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Abstract: The problem of pattern classification has two highly interactive aspects: (1) the selection of nu-
merical measurements to ‘represent’ the patterns, and (2) the specification of an algorithm to identify pat-

terns, based upon the numerical values of these measurements. The present paper presents the mathe-

matical framework for one attack upon these problems and gives results obtained in some experiments in

character recognition.

1. Introduction

In July, 1962, one of the authors* examined two closely
related signal adaptive networks, the Perceptron of
F. Rosenblatt™® and a character recognition machine
(PAPA) proposed by A. Gamba,” and pointed out their
relationship to systems of linear inequalities. For an
associated “linear”” model, necessary and sufficient condi-
tions for the convergence of the so-called training pro-
cedure were established. Subsequently these ideas were
developed by the authors and applied to a number of
problems in character recognition. Independently, other
investigators (notably Widrow' and Griffin, King and
Tunis”) considered the development of various realizations
of linear adaptive networks.

The purpose of the present paper is to present the
mathematical framework for one attack upon these prob-
lems and to summarize the results obtained in some
experiments in character recognition. In Sections 2 and 3
the problem is stated and certain mathematical prelimi-
naries are covered. In Section 4 the special case of linear
separability is treated and in Section 5 it is shown how
the procedure can be modified to obtain nonlinear sepa-
rability by polynomials. In Section 6 the results of certain
experiments in character recognition are discussed; these
center on the linearly separable case.

2. Statement of the problem

The problem of pattern classification has two highly

* Konheim, A. G., “A Note on Adaptive Networks,” ITBM Con-
ference on Non-Numeric Processing, Thomas J. Watson Research
Center, July 16, 1962.

interactive aspects: (1) the selection of numerical measure-
ments to ‘represent’ the patterns; and (2) the specification
of an algorithm to identify a pattern based upon the
numerical values of these measurements. Our investiga-
tions have been addressed to the second aspect but, as
will come out in Section 3, the solution reached also
provides information and guidance in the selection of the
relevant measurements.

The space of patterns (also referred to as input signals
to the classification system) will be denoted by Q; w will
denote a generic element of Q. The space Q is assumed to
have been partitioned a priori into subsets Q,, Q,, +-- ,
Q,. corresponding to the distinct responses required of
the classification system. For example, in alphanumeric
character recognition, there may be 62 classes (26 upper
case letters, 26 lower case letters and 10 numerals). We
indicate the fact that w belongs to Q; by writing we(2,.

Each classification system essentially consists of two
components: One is a fransducer in which a sequence of,
say, n numerical-valued measurements X;, X, -+ , X, is
made upon each input signal . We will write X,(«) = x;
to signify that the /*" measurement upon the signal w
resulted in the numerical quantity x,. With each input
signal w we associate its vector X= X(w)=(x, Xz, *** , Xn)
of measurements. The other component is a processor
which classifies w by observing the results X(w) of the
measurements upon w.

The transducer and processor can be thought of as
transformations which are applied to the original data Q;
the transducer first maps each point w of Q into a point x
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of the n-dimensional vector space R". The processor then
partitions R" into disjoint sets A4;, 4., - -+ , 4,, and if the
results of the measurements upon w lie in A4;, X(w)ed;,
the processor makes the decision weQ;.

For a given set of measurements X;, X,, -+ , X, a
processor exists which achieves the proper identification
of points in Q provided that there are sufficiently many
measurements to distinguish between the sets {2,}, ie.,
X(w) # X(w') if  and o’ belong to different subsets {$,}.
An approach as general as this is rarely taken because of
the technical problems inherent in the realization of the
processor. The usual procedure is to specify the nature of
the processor in advance, i.e., the types of partitions {4}
of R", and then to consider only problems which can be
solved within this class of partitions. In this paper we
shall study a class of partitions {U,: k = 1, 2, ---} of
increasing complexity. The index k refers to the degree of
certain polynomials employed in the construction of the
partition. As k increases, the partitions {2} become
capable of solving successively more complicated prob-
lems. Furthermore, (1) The partitions {%(,} are sufficient
in all cases where { is a finite set and the measurements
X, Xy, +++ , X, distinguish between the sets {Q,}.
(We consider the mapping X of Q into R" defined by
w— X(w) = [Xi(w), Xo(w), * -+ , X.(w)] and require that
the sets { X(2,)} be disjoint.) (2) The partitions {2} may
be “essentially”’ realized by threshold devices.

3. Preliminaries

R" will denote the set of all vectors x = (x1, X3, =+ * , X)
with real components. R" is a vector space with vector
addition and scalar multiplication being defined as usual by

x+y = (xla Xay *°° 1xn) +(y19 J/2, tot :yn)
= (xl +y1s X2 +y29 Tt ’xn_,_yn)’
ax = a(-x19 Xos 77, xn) = (axls AXgy *° ", axn)'

The scalar (or inner) product of two vectors x and y is
defined by (%, y) = xiy1 + X2 + -+ + x.¥., and the
norm of x by ||x|| = (x, x)"/*. We shall need in the sequel
Schwarz’s inequality

=, I < =[] {l¥il-

A linear functional on R" is a real-valued function L
defined on R” which satisfies L(ex + By) = aL(x) + BL(y),
where « and 3 are real numbers. Each such L admits the
following simple representation: there is a vector v (de-
pending upon L) such that L(x) = (v, x).

Let 4 = {aj, a5 ** , a,} and B = {by, by, --- , b,}
be two finite subsets of R". The pair (4, B) is said to be
linearly separable if there exists a linear functional L
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such that max L(b;) < min L(a;). (1)
15?5« IS;SD

If ¢ is any real number satisfying

max L(b;) < ¢ < min L(a)), (2

i
157<q 1<i<p

then the sign of L(x) — c serves to identify the location of
any point x belonging to 4\ B. (The set 4\ B consists
of all points belonging to either 4 or B.) The set of points
which satisfy L(x) — ¢ = 0,

HP(L,c) = {x: L(x) — ¢ = 0},

constitutes a hyperplane in R". This hyperplane HP(L, c)
is the boundary of the two half-spaces

HP(L,c)" = {x: L(x) — ¢ > 0},
HP(L,c)” = {x: L{(x) — ¢ < 0}.
According to Egs. (1) and (2) the points of A4 lie in
HP(L, ¢)" and the points of B in HP(L, ¢)_; that is,
A C HP(L,o)",
B C HP(L,c) .
We now turn to two questions:

1. What conditions on (4, B) insure that a separating
hyperplane exists?

2. If (4, B) are linearly separable, how can a separating
hyperplane be found?

We first consider Question 1. A set of points in R", K
(say) is called a convex set if whenever x and y are in K
then so are all points on the “line segment” joining x and y.
These are the points

Ax + (1 — Ny, (3)
where 0 < ALK 1.

The points given in (3) are called convex combinations of
x and y. More generally, if x;, x,, --+ , X,, are any m
points in R™ then all points of the form

Alxl + A2x2 + c + Amxm

(hzoi<icmEn=1) @

=]
are called convex combinations of x;, X5, *** , X,p..

If U= {x, X, +- , X,} is 2 set of points in R" there
exists a smallest convex set containing U; this set, called
the convex hull of U and denoted by co (U), consists of
all points of the form given by (4).

The connection between convexity and linear separation
is provided by the following very classical statement:




o Theorem

If A and B are finite sets in R", then (A, B) is linearly
separable if and only if co (A) M co (B) = ¢.*

In addressing ourselves to Question, 2 it will be to our
advantage to reformulate the condition of Eq. (1) before
proceeding to the actual construction of the required
separating functional. Let 4 = {a,, a,, --- , a,} and
B = {b, b, ---, b} be two finite sets in R" with
co (4) M co (B) = ¢. There exists therefore a vector veR"
and a real number ¢ such that

(v, b,) <e¢ < (v, a), (5)
where 1 <i<p, 1< ji<qg.

Let v = (0, Vs, " "+ 5 Uy), (6)
a; = (@1, G2y """ s Gin)s 7
where 1 < i < p, and

b, = (bj1, b2y *** » bia)s (8)

where1 < j < gq.

It is sometimes convenient to imbed the above n-dimen-

n+1

sional setup into R*" by defining

W = (0,0q, *** ,Un, —C), (9)
a¥* = (a1, Az, - 5 Qiny 1), (10)
where 1 < i < p, and

b¥ = (i1, bjz, -+ * 5 bins 1), (11)
where 1 < j < g.

Then, by Equation (5),

(w, b*) < 0 < (w, a%), (12)

where 1 <i<p1</j<Lq.

Conversely if there exists a vector weR™"" which satisfies
Eq. (12) (with a*, b* being related to a,, b; by Equa-
tions (7), (8), (10), and (11)), then the system of Eq. (5)
admits a solution v, with v and w being related by Egs.
(6) and (9).

Next we observe that since 4 and B are finite sets there
must exist a § > 0 such that

w,b%) < —0 <0< 6 < (w,a¥ (13)

with1<i<p 1< i< g

But if (13) has a solution for some 6 > 0, it has, by
homogeneity, a solution for every 6 > 0. The algorithm
for determining the v and ¢ in Eq. (5) is applied to the
system of linear inequalities, Eq. (13), and our preliminary
transformations have just shown that these two systems

®co(A) N co(B) consists of all points belonging to both co(A)
and co(B). The statement co(A) N co(B) = ¢ means that co(A)
and co(B) have no points in common.

of inequalities are equivalent. In fact, if

Ty Way wn+1) (14)
is a solution to Eq. (13), then by setting

w = (wls Wa, -

v = (Wi, Wy, =0, W) (15)
we will have

(v, b)) < =0 — Wy < 8 — w,,, < (v,a;), (16)
where 1 < i< p, 1< j< g

Let$ = {x, x,, - - -} be any sequence of vectors chosen
from the set A* \J B* where 4* = {a%, a%, --- , a%}
and B* = {b%, b%, --- , b%}. In the literature of

adaptive networks the set ¥ is referred to as a training set.
A fixed 6 > 0is chosen and the sequence of weight vectors
Wo, Wi, Wa, « - - is defined inductively as follows:

7+l

(1) w, is an arbitrary element of R

W, + X, if (Waey, %) < 6 and x,e4*
3 *
@) w, = W,_, if (Wo_y, X,) > 6 and x4
W, 1 — X, if (W,_;, X,) > — 6 and x,¢eB*
W, 1 if (W,—y, X,) < — 8 and x,eB*
n=1,2 .-
o Theorem

The sequence W,, W,, Wy, --- converges. There is an
integer N (depending upon A*, B*, 0 and w,) such that
Wy = Wy, = - . If $ has the property that each ele-
ment of A* \J B* occurs infinitely many times, then wy
is a solution of Egq. (13).

e Proof

This theorem has a very interesting history. It was first
conjectured and proved by Rosenblatt in Refs. 1 and 3,
where the components of the weight vectors {w,] were
the amplification factors of the association units (4-units)
in Rosenblatt’s simple three layer series-coupled Percep-
tron. The algorithm was called by Rosenblatt the error
correction procedure since the amplification factors were
changed, w, — w,,,, during the training period only if
the present amplification factors given by w, failed to
correctly identify the »** input x, of the training set.
This theorem has since been rediscovered by many workers
in this field. The proof given here is essentially due to
A. Novikoff.®
We define the vectors {y,} by

=I x, if x.ed*
l—x,, if x.eB*,

If no integer N exists such that wy = wy,; = --- then

Ya
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there must be a sequence iy, i, - -+ , i, * -+ such that

wib = wik—: + Yin

where k = 1, 2, ---, and i; = 0 by convention. We have
|lwils|[2 = ”Wib—:llz + HYMHZ + z(wik—x’ Yik)
”W"EHZ < Hwik—: * 4 M +.26,

where M = max, ||y.]|> < «. It follows that

[lwal|l < €%, k=1,2 --- (17)
On the other hand Eq. (13) has a solution w and hence

(W’ Wik) = (W’ WO) + 21 (W’ Yii)

> (w,wo) + k6 > Dk, (18)
where k =1,2, ---

By Schwarz’s inequality (w, w;,) < ||w]|| [lw;,[|| and
hence, Eqgs. (17) and (18) yield

Dk < |lw|| K2,

which cannot hold for sufficiently large k.

If T has the property that each element of A* \U) B*
appears in T infinitely many times then the limiting vector
wy must be a solution of Eq. (13) for wy satisfies

> 6 if x,ed*
(WN’ xm)

< —@§ if x,eB*
m=N+1I,N+2,- -,
and each element of 4* \U B* appears in the sequence
Xy+1s XN+2y * 0"

o Example 1

n=p=g=2 4= {a, =(0,0),a = (1,0}, B=
{bl = 1,b, =0 D} 6=1w, = (0,0,0), and
T = {a%, at, b, b%, af, a%, b4, by, -+-).

w, = (0, 0, 0)

w, = (0,0,1) = w, + a}
w, = (1,0,2) = w, + af
w; = (0, —1,1) = w, — b¥
w, = (0, —2,0) = wy — b}
w;, = (0, —2,1) = w, + af
we, = (1, —2,2) = w; + af
w, = (0, —3,1) = wy — b}
weg = (0, =3, 1) = w,;

Wy = (Os -3, 2) = wy + af
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wy = (0, —3,2) = w,

wy = (—1, —4,1) = w;, — b}
w, = (—1, —4, 1) = wy,

wyi; = (—1, —4,2) = w, + a}
wy = (0, —4,3) = w3 + af
wy; = (—1, —5,2) = w;, — bf
wi = (—1, —5,2) = w,

wy = (—1, —5,2) = wy,

wyie = (0, —5,3) = wy; + af
Wi = (0, —5,3) = wy,

Wy = (0, —5,3) = wy

wy, = (0, —5,3) = wy,

Wop = (O; =3, 3) = Wy

Hence if v = (0, —5) then
(V, b,) <c < (vy ai)’
where 1 <i<2, 1<;<2,

for any ¢ with —5 < ¢ < 0. We note that

Wy, = 4a, + 4a, — 4b;, — b,.

Remarks. This simple example shows how the algorithm
for finding a separating linear functional may, in addition,
provide information about the significance of the data
being used. This information is of two kinds. First, it can
indicate which patterns in the training set are relatively
more significant for the purpose of separating the classes.
Information of this last kind is contained in the repre-
sentation of the final vector v as a linear combination of
the patterns to be separated, i.e.

v = (0, —5) = 4a, + 4a, — 4b, — b,.

From the coefficients we see that b,, having the numerical
coefficient 1, is weighted less than the other three patterns,
which have a coefficient of 4. This suggests that b, might
be unimportant for distinguishing class A from class B.
Indeed, if b, is dropped entirely, and the process is repeated
for just the three patterns a, and a, in A, and b, in B,
we are led to the same solution vector w as before (it is a
coincidence that we get the identical vector) by employing
the new combination

w = (0, —5, 3) = 3a* 4 S5a* — 5b%.

Note that even without training on b%, the functional w
in this case will “correctly”” classify this pattern, since
w-b% = —2 whichis < — 1, as required for identification
as a member of class B.




The second kind of information contained in the sepa-
rating functional is concerned with the significance of the
measurements or bits used to represent the patterns. The
final vector is v = (0, —5). It follows that the first bit or
measurement or component of v is of no importance in
the classification and can be dropped. Thus, to distinguish
class A from class B we need only to look at the second
component. While this is clear by inspection in this simple
example, it must be remembered that where many bits or
components and many patterns or points are involved,
human observation is not adequate to the task. Generally,
where the components of v are numerically small we
would try dropping the corresponding measurements as
being relatively unimportant for classification purposes.

4. linear separability in pattern classification

Let the space of input signals Q be partitioned into the m
subsets Q;, @y, --+ , O, The set of measurements X;,
X., +++ , X, maps the set Q; into the subset 4; of R*
according to

w—>X(w) = (Xl(CU), Xz(w), T Xn(w))'

Linear separability in pattern classification refers to at-
tempts to classify the patterns in Q by constructing linear
boundaries between the sets 4;, Ay, - - - , A4,.. Two possible
procedures for such a classification are discussed next.

e Procedure 1

Construct m linear functionals L,, L,, --- , L,. The
linear functional L, is to separate the pair of sets
(A;, v Ai)r i.e.
PR
Lib) <c¢; < Li(a)be \J 4;,a¢€ 4),
i1
where U A4; denotes all points in X(Q) excluding those
i
of A4,. The appropriate convexity condition guaranteeing
the existence of such a linear functional is

co(4;) Nco (Y 4;) =¢.
imi
The recognition procedure consists of evaluating the
numerical quantities

L,(xw)) — ¢; = 8:w), where 1 < i < m.

For precisely one index, say i = i,, will x;,(w) > 0 and
in this case the decision we{2;, is made.

o Procedure 2: Class-pair separation

In Procedure 1, above, the patterns were classified by con-
structing one linear functional for each desired response.
The functional L, separated the i** class from all of the

remaining classes. In class-pair separation m(m — 1)/2
linear functionals L;;(1 < i < j < m) are constructed,
The functional L;; serves only to distinguish between the
classes 4; and 4;. We choose L;; so that

L,-,'(b) < C;i < L;i(a)(aeA;, bGAj).
Such a construction is possible provided that
co(A4) N co(4;) = ¢

which expresses the convexity requirements of the second
procedure. To identify the location of the point w we note
that if weQ; then

Lz‘:’("("’)) -
Li(x(@)) — ¢ > 0,

¢;; <0, where 1< i<},
where j< k< m

The experimental results reported upon in Section 5
relate to the first of these two procedures. It should be
clear that the convexity requirements of the first procedure
are more stringent than those of the second procedure.

Before considering more general forms of separation
we should point out the connection between the Bayes
maximum likelihood procedure and linear separability.
The space @ of input signals is considered to be a prob-
ability space with a probability measure Pr defined on a
suitable o-field of subsets of Q. The measurements {X,}
are assumed to be random variables taking on the values
0 and 1. The conditional probabilities p;;(1 < i < n,
1 < j £ m) are defined by

= Priw: X{vw) = 1/Q;}.

If the random variables are independent then

Pr {w: x(w) = x Hp

i=1

(=p(x/2).

The maximum-likelihood procedure is to decide wef;
provided

pii)l—zi

Pr {Q;}p(x(w)/Q;) > p(X(w)/ %) Pr {Q}, (19)
(all k, k # j).

Frequently Eq. (19) is replaced by the stronger condition

Pr {Q:}p(x(w)/ Q) > 6p(x(w)/ %) Pr {Q} (20)
(@ll &, k # Jj),

where 6 > 1.

By taking logarithms in Eq. (20) we see that the maxi-
mum likelihood procedure is equivalent to requiring

x, pii{l — pu) p.k) (- p.k)}
|Z=1 log 1k(1 pu) :I=Il (1 - p-l)
Pr o

Pr {2, @y
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Setting a;;; = log [p:;(1 — pir)/pull — pi)),
withl < jk<m,j#k1<i<n;and

= pik)} Pr {Q,}
cip = lo 0{ - ,
e = toe A IT =5/ Bria,)
with 1 < j, k < m, j # k, we see that (21) requires that
, x,) lie on the positive side of each of the

x = (X, Xg, * "+
hyperplanes

n
E agipx; — ¢y = 0,
i=1

and this is class-pair separation. Thus, whenever the
maximum likelihood procedure of Equations (19) or (20)
results in the correct classification of all points in Q a
class-pair separation will also be successful. The converse
is false.

5. Nonlinear separability

Let f be a real-valued continuous function on R". We
associate with f the surface (in R™)

Sf = {X = (xh Xgy * " ’xn) :f(x) = O}. (22)
This surface forms the boundary of the two half-spaces
§; = {x:/(x) > 0}, (23)
and

S; = {x:fx) < 0}. (24)

We shall say that the surface S, separates the pair (4, B)
(of subsets of R") provided

A C S5, BC S (25)

Suppose ¥ is a family of surfacesin R" each given by (22)
for some f; under what conditions on (4, B) does there
exist a surface in A which separates (4, B)? For the class
of surfaces defined by

f(x) = qxX, + axxs + - 4+ ax, — a,

the condition was co (4) M co (B) = ¢. A natural exten-
sion of this class of “linear” surfaces is given by choosing
for { a polynomial in x,, xz, *+- , x,, by which is meant
an expression of the form

f(xI) Xg, "0

_ i1_ia in
s Xn) = E Qiyizeein¥1 Xz " " Xp o
0<ij<p
1<i<n

The degree of the term a;,;,...;, xi*x3* -+- x" is i + i
-+ - -+ 4 i,. This term is non-zero provided a;;, ...;, # 0
and the degree of f is the maximum of the degrees of its
nonzero terms. Let 9, denote the class of surfaces given
by allowing f to be any polynomial of degree <k. We
have the obvious inclusion relations ¥, < A, & -
C A, S Apoy € -+ A pair of sets (4, B)is N -separable
provided there is a polynomial f of degree < k such that
A4 C Stand B C S
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Two main points regarding separation of classes by
polynomial surfaces will now be established.

(1) If A and B are finite sets in R” with 4 (M B = ¢,
then (4, B) is 2 ,-separable for some k.

(2) The algorithm for finding a linear separation can be
modified to find an ¥,-separation.

It should be noted that the problem of the design of
switching circuits is one in which 4 and B are subsets of
the vertex set of the unit cube V* = {v = (v, 0a, - ,
v):v; = 0orl,1< i< n}. The separation of (4, B) by
an element of {%,} can be viewed as a realization of the
switching function 7, where

#(v) =1 if ved, and m(v) = 0 if veB.

without determining the explicit logical function involved.
The switching functions {x} which admit an %;-separation
are just the threshold functions. In Example 3 of Section §
we illustrate how this procedure may be employed to
realize a simple (nonlinearly separable) switching function.

The first point cited above follows from the fact that
there exists, by the Lagrange interpolation formula, a
polynomial g such that g = 1 on 4 and g = 0 on B,
provided that A/ B = ¢. In fact, if 4 and B are subsets
of the vertex set of the unit cube, then as is well known,
the polynomial has degree < n.

To prove the assertion of Point 2, as cited above, we
consider the mapping i, , of R” into R”'*, where

k -1 A
Dnx = Zl (n ] + j>’

which sends the point x = (xy, x,, * -+ , X,) into the point

n
(- I A >, where
i=1

ii20313j3n11£i1+i2+..'+in_<_k'
If £k = 2 then
iu,2 X = (xls Xz, 7, xn)
2 2
——>(xls X1Xg, " 5 X1Xn, X2, X2X3, """,
2 2
XoXny *° " 5 Xp—1s * " 5 Xp—1Xns Xny X1y X2, * " xn)

If we denote by i, ,(4) and i, , (B) the images of 4 and B
under the mapping i, ;, then (4, B) is Y,-separable if and
only if (i, (4), i, (B)) is U;-separable. Thus, to find an
9(,-separation of (4, B) we can apply the algorithm of
Section 3 to the sets (i, (4), i,,(B)).

o Example 2

In this example we use n = 2, 4 = {a, = (0, 0), a,=(1, 1)},




A= {a, = (0,0),a = (1,1)}, and
B = {bl = (03 1)’b2 = (1’ 0)}

Both co (4) and co (B) contain the point (1/2, 1/2) and
hence (4, B) is not U ;-separable. We now seek an 9 .-sepa-
ration. Since the sets 4 and B are subsets of the vertex
set of the unit cube 2 it suffices to employ the mapping

A x = (X1, X2) = (X1, X1, Xz, X2).
The sets 4 and B are mapped into the sets
A= {4 =(0,00),4 = (1,1, 1},

B = {b, = (0,0,1),b, = (1,0, 0)}.

To each of the vectors in 4 \U B we adjoin a fourth
coordinate equal to 1, obtaining finally

A* = {af = (0,0,0,1),af = (1,1, 1, D},
B* = {b¥ = (0,0, 1, 1), b} = (1,0, 0, 1)}.

We take 6§ = 1/2 and employ the training set
T = {aa‘i’ at’ bﬁ: bﬂ;a a*;’ a*‘:)a bﬂ;’ b’;’ ot }:

obtaining the sequence below.
w, = (0, 0, 0, 0)

(09 09 0: 1) = wO + a;k
Wy, = (0, 0, 0, 1) = W

[

w,

w; = (0,0, —1,0) = w, — b¥

wy = (—1,0, —1, —1) = w, — b
ws = (—1,0, —1,0) = w, + a¥

we = (0,1,0,1) = wy, + a}

w, = (0,1, —1,0) = wg — b}

wy = (—1,1, —1, —1) = w, — b}
w, = (—1,1, —1,0) = wg + af
wio =(0,2,0,1) = wy, + a}

wy,; = (0,2, —1,0) = w,, — b¥

wy, = (—1,2, —1, —1) = w,;, — b¥
w; = (—1,2, —1,0) = w,, + a}
wi=(0,3,0,1) = wy; + af

w;; = (0,3, —1,0) = w,, — bf

wie = (—1,3, —1, —1) = w;; — b¥
wy; = (—1,3, —1,0) = w;q + af
wis = (—1,3, —1,0) = wy,

Wi =(—1,3, —1,0) = wy,

W = (—1,3, —1, 0) = Wiy

wy = (—1,3, —1, 1) = wy, + af
wy = (—1,3, —1,1) = wy,
wy = (—1,3, —2,0) = wy, — bf
Wy = (~1,3, —2,0) = wy,
wy = (—1,3, =2, 1) = wy, + a}
Wy = (—1,3, =2, 1) = wy;
Wy = (—1,3, =2, 1) = wy
wys = (—2,3, —2,0) = wy; — bf
Wy = (—2,3, =2, 1) = wys + a}
—1,2) = Wy + af
wy = (—1,4, =2, 1) = wy — b¥
Wy, = (—2,4, —2,0) = wy, — b¥
wys = (—2,4, —2,1) = wy, + a}
wy = (—2,4, —2,1) = wy
Wy = (—2,4, —2,1) = wy,
Wi = (—2,4, —2, 1) = wy;

W3g = Wgz = -

The hyperbola 2x; — 1)(2x, — 1) — ¢ = 0 separates
(4, B) for every c satisfying —1/2 < ¢ < 1/2.

& Example 3

This example pertains to the most significant digit in the
product of two integers. Let V" = {v = (v, vy, **- ,
p):v; = 0or 1,1 < i< n}. With each vel’™ we associate
the integer N,(v), where

N,(v) = v, + 205 + 4oy + -+ + 2",

Consider the mapping * from V" X V" into V*" defined by
x=(x1,x2,---,xn), y=(y1,y2,"',J’n)
z = (zls 22, szzn)~
Then x * y = z if N (x) X N.(y) = N,.(z). Finally we
consider the truth function f (defined on ¥* X ") which

is equal to the most significant digit in the binary expan-
sion of N,(x) X N,(y), that is,

1ifz,, =1
]\0 if z,, = 0.

Let 2, = {(x, y): f(x, y) = 1} and Z_ = {(x, y) f(x,
y) = 0}. The sets =, and Z_ are quadratically separable.

&z, y) =
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This is seen by noting that
1if (e + 2x, + - -+
X (yl + 2y, + -

0 if otherwise.

+ 2n— Ix”)

flx, y) = + 27y) > 2

Thus the quadratic surface

S, = {(x, o2 w2 =27 4 ) 0}
i,i=

separates (Z,, Z_) for every ¢, 0 < ¢ < 1. Employing

the linear separation algorithm to find such a quadratic

surface for n = 2 we obtain the surface

—x1 + 4xixs -+ 3xy1 F 3xy: — xp + 3xeyr + 3x00
— 2y + 2yye — 3y, —c = 0,
which separates (2., 2_) for every ¢ with 8 < ¢ < 10,

6. Experimental results

In any attempt to classify patterns represented by a set
of numerical measurements through the use of linear
separability and one of the algorithms presented, three
questions take on basic importance. These are stated and
discussed briefly below.

First, are the classes linearly separable ? This question is
answered by applying the algorithm for determining the
separating hyperplanes, with the knowledge that if sep-
aration is possible, the hyperplanes will be found; that is,
the algorithm will terminate.

Second, how long will it take to determine the separating
hyperplane ? It is not practical to estimate this time require-
ment in advance; only experiment can yield this informa-
tion. Clearly the time is a function of the number of
patterns used in the training process. Usually one finds it
practical to devote considerable computer time to finding
the separations, for this is done in advance of use of the
computer for pattern recognition and need not be repeated
for the same space of patterns.

Third, how well will the separating hyperplane separate
patterns which are not included in the training set but which
are to be separated into the same classes ? This is a question
involving the error rate on new patterns and one that can
be answered only by subsequent testing of the new data.
On the other hand, since the linear functionals are con-
tinuous it is reasonable to assume that new patterns that
are close to old patterns will be similarly classified. The
limits of such a form of ‘generalization’ depend upon how
well the linear functionals separate the classes. There is a
well-defined and obvious sense by which we may rank
the functionals which separate the two classes A and B.
However, the algorithm given in Section 3 yields only one
such separating functional and the problem of finding the
“best” separation is a difficult unsolved problem.

GREENBERG AND KONHEIM

A number of experiments have been performed in which
the patterns to be separated were sets of typed or printed
alphanumeric characters. In some tests the measurements
consisted of raw data taken from the output of a cathode
ray tube scanner which presented the data as a matrix of
zeros and ones. In other tests this data was preprocessed
and each character was finally represented by a binary
vector, each component of which designated the presence
or absence of a certain “feature” in that character. Except
as noted, the classes were taken to be the letters and
numbers themselves, i.e. upper case A’s constituted one
class, lower case a’s another, etc. In a single class might
be included several styles of type for the same letter or
number, and a number of samples of each style on which
to train.

Some discussion of results from typical experiments
follows. Although the accuracy on new data will be seen
to be generally good, this is not of primary interest here;
rather the examples are given to illustrate the different
kinds of character recognition tasks that can be accom-
plished by linear separation. All of the tests made use of
Procedure 1, as described in Section 4, and the input was
from data stored on tapes furnished by the Engineering
Sciences Department of the IBM Research Division.

o Some typical experiments

1. In one experiment the raw data input was in the form
of a 32 X 32 binary scanner output representing alphabetic
characters from 1BM EXECUTIVE® typewriters with a variety
of typefaces. Characters were scanned as they appeared
in original documents and in Bruning, Verifax, Xerox,
and carbon copies. Training involved 10 upper case
alphabets, testing involved 9. In a typical result for
6 = 100, the required 26 linear functions were obtained
in 9.2 minutes of IBM 7090 time, with an error rate of
1.79, for all inputs and an error rate of 0.7%, for inputs
derived from typed (unreproduced) documents.

2. Arelated experiment involved original data, as above,
but generated binary search separations. In this experiment
a different classification of the alphabet was attempted by
linear separation. Here linear functionals were formed to
successively split the alphabet into two groups, each of
those two more, and so on until individual letters were
identified. Linear separability was demonstrated. This clas-
sification scheme has the advantage of cutting the genera-
tion time of the functionals by a factor of (log, M)/(M)
if M functionals are required. If the functionals are tested
sequentially to determine the classification of a pattern, as
is the case on a computer, then this scheme requires only
log, M tests in place of M — 1. The error rate was com-
parable to that for the ordinary letter-by-letter testing
mentioned above. For 6 = 100 the generation time on

® A trademark of the International Business Machines Corporation.




the above example for the binary search separations was
2.07 minutes.

3. The object of an experiment with a raw data input
was to separate upper from lower case characters. It
involved 5 upper case and 5 lower case IBM EXECUTIVE
typewriter alphabets and 10 samples of copies used for
training. Reading on 20 new alphabets, an error rate of
0.49, was obtained using only a single linear functional to
separate the two classes (upper and lower cases) for all
the alphabets involved. The generation time for this
functional was 0.94 minutes.

4. This experiment involved a raw data input also and
was concerned with the separation of upper and lower
case characters in a variety of 1BM SELECTRIC® typewriter
fonts. Here a single linear functional was generated to
distinguish upper case from lower case letters in 5 fonts
(4 of which contained both upper and lower case letters).
The fonts included scriBe, a script font. Since only
training data was available, no error rate for new data
was established.

5. This experiment was concerned with the binary fea-
tures of data from a Russian journal. The input comprised
108 binary components and training employed some 30
samples of each of 32 letters. The generation time for 32
functionals was 5.03 minutes. The error rate in reading
4013 new characters was 0.3, with some sections of tape
exhibiting a considerably lower error rate (1 error in the
first 800 characters, 4 in the next 1800, and 7 in the
last 1413).

6. Here we were concerned with binary features of
multifont data. Each character was represented by a
feature (vector) of 96 binary measurements. Twenty sets of
characters were taken for training. Each set consisted of:
(a) 26 upper case alphabetic characters, (b) 26 lower case
alphabetic characters, and (¢) 9 numeric characters, with
all 61 characters appearing in three IBM SELECTRIC type-
writer fonts (ELITE, ADJUTANT, and scriBe). Thus, a total
of 3 X 61 X 20 = 3660 characters were used in the
‘training’ phase. Sixty-one linear functionals were con-
structed during the training phase, which required 30

minutes on an IBM 7094. These functionals were in turn
tested on a new group of 20 sets of alpha-numeric charac-
ters with the same composition as the training set. There
resulted 3 errors for an error rate of 0.0823%,.

7. Finally, we summarize an experiment with video
multifont data. Each character was represented by a
17 X 32 matrix with elements zero and one. A total of
20 sets, each consisting of twenty-six upper case alphabetic
characters in each of three 1BM SELECTRIC typewriter fonts
(PICA, ADVOCATE, and DELEGATE) were used in training.
Thus a total of 20 X 26 X 3 = 1560 characters were used
in training. Twenty-six linear functionals were determined
in 25 minutes of IBM 7094 computation. These linear
functionals were then tested on 39 sets of similar com-
position, resulting in 19 errors for an error rate of 0.0625%,.
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