) 
from  sump to system  pressure in T seconds.  Therefore, 
initial conditions for the glob adders moving out are 
P B  = P A  = P = sump and x = 0. Similarly for those 
moving in, P B  = P A  = P = P G ,  x = L ;  the applied 
pressure P is  changed from system  pressure to sump  in T 
seconds. The initial position of the slave  piston, x,, is 
determined by the positions of the six glob  adders.  Figure 1 
numbers the globs  10, 20, 20’, 50, 50‘, and 100.  These 
numbers  determine  how  many  multiples of 0.02 inch  each 
glob  moves the slave  piston. For example, if at t = 0 the 
50 and 20’ globs  were “out” and the others “in”, the 
slave  piston  position x, would  be (50 + 20) 0.02 = 1.4 
inches. Of course, the velocities are assumed to be  zero 

332 initially, x, = y ,  = 0 and x = y = 0 for all the globs. 
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Program data 
A FORTRAN program for the IBM 7090  was written to 
solve the system  of  differential equations describing the 
actuator model.  Considerable  experimental data was 
gathered for this model. The actuator design  specifications 
yielded the values  for M ,  A,  L, V,, V B ,  Vc,  V D ,  M,, A S L ,  
and A S R .  The frictional forces on the glob adders were 
neglected, but rough measurements were made of the 
friction of the slave. The fluid  used in the actuator was 
analyzed, and values  of the bulk  modulus R(P) and den- 
sity p(P) were measured for a few values  of P .  With  these 
data (1) was integrated to yield f(P) for (2). 

Experimentally, the ca for any  orifice  is  calculated  from 
the amount of fluid transferred by a given pressure  differ- 
ence  across the opening during some  fixed  time  interval. 
The pressure  differences in the actuator can  vary  between 
approximately f300 psi, and hence  many  measurements 
were  necessary  in order to reflect  accurately the effect of 
a particular orifice  in the model. 

One  set  of data was gathered on each  fixed control valve 
opening  for the six  glob adders. The needle  valve  orifice 
depends on  the tuning of the particular actuator. The 
tuning adjustment is  made by turning a screw from its 
“closed”  position  any  number of turns between 0 and 6. 
A set of measurements  for  each of three different  settings 
was  compiled on the needle  valve  mechanism. 

UNDERCUT PIPE 

DAMPING FLAT 

CYLINDER  WALL 
GLOB ADDER PISTON 

Figure 4 Damping flat. 

It is  clear  from  Fig. 4 that  the size  of the opening 
through the undercut  pipe  varies  according to the shape 
of the damping  flat and the position of the glob adder 
piston. The cut of the damping  flat on each of the six 
pistons  is  different.  Measurements of the ca were made 
on the 100 and 50 glob adders with the piston at 16 
different  positions. 

Conclusions 

Figures 5 to 8 show the calculated and experimental 
velocity  profiles and the calculated P D  for the 50 glob 
outstroke, the 50 glob instroke, the 100 glob instroke, and 
a combination stroke with both the 50 and the 100 globs 
on  instroke. 

The actuator model, as one can see from  Figs. 5 to 8, 
displays the major  features of the experimental  velocity 
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Figure 5 Velocity  profiles for 50 glob outstroke. 

( a )  Experimental  velocity trace. ( b )  Com- 
puted  velocity curve. ( c )  Computed pressure 
in Region D .  Scale: Time = 0.01 sec per 
0.9 diu.; velocity = 5.56 in/sec  per 0.9 diu.; 
pressure = 100 Ib/inz per 0.9 diu. 

profiles and it  approximates closely the  stroke time. Devi- 
ations of the computed curves from the typical oscillo- 
scope tracings are most pronounced near the end of the 
stroke.  This  can  probably be attributed to the fact that  the 
experimental actuator has been carefully tuned to com- 
pensate for mechanical tolerances. Various actuators  can 
display quite different velocity profiles before tuning, and 
experimentally it is known that  the  actuator is sensitive to 
the tuning  adjustment of needle valves. Limited experi- 
mentation with the model indicates that similar com- 
pensating adjustments could be made  in  the model. 
However, the available experimental data  and model 
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Figure 6 Velocity  profiles for 50 glob instroke. 
( a ) ,   ( b )  and ( c )  correspond to the traces 
in Figure 5 ,  the scale being the same. 

assumptions cannot be expected to reproduce the experi- 
mental curves to within 5 or 10 percent. 

In summary, the model reproduces the experimental 
curves closely enough to assist engineers in  the early 
stages of design. In particular,  stroke times are predicted 
quite well, and  the sensitivity of the end of stroke  motion 
to  the shape of the damping flats is shown by the model. 
The effect  of the flow-limiting orifice on  the velocity pro- 
files  is also reproduced. The  time to formulate and pro- 
gram the model was small compared with the effort 
necessary to determine experimentally the data required 
for the computation. The basic model and  the  data col- 
lected for it should be of assistance in constructing pre- 
liminary models for future hydraulic actuator systems 
early in the design process in order to pinpoint critical 
problem areas. 333 
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Figure 7 Velocity  profiles for 100 glob instroke. 
( a ) ,   ( b )  and ( c )  correspond to the traces 
in Figure 5.  Scale: Time = 0.02 sec  per 
0.9 diu.;  velocity = 11.11 in/sec  per 0.9 diu.; 
pressure = 100 lb/ina  per 0.9 diu. 

Acknowledgments 

The authors  would  like to acknowledge the invaluable 
assistance of Riyad  Abu-Zayyad,  James C. Gilmore,  and 
Sam S. Baio,  who  were  responsible for the experimental 
data,  without which the model  would not have been 
feasible. Their  numerous  suggestions  were of great as- 
sistance  in  all  phases of the work. 

References 

1. M. E. Freeman and J. C.  Gilmore, “Open Loop Digital 

334 
Hydraulics Positions Computer Memory Arm,” Hydraulics 
and  Pneumatics 15, 11 (November, 1962). 

I I I I I I I I I 

TIME .--L 

Figure 8 Velocity  profiles for 50 instroke and 100 
instroke. ( a ) ,   ( b )  and (c) correspond to 
Figure 7 ,  the scale being the same. 

2. H.  T. Albachten and R. C.  Treseder, “The  Transient  Re- 
sponse of Hydraulic Systems, Part  I: The  Starting  Motion,” 
IBM Research Paper RJ-RR-115, December 12, 1957. 

3. H. T. Albachten, “The Transient Response of Hydraulic 
Systems, Part 11: The Stopping Motion,” IBM Research 
Paper RJ-RR-123, May 12,  1958. 

4. H. T. Albachten, “The Transient Response of Hydraulic 
Systems, Part 111: The Port Sense,” IBM Research Paper 
RJ-138, October 3,  1958. 

5. J. Regien, “An Investigation of the Stopping Motion of a 
Hydraulic Actuator,”  IBM Technical Report  TR 02.238, 
November 9, 1962. 

6. A. Sommerfeld, Mechanics of Deformable  Bodies, Academic 
Press, Inc., New York, 1950, pp. 83-128. 

Received November 27, 1963 

MITCHELL AND JOHNSON 


