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Abstract:  The problem of pattern classification  has two highly interactive aspects: (1) the  selection  of  nu- 

merical measurements to  ‘represent‘  the patterns, and (2 )  the  specification of an algorithm to identify pat- 

terns, based  upon  the numerical values  of  these  measurements.  The  present paper presents  the mathe- 

matical framework for one attack upon these problems and gives  results obtained in some experiments in 

character  recognition. 

1. Introduction 

In July, 1962, one of the authors* examined  two  closely 
related  signal adaptive networks, the Perceptron of 
F. Rosenblatt”’ and a character  recognition  machine 
(PAPA)  proposed by  A.  Gamba: and pointed out their 
relationship to systems of linear  inequalities. For an 
associated  “linear”  model,  necessary and sufficient  condi- 
tions for the convergence of the so-called training pro- 
cedure were established.  Subsequently  these  ideas were 
developed by the authors and applied to a number of 
problems in character recognition.  Independently, other 
investigators (notably Widrow4 and Griffin,  King and 
Tunis5)  considered the development  of  various  realizations 
of linear adaptive networks. 

The purpose of the present  paper is to present the 
mathematical  framework for one attack upon these prob- 
lems and to summarize the results obtained in some 
experiments in character recognition. In Sections 2 and 3 
the problem  is stated and certain mathematical  prelimi- 
naries are covered. In Section 4 the special  case of linear 
separability  is treated and in Section 5 it is shown  how 
the procedure can be  modified to obtain nonlinear  sepa- 
rability by polynomials. In Section 6 the results of certain 
experiments  in character recognition are discussed;  these 
center on the linearly  separable  case. 

2. Statement of the problem 

The  problem of pattern classification  has  two  highly 

* Konheim, A. G., “A Note on Adaptive  Networks,” IBM Con- 
ference  on  Non-Numeric  Processing,  Thomas J. Watson  Research 
Center,  July 16, 1962. 

interactive aspects: (1) the selection of numerical  measure- 
ments to ‘represent’ the patterns; and (2) the specification 
of an algorithm to identify a pattern based  upon the 
numerical  values of these  measurements.  Our  investiga- 
tions have been addressed to the second  aspect but, as 
will  come out in Section 3, the solution reached  also 
provides information and guidance  in the selection of the 
relevant  measurements. 

The space of patterns (also  referred to as input signals 
to the classification  system)  will  be  denoted  by Q; w will 
denote a generic  element of Q. The space Q is  assumed to 
have  been partitioned a priori into subsets Q,, a,, , 
Qm corresponding to the distinct  responses  required of 
the classification  system. For example, in alphanumeric 
character recognition, there may  be  62  classes  (26  upper 
case letters, 26  lower  case letters and 10 numerals). We 
indicate the fact that w belongs to Qi by writing weQi. 

Each  classification  system  essentially  consists of two 
components: One  is a transducer in which a sequence of, 
say, n numerical-valued  measurements X,,   X, ,  * , X,, is 
made  upon  each input signal w. We  will write Xi(w)  = x i  
to signify that the ith measurement  upon the signal w 
resulted in the numerical quantity xi. With each input 
signal w we associate  its  vector X= X@)= (xl, xz, . . . , xJ 
of measurements. The other  component  is a processor 
which  classifies w by observing the results X(w) of the 
measurements  upon w. 

The transducer and processor  can  be thought of as 
transformations which are applied to the original data Q; 
the transducer first  maps  each point w of Q into a point x 
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of the n-dimensional  vector  space R". The processor then 
partitions R" into disjoint  sets A,,  A2, . - , A,,, and if the 
results of the measurements  upon w lie in Ai, X(w)eAi,  
the processor  makes the decision weDi.  

For a given set of measurements X,, X,, . . , Xn a 
processor  exists  which  achieves the proper identification 
of points in D provided that there are sufficiently  many 
measurements to distinguish  between the sets {Oil, i.e., 
X(w)  # X(w') if w and w' belong to different  subsets { 3, 1 . 
An approach as general as this is  rarely taken because of 
the technical  problems inherent in the realization of the 
processor. The usual  procedure  is to specify the nature of 
the processor in advance,  i.e., the types  of partitions {Ai} 
of R", and then to consider  only  problems which can be 
solved  within this class  of partitions. In this paper we 
shall study a class  of partitions {%k: k = 1, 2, e . . } of 
increasing  complexity. The index k refers to the degree  of 
certain  polynomials  employed  in the construction of the 
partition. As k increases, the partitions {!Xk} become 
capable of solving  successively  more  complicated prob- 
lems. Furthermore, (1) The partitions {& }  are sufficient 
in all cases  where D is a finite set and the measurements 
X,,  X,, - , X,, distinguish  between the sets { D k } .  

(We consider the mapping X of D into R" defined by 
w 3 X(w) = [Xl(w), X,(@), , X,,(w)] and require that 
the sets { X@,)} be disjoint.) (2) The partitions { SIk 1 may 
be  "essentially"  realized  by  threshold  devices. 

3. Preliminaries 

R" will denote the set of all vectors x = (x , ,   xz ,  . - , x") 
with  real  components. R" is a vector  space  with  vector 
addition and scalar  multiplication  being defined as usual by 

The scalar (or inner) product of two  vectors x and y is 
defined  by ( x ,   y )  = xlyl + x,y, + . . + x,y,,, and the 
norm of x by I [ x1 [ = (x ,  x)"'. We shall need  in the sequel 
Schwarz's inequality 

A linear functional on R" is a real-valued function L 
defined on R" which  satisfies L(ax + b y )  = aL(x) + /3L(y), 
where a and /3 are real  numbers.  Each  such L admits the 
following  simple representation: there is a vector v (de- 
pending upon L )  such that L(x) = (v, x). 

Let A = { a , ,  a,, , a,) and B = {b, ,   b , ,  , b,} 
be  two  finite  subsets  of R". The pair (A,  B)  is  said to be 
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such that max L ( b , )  < min L(ai).  (1) 
i 

1 5 i S a  1 5 i < p  

If c is  any  real  number  satisfying 

max L(b, )  < c < min L ( a i ) ,  
I 

15i5a l S i < p  

then the sign  of L(x) - c serves to identify the location of 
any point x belonging to A u B. (The set A U B consists 
of all points belonging to either A or B.) The set of points 
which satisfy L(x) - c = 0, 

H P ( L ,  C )  = { X  : L(x)  - c = 01, 

constitutes a hyperplane in R". This  hyperplane HP(L, c )  
is the boundary of the two  half-spaces 

H P ( L ,  c)' = { X  : L(x)  - c > 0},  

H P ( L ,  c)- = { X  : L(x)  - c < O}.  

According to Eqs. (1) and (2) the points of A lie in 
HP(L, c)' and the points of B in HP(L, c)-; that is, 

A C H P ( L , c ) + ,  

B C H P ( L ,  c)-. 

We  now turn to two questions: 

1. What  conditions on (A,  B)  insure that a separating 
hyperplane  exists? 

2. If (A,  B)  are linearly  separable, how can a separating 
hyperplane  be found? 

We first  consider  Question 1. A set of points in R", K 
(say)  is  called a convex  set if whenever x and y are in K 
then so are all points on the "line  segment" joining x and y .  
These are the points 

where 0 5 X I 1. 

The points given in (3) are called  convex combinations of 
x and y .  More generally, if x,, x,, . . , x,,, are any rn 
points in R" then all points of the form 

X l X l  + X Z X 2  + . . . + Xmxm 

(Xi 2 0,11 i I m ,  zXi = 1 
m ) (4) 

, - 1  

are called  convex  combinations  of x,,  x2, - , x,,,. 
If U = {x,,  x,,  . . , x,,,} is a set of points in R" there 

exists a smallest  convex  set containing U ;  this set, called 
the convex hull of U and denoted by co (U), consists of 
all points of the form given  by (4). 

The connection  between  convexity and linear separation 
is provided by the following  very  classical statement: 



I I Theorem 

Zf A and B are finite  sets in R", then (A, B) is linearly 
separabIe if and only if co (A) n co (B) = C$.* 
In addressing  ourselves to Question, 2 it will  be to our 
advantage to reformulate the condition of  Eq.  (1)  before 
proceeding to the actual construction of the required 

' separating functional. Let A = {al, a,, - . - , a,) and 
B = {bl, bz, . - -  , b,) be  two  finite  sets  in R" with 
co (A) A co (B)  = 4. There  exists therefore a vector veR" 
and a real  number c such that 

(v, bj) < c < (v. ad, (5 )  

' where 1 5 i 2 p ,  1 5 j 5 q.  

Let v = (Vl ,  vz, * * , v 3 ,  (6) 

ai = (ail ,  a i z ,  - . *  , a,,), (7) 

where 1 5 i I p ,  and 
I 

b; = (b j l ,   b i z ,  . . * , bin), (8) 

where 1 5 j 5 q. 

It is sometimes  convenient to imbed the above n-dimen- 
sional setup into R"+' by defining 

w = ( v 1 , v 2 ,  * * *  9 O n ,  -c), (9) 

aT = (ail, ai2,  e * -  , ainr 1). (10) 

where 1 5 i 5 p ,  and 

b: = (bil,  biz ,  * . *  9 bin, 11, (1 1) 

where 1 5 j 5 q.  

Then, by Equation ( 9 ,  

(w, b:) < 0 < (w, a?), (12) 

where 1 5 i 5 p ,  1 5 j 5 q.  
Conversely if there exists a vector weRn+' which satisfies 

Eq. (12) (with a t ,  b: being  related to a;,  bj by Equa- 
tions (7), (8), (lo), and (ll)), then the system of Eq. (5) 
admits a solution v, with v and w being  related by Eqs. 
(6) and (9). 

Next we observe that since A and B are finite sets there 
must  exist a 0 > 0 such that 

(w, bT) < - e  < 0 < e < (w, a t )  (1 3) 

w i t h l < i < p , l I  j l q .  
But if  (13) has a solution for some 0 > 0, it has, by 

homogeneity, a solution for every 0 > 0. The algorithm 
for  determining the v and c in Eq. (5) is  applied to the 
system of linear  inequalities,  Eq. (13), and our preliminary 
transformations have just shown that these  two  systems 

~ 

and co(B). The statement co(A) n co(B) = 4 means that co(A) 
co(A) n co(B) consists of all points belonging to both co(A) 

and co(B) have no points in common. 

of inequalities are equivalent. In fact, if 

w =r ( ~ 1 ,  ~ 2 ,  . . .  9 w n ,  Wn+J (14) 

is a solution to Eq. (13), then by setting 

v = (w1, wz, . . .  , W") (1 5)  

we  will have 

(v, bJ < - 0  - w,+~ < e - w,,, < (v. a , ) ,  (1 6) 

where 1 5 i 5 p ,  1 5 j 5 q.  

Let % = {xl, X,, ) be  any  sequence of vectors  chosen 
from the set A* U B* where  A* = {a:,  a*,, . . . , a*,) 
and B* = {b:, b*,, . . . , b:}. In the literature of 
adaptive networks the set 5 is referred to as a training set. 
A fixed 0 > 0 is chosen and the sequence  of weight vectors 
wo, wl, wz, - is defined  inductively as follows: 

(1) wo is an arbitrary element of R"". 

i + x,, if (wnd1, x,,) I 0 and x,,€ A* 

if (wn-, , x,,) > 0 and x,,~ A* 

wn-l - x, if (wn-, , x,,) 2 - 0 and x,,eB * 
(2) wn = wn-l 

I,-. if ( w ~ . - ~ ,  x,,) < - 0 and %,el?* 

n = 1 , 2 ,  . - .  

0 Theorem 

The sequence wo, w,, wz, . . . converges. There is an 
integer N (depending upon A*, B*, 0 and w,,) such that 
wN = wN+I = . . . If % has the property that each  ele- 
ment of A* u B* occurs infinitery many times, then wN 
is a solution of Eq. (13). 

Proof 

This  theorem  has a very interesting  history. It was  first 
conjectured and proved by Rosenblatt in  Refs. 1 and 3, 
where the components of the weight vectors { w,) were 
the amplification factors of the association units (A-units) 
in Rosenblatt's  simple three layer  series-coupled  Percep- 
tron. The algorithm was  called  by Rosenblatt the error 
correction  procedure since the amplification factors were 
changed, w, "+ wnCl, during the training period  only if 
the present  amplification factors given  by w, failed to 
correctly  identify the nth input x, of the training set. 
This  theorem  has  since been  rediscovered  by  many  workers 
in this field. The proof  given  here  is  essentially due to 
A. Novikoff.6 

We define the vectors { y,) by 

[-x,, if %,EB*. 

If no integer N exists  such that w, = wN+, = then 
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I where k = 1, 2, ... ,and io = 0 by convention. We have wlZ = (-1, -4,  1) = wl, 

IIwi~Il' = IIwik->I12 + IIyitII '+ 2(wit-t, s;,) wI3 = ( -1,  -4,  2) = w12 + a: 
[lwitll' I I I W i k - , 1 1 '  + M + 2 e ,  w14 = (0 ,  " 4 ,  3) = wI3 + a? 

where M = max, [ 1y,l l2 < a. It follows that ~ 1 5  = ( -1,  - 5 ,  2) = wI4 - b: 

llwikll 5 Ck'",  k = 1 ,  2 ,  . . * (17) WIG = (-1, - 5 ,  2) = wI5 

On the other hand Eq. (13) has  a solution w and hence wI7 = (- 1, - 5 ,  2) = w16 

wI8 = (0 ,  - 5 ,  3) = w17 + a; 
WlQ = (0 ,  - 5 ,  3) = w,s 

where k = 1, 2 ,  . . .  w21 = (0 ,  - 5 ,  3) = wzo 
By  Schwarz's inequality (w, wit) 5 I IwI I llwitll and 

hence, Eqs. (17) and (18) yield w22 = (0 ,  - 5 ,  3) = WZl 
... 

Dk 5 llwll k"', Hence if v = (0, - 5 )  then 

which cannot hold  for  sufficiently  large k. (v, b )  < c < (v, a,), 
If % has the property that each  element of A* U B* 

appears in Z infinitely  many  times then the limiting  vector 
wN must  be  a solution of Eq. (13) for W, satisfies for any c with - 5  < c < 0. We note that 

where 1 5 i 5 2, 1 5 j 5 2, 

m = N + l , N  + 2, . . '  , 
and each element of A* U B* appears in the sequence 
xN+l, x,+,, * * ' * 

Example 1 

n = P = q = 2, A = {a, = (0, 0), a2 = (1, o)), B = 
{ b ~  = (1, I), b2 = (0, I)), 6 = 1 ,  w, = (0, 0, 0), and 
5 = {a:, a*,, b:, b*,, a:, a*,, b:, b*,, . . - I .  
wo = ( 0 ,   0 ,  0) 

w1 = ( 0 ,   0 ,  1) = w,, + a: 
w2 = ( I ,  0 ,  2) = w, + a: 

~3 = (0, -1 ,  1) = wZ - b: 

~4 = (0 ,  -2 ,  0) = w3 - b: 

w5 = (0 ,  -2 ,  1) = w4 + a: 

Remarks. This simple  example  shows  how the algorithm 
for finding  a separating linear functional may, in addition, 
provide information about the significance  of the data 
being  used. This information is of two  kinds. First, it can 
indicate which patterns in the training set are relatively 
more  significant for the purpose of separating the classes. 
Information of this last kind is contained in the repre- 
sentation of the final  vector v as a  linear combination of 
the patterns to be separated, i.e. 

V = (0 ,  -5) = 4a1 + 4a, - 4b, - b,. 

From the coefficients we see that b,, having the numerical 
coefficient 1, is  weighted  less than the other three patterns, 
which  have  a  coefficient  of 4. This suggests that b, might 
be unimportant for distinguishing  class A from  class B. 
Indeed, if b, is dropped entirely, and the process is repeated 
for just the three patterns a, and a, in A, and bl in By 
we are led to the same solution vector w as before (it is a 
coincidence that we get the identical  vector) by employing 
the new combination 

wg = ( I ,  -2,  2) = w5 + a; 
w = (0, - 5 ,  3) = 3a: -j- sa*, - 5b:. 

~7 = (0 ,  " 3 ,  1) = wg - b: 

w* = (0 ,  - 3 ,  1) = w7 

302 wQ = (0 ,  " 3 ,  2) = w8 + a: 

Note that even without training on b*,, the functional w 
in this case will "correctly"  classify this pattern, since 
w. b*, = - 2 which is < - 1, as  required for identification 
as a member  of  class B. 
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The second  kind  of  information  contained  in the sepa- 
rating functional is concerned  with the signijicance of the 
measurements or bits used to represent the patterns. The 
final  vector is v = (0, -5 ) .  It follows that the first bit or 
measurement or component of v is  of no importance in 
the classification and can  be dropped. Thus, to distinguish 
class A from class  B we need  only to look at the second 
component.  While  this  is  clear by inspection in this simple 
example, it must be remembered that where  many bits or 
components and many patterns or points are involved, 
human  observation is not adequate to the task.  Generally, 
where the components of v are numerically  small we 
would try dropping the corresponding  measurements as 
being  relatively unimportant for  classification  purposes. 

4. Linear separability in pattern classification 

Let the space of input signals Q be partitioned into  the m 
subsets Q,, Q,, , Q,. The set of measurements X,, 

according to 
x,, * e *  , X ,  maps the set ai into the subset Ai of Rn 

w + X(w) = ( X I ( 4 ,  X*(W), . . . , Xn(W)). 

Linear  separability in pattern classification  refers to at- 
tempts to classify the patterns in Q by constructing  linear 
boundaries  between the sets A,, AB, . . . , A,. Two  possible 
procedures for such  a  classification are discussed  next. 

8 Procedure I 

Construct m linear  functionals L,,  L,, . . . , L,. The 
linear functional Li is to separate the pair of sets 

(A i ,  U Ai), i.e. 
1 

i f i  

Li(b)  < ci < Li(a)(b e U Ai, a t A i ) ,  
1 

t f i  

whereu Ai denotes all points in X(Q) excluding those 

of A i .  The appropriate convexity condition guaranteeing 
the existence of such a linear functional is 

1 
l f i  

co ( A i )  n co ( u A i )  = 9. 
i f i  

i 

The recognition  procedure  consists of evaluating the 
numerical quantities 

Li(x(w)) - ci = ai(w), where 1 5 i _< m. 

For precisely one index,  say i = io, will xio(w) > 0 and 
in this case the decision weQi, is made. 

Procedure 2:  Class-pair separation 

In Procedure 1, above, the patterns were  classified  by con- 
structing one linear functional for each  desired  response. 
The functional Li separated the i th class from:all  of the 

remaining  classes. In class-pair separation m(m - 1)/2 
lmear functionals Lii(l 5 i 5 j 5 m) are constructed. 
The functional Lii serves  only to distinguish  between the 
classes Ai and Ai .  We choose Lii so that 

Lii(b)  < cii < Lii(a)(aeAi, beAi) .  

Such  a construction is  possible  provided that 

which  expresses the convexity  requirements of the second 
procedure. To identify the location of the point w we note 
that if wtQi then 

L i , ( x ( w ) )  - cii < 0, where 1 5 i 5 j ,  

L;~(x(w))  - cik > 0, where j 5 k 5 m. 
The experimental  results reported upon  in  Section 5 

relate to the first of these  two  procedures. It should be 
clear that the convexity  requirements of the first  procedure 
are more stringent than those of the second  procedure. 

Before  considering  more  general forms of separation 
we should point out  the connection between the Bayes 
maximum  likelihood  procedure and linear  separability. 
The space Q of input signals is considered to be a prob- 
ability  space  with a probability  measure Pr defined on a 
suitable a-field  of  subsets  of Q. The measurements { X i )  
are assumed to be random variables taking on  the values 
0 and 1. The conditional probabilities pii(l _< i 5 n, 
1 5 j 5 m) are defined  by 

pii  = Pr (w : Xi(w)  = l / Q i } .  

If the random variables are independent  then 

The maximum-likelihood  procedure is to decide weni 
provided 

(all k ,  k # j ) .  

Frequently EQ. (19) is replaced by the stronger condition 

(all k ,  k # j ) ,  

where 0 > 1. 

mum  likelihood  procedure  is  equivalent to requiring 
By taking logarithms in Eq. (20) we see that  the maxi- 

303 

LINEAR AND NONLINEAR METHODS 



with 1 5 j ,  k 5 m, j # k, we see that (21) requires that 
x = (x,,  x2, . . . , x,) lie on the positive side of each of the 
hyperplanes 
I 

aijkxi - C i k  = 0 ,  
i = l  

and this is  class-pair separation. Thus, whenever the 
maximum  likelihood  procedure of Equations (19) or (20) 
results in the correct classification of all points in D a 
class-pair separation will also be successful. The converse 
is  false. 

5. Nonlinear separability 

Let f be a real-valued continuous function on R". We 
associate  with f the surface  (in R") 

s, = (x = ( X l ,  xz ,  * * .  , xn) : f(x) = 0 ) .  (22) 

This  surface  forms the boundary of the two  half-spaces 

s; = {x :f(x) > 01, (23) 

and 

s; = {x :f(x) < O } .  (24) 

We shall  say that  the surface S ,  separates the pair (A,  B)  
(of subsets of R") provided 

A 2 S;, B ST. (25) 

Suppose % is a family of surfaces in R" each given  by (22) 
for some f ;  under  what conditions on (A,  B)  does there 
exist a surface  in % which separates (A,  B)? For  the class 
of surfaces defined  by 

f(x) = alxl + ~ 2 x 2  + * . . + anxn - a0 

the condition was co ( A )  co (B)  = 4. A natural exten- 
sion of this class of "linear"  surfaces  is  given  by  choosing 
for f a polynomial in xl ,   xz ,  , x,, by  which  is meant 
an expression of the form 

f(X1,  x2, f 1 , X J  = a i l i l . . . i n x f ~ x : ~  . . . X:". 
0 5 i j 5 P  
l 5 i 6 n  

The degree of the term U ~ , ~ , . . . ~ , X ~ ' X ~ '  x$ is il + iz 
+ + in. This term is  non-zero  provided ai,  # 0 
and the degree  of f is the maximum  of the degrees  of its 
nonzero  terms. Let %k denote the class of surfaces given 
by allowing f to be  any  polynomial of  degree 5 k. We 
have the obvious  inclusion relations %, C gZ 

. .  

Two main points regarding separation of  classes  by 
polynomial  surfaces will now be established. 

(1) If A and B are finite  sets in R" with A n B = 4, 
then (A,  B)  is Bk-separable for some k. 

(2) The algorithm for finding a linear separation can be 
modified to find an gk-separation. 

It should be noted that  the problem of the design of 
switching  circuits is one in which A and B are subsets of 
the vertex set of the unit cube v" = {v = (ul, uz, . . . , 
u,,): ui = 0 or 1, 1 5 i 5 n) . The separation of (A,  B) by 
an element of can be viewed as a realization of the 
switching function T,  where 

T(V) = 1 if VEA,  and T(V) = 0 if veB. 

without determining the explicit  logical function involved. 
The switching functions { r )  which admit an %,-separation 
are just the threshold functions. In Example 3 of Section 5 
we illustrate how this procedure may  be  employed to 
realize a simple  (nonlinearly  separable)  switching  function. 

The first point cited above follows from the fact that 
there exists, by the Lagrange interpolation formula, a 
polynomial g such that g = 1 on A and g = 0 on B, 
provided that A A B = 4. In fact, if A and B are subsets 
of the vertex set of the unit cube, then as is well known, 
the polynomial  has  degree 5 n. 

To prove the assertion  of Point 2, as cited  above, we 
consider the mapping in,k of R" into RP"*', where 

which sends the point x = (x1, xz ,  . , x,) into the point 

( *  . fi , = 1  x i i  a ) ,  where 

If k = 2 then 

in,z : x = (x , ,   x z ,  . .  . , x,) 

"+ (x?,  X l X Z ,  ' ' * I X l X n ,  x i ,  XZx3, ' ' ' 9 

xzxn, . . . , X L ~ ?  * * . 7 X n - l X n ,  X : ,  x19 . . . , x 3  

If we denote by in,JA) and in.&  (B) the images  of A and B 
under the mapping in,k, then (A,  B)  is aI,-separable if and 
only if (in,k(A), in,k(B)) is  %,-separable.  Thus, to find an 
gk-separation of (A,  B) we can apply the algorithm of 
Section 3 to the sets (in.k(A), i,, k(B)). 

E %k 2 gkfl 2 * . A pair of sets (A,  B)  is Ek-separable 
provided there is a polynomial f of degree 5 k such that 

304 A C S; and B C S;. In this example we use n = 2, A = {a, = (0, 0), az=(l, 1)) , 
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A = ( a ,  = (0 ,  01, a2 = (1, I ) ) ,  and 

B = {b, = (0, l) ,  bz = (1, 0)) .  

Both co (A) and co (B) contain the point (1/2, 1/2) and 
hence (A,  B)  is not gI,-separable. We now  seek an %,-sepa- 
ration. Since the sets A and B are subsets of the vertex 
set of the unit cube V 2  it suffices to employ the mapping 

The sets A and B are mapped into the sets 
A : X = (x19 XZ) + (XI, x13 XZ, ~2). 

d = (6, = (0 ,   0 ,  O), 6, = (1, 1, l ) ] ,  

B = (6, = (0,  0, l ) ,  6, = (1, 0, 0)) .  

To each of the vectors in d V fi we adjoin a fourth 
coordinate equal to 1, obtaining finally 

A* = { a i  = (0, 0 ,  0 ,  1), a: = (1, 1,  1, 1)] ,  

B* = (b: = (0, 0, 1,   l) ,  b,* = (1, 0,  0, 1)) .  

We take 0 = 1/2 and employ the training set 
X = (a*,, a*,, b:, b*,, a*,, a*,, b:, b*,, e-.), 

obtaining the sequence  below. 

wo = ( 0 ,   0 ,  0 ,  0) 

w, = ( 0 ,  0 ,  0 ,  1) = wo + a: 

w2 = ( 0 ,   0 ,   0 ,  1) = w1 

~3 = (0 ,  0 ,  - 1, 0) = w2 - b: 

w4 = (-1, 0, -1, -1) = w3 - b,* 

w5 = (-1, 0 ,  -1, 0) = w4 + a: 

w6 = (0 ,  1, 0, 1) = w5 + a,* 

W, (0 ,  1, -1, 0) = w6 - b: 

W, = (-1,  1,  -1, -1) = W 7  - b,* 

wQ = (-1, 1,  -1, 0) = ws + a: 
wl0 = (0 ,  2, 0 ,  1) = wg + a: 

w,, = (0, 2, - 1, 0)  = ~ 1 0  - b: 

w12 = (-1, 2, -1, -1) = wI1 - b,* 

w , ~  = (-1,  2,  -1, 0) = w,, + a: 

w14 = (0 ,  3, 0 ,  1) = wI3 + a,* 

~ 1 5  = (0, 3, - 1, 0) = wI4 - b: 

w16 = (-1, 3, -1, -1) = wI5 - b: 

w17 = (-1, 3, -1, 0) = w16 + a: 

w1* = (-1, 3 ,  -1, 0) = w17 

W,Q = (-1, 3, -1, 0) = W 1 8  

W Z O  = (-1, 3, -1, 0) = WlQ 

The hyperbola (2x1 - 1)(2x2 - 1) - c = 0 separates 
(A,  B)  for every c satisfying - 1/2 < c < 1/2. 

Example 3 

This  example  pertains to the most  significant  digit in the 
product of two  integers. Let V" = {v = (v,, u2, . - , 
VJ: v i  = 0 or 1, 1 5 i 5 n). With  each vrV" we associate 
the integer Nn(v), where 

N,(v) = u1 + 202 + 4 ~ 3  + . * * + 2"-lvn. 

Then x * y = z if N,(x) X N,(y) = Nz,(z). Finally we 
consider the  truth function f (defined on V" X V") which 
is equal to the most  significant  digit  in the binary  expan- 
sion of N,(x) X N,(y), that is, 

Let Z, = {(x, y): f(x, y) = 1) and Z- = {(x, yl0 f(x, 
y) = O }  . The sets Z+ and Z- are quadratically separable. 305 
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This is  seen by noting that 

1 1 if (x1  + 2x2 + . . . + 2”-lx,) 

f ( x ,  Y )  = x (Yl  + 2Yz + . . . + 2“YJ 2 22n-’ 

0 if otherwise. 

Thus the quadratic surface 

s, = {(., y) : 2 xiyi2’+”2 - (2-l + E )  = 0 
i . i - 1  } 

separates (X+, Z )  for every E, 0 < E < 1. Employing 
the linear separation algorithm to find  such a quadratic 
surface for n = 2 we obtain the surface 

- X 1  + 4xl-X~ + ~ X I Y I  + 3X1Y2 - X z  + 3 X z Y 1  f 3XzYz 

- 2Y1 + ~J’LY, - 3Yz  - C = 0, 

which separates (Z+, Z )  for every c with 8 < c < 10. 

6. Experimental results 
In any attempt to  classify patterns represented by a  set 
of numerical  measurements through the use  of  linear 
separability and one of the algorithms  presented, three 
questions take on basic  importance.  These are stated and 
discussed  briefly  below. 

First, are the classes linearly  separable? This  question  is 
answered by applying the algorithm for determining the 
separating hyperplanes,  with the knowledge that if sep- 
aration is  possible, the hyperplanes will  be found; that is, 
the algorithm will terminate. 

Second, how long will it  take to determine the separating 
hyperplane ? It is not practical to estimate this time require- 
ment in advance; only  experiment can yield this  informa- 
tion.  Clearly the time  is  a function of the number of 
patterns used in the training process.  Usually one finds it 
practical to devote  considerable  computer  time to finding 
the separations, for this is done in advance of  use  of the 
computer for pattern recognition and need not be  repeated 
for the same  space of patterns. 

Third, how well will the separating hyperplane separate 
patterns which are not included in the training set but which 
are to be  separated  into the same  classes ? This is  a  question 
involving the error rate on new patterns and one that can 
be  answered  only  by  subsequent  testing  of the new data. 
On the other hand, since the linear  functionals are con- 
tinuous it is reasonable to assume that new patterns that 
are close to old patterns will be  similarly  classified. The 
limits of such  a form of  ‘generalization’  depend upon how 
well the linear  functionals separate the classes. There  is  a 
well-defined and obvious  sense by  which  we may rank 
the functionals which separate the two classes A and B. 
However, the algorithm given in Section 3 yields  only one 
such separating functional and the problem of  finding the 

306 “best” separation is a  difficult  unsolved  problem. 

A number of experiments  have been performed in which 
the patterns to be separated were sets of typed or printed 
alphanumeric  characters. In some tests the measurements 
consisted of raw data taken from the output of a cathode 
ray tube scanner which presented the  data  as a matrix of 
zeros and ones. In other tests this data was  preprocessed 
and each character was  finally  represented  by  a  binary 
vector,  each  component of  which designated the presence 
or absence of a certain “feature” in that character.  Except 
as noted, the classes  were taken to  be the letters and 
numbers  themselves,  i.e.  upper  case A’s constituted one 
class,  lower  case a’s another, etc. In a single  class  might 
be included  several  styles of type for the same letter or 
number, and a  number of samples of each  style on which 
to train. 

Some  discussion  of  results from typical  experiments 
follows. Although the accuracy on new data will be seen 
to be  generally  good, this is not of  primary  interest here; 
rather the examples are given to illustrate the different 
kinds  of character recognition tasks that can be  accom- 
plished by linear separation. All of the tests made  use of 
Procedure 1, as described in Section 4, and the input was 
from data stored on tapes furnished by the Engineering 
Sciences Department of the IBM  Research  Division. 

Some typical  experiments 

1. In one experiment the raw data input was in the form 
of a 32 X 32 binary  scanner output representing alphabetic 
characters from IBM EXECUTIVE typewriters  with  a  variety 
of typefaces. Characters were scanned as they appeared 
in  original  documents and in  Bruning,  Verifax,  Xerox, 
and carbon copies.  Training  involved  10  upper  case 
alphabets, testing  involved 9. In a  typical  result for 
8 = 100, the required 26 linear  functions were obtained 
in 9.2 minutes of IBM 7090 time,  with an error rate of 
1.7% for all inputs and an error rate of  0.7% for inputs 
derived from typed (unreproduced) documents. 

2. A related  experiment  involved  original data, as above, 
but generated  binary  search separations. In this experiment 
a  different  classification of the alphabet was attempted by 
linear separation. Here linear functionals were formed to 
successively split the alphabet into two groups,  each of 
those two  more, and so on until individual letters were 
identified.  Linear  separability  was demonstrated. This  clas- 
sification  scheme  has the advantage of cutting the genera- 
tion time of the functionals by a factor of  (logz M)/(M) 
if M functionals are required. If the functionals are tested 
sequentially to determine the classification of a pattern, as 
is the case on a computer, then this scheme  requires  only 
log, M tests in  place  of M - 1. The error rate was com- 
parable to  that for the ordinary letter-by-letter  testing 
mentioned  above. For 8 = 100 the generation  time on 
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the above  example  for the binary  search separations was 
2.07 minutes. 

3. The object of an experiment  with a raw data input 
was to separate upper  from  lower  case  characters. It 
involved 5 upper  case and 5 lower  case IBM EXECUTIVE 

typewriter alphabets and 10 samples of  copies  used for 
training.  Reading on 20 new alphabets, an error rate of 
0.4% was obtained using  only  a  single  linear functional to 
separate the two  classes (upper and lower  cases) for all 
the alphabets involved. The generation  time for this 
functional was 0.94 minutes. 

4. This  experiment  involved  a  raw data input also and 
was concerned  with the separation of upper and lower 
case characters in  a  variety of IBM SELECTRIC~ typewriter 
fonts.  Here  a  single  linear functional was generated to 
distinguish upper case  from  lower  case letters in 5 fonts 
(4 of  which contained both upper and lower  case  letters). 
The fonts included SCRIBE, a script font. Since  only 
training data was available, no error rate for new data 
was established. 

5. This  experiment was concerned  with the binary  fea- 
tures of data from a  Russian journal. The input comprised 
108 binary  components and training employed  some 30 
samples of each of 32 letters. The  generation  time for 32 
functionals was 5.03 minutes. The error rate in  reading 
4013 new characters was 0.370 with  some  sections  of tape 
exhibiting  a  considerably  lower error rate (1 error in the 
fist 800 characters, 4 in the next 1800, and 7 in the 
last 1413). 

6. Here we  were concerned  with  binary features of 
multifont data. Each character was represented by a 
feature (vector) of 96 binary  measurements.  Twenty  sets  of 
characters were taken for training.  Each set consisted of: 
(a) 26 upper  case alphabetic characters, (b) 26 lower  case 
alphabetic  characters, and (c) 9 numeric  characters,  with 
all 61 characters appearing in three IBM SELECTRIC type- 
writer fonts (ELITE, ADJUTANT, and SCRIBE). Thus, a total 
of 3 X 61 X 20 = 3660 characters were  used in the 
‘training’  phase.  Sixty-one  linear functionals were con- 
structed during the training phase,  which  required 30 

minutes on an IBM 7094. These functionals were in turn 
tested on a new group of 20 sets of alpha-numeric  charac- 
ters  with the same  composition as the training set.  There 
resulted 3 errors for an error rate of 0.082370. 

7. Finally, we summarize an experiment  with  video 
multifont data. Each character was represented by a 
17 X 32 matrix  with  elements  zero and one. A total of 
20 sets,  each  consisting of  twenty-six  upper  case alphabetic 
characters in  each of three IBM SELECTRIC typewriter fonts 
(PICA, ADVOCATE, and DELEGATE) were  used in training. 
Thus a total of 20 X 26 X 3 = 1560 characters were  used 
in  training. Twenty-six linear functionals were determined 
in 25 minutes of IBM 7094 computation. These  linear 
functionals were then  tested on 39 sets of similar  com- 
position,  resulting in 19 errors for an error rate of 0.0625%. 
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