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Effect of the Self-Magnetic Field
on Galvanomagnetic Effects in Bismuth

Abstract: The magnetoresistance and the Hall coefficient for pure bismuth at 77°K have been calculated to

the second order in the self-magnetic field, i.e. current density. The calculations show that the observed de-

pendence of the galvanomagnetic effects on the current density at high currents can be qualitatively ex-

plained by the self-magnetic field. However, to obtain quantitative agreement it is necessary to include the

contribution of diffusion currents in the calculation. The theory for the self-magnetoresistance, including dif-

fusion, has been carried out for the pre-pinch regime of currents. The resulting curve for the self-magneto-

resistance agrees well with the observed one if the scattering times between ellipsoids are taken to be of

order 10—° sec (assuming that the diffusion effects are not dominated by the surface, i.e. that the surface-

recombination velocity is sufficiently small).

l. Introduction

High current experiments on a single-crystal bismuth
sample at 77°K under an applied magnetic field have
been done recently by Hattori' He found that the I-V
characteristic deviates from Ohm’s law, and the Hall
coefficient decreases with increasing current at sufficiently
high currents. The dimensions of the sample were 0.0394
cm width, 0.00428 cm thickness and 0.506 cm length be-
tween voltage probes. The orientation of the sample was
chosen such that the binary, bisectrix and trigonal axes
are parallel to the 0.0394 cm, 0.00428 cm and 0.506 cm
dimensions respectively.

Figure 1 shows the j-E characteristics at 77° for various
values of applied magnetic fields (H applied parallel to
bisectrix axis). For low magnetic fields, the j-E curves
are sublinear, These departures from Ohm’s law can be
attributed to the self-magnetoresistance, as was discussed
by Hattori and Steele.” For high magnetic fields, however,
the j-E curves are superlinear. In these cases, the self-
magnetic field contributes to the conductivity in two ways.
The self-magnetic field is antisymmetric with respect to
the center of the cross section of the sample. Therefore,
the applied and self-magnetic fields are additive in one
half of the cross section, and subtractive in the other half.

* Laboratories RCA Inc., Tokyo.

Figure 1 The j-E characteristics at 77°K for vari-
ous values of the applied magnetic field.
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Calculations show a net decrease of the resistance relative
to the low-current case, because the increase of resistance
in the region of stronger fields is smaller than the decrease
in the region of weaker fields. Also, at each point off center
the vector addition of the local self-field to the external
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field gives a net field rotated with respect to the external
field, i.e., the net field has an orientation deviating away
from the bisectrix axis, in which direction the magneto-
resistance coefficient is larger, toward the binary axis, in
which direction the coefficient is smaller. The net result
gives a decrease of the resistance as the current is increased.
The Hall coefficient will be discussed in the same current
regime.

Il. Effect of the self-magnetic field
on galvanomagnetic effects in bismuth

The calculations were made using the mobility tensor for
bismuth proposed by Abeles and Meiboom.? The con-
ductivity o(H, j) along the trigonal axis is expanded, out
to second order, in the self-magnetic field. Since the self-
magnetic field is proportional to the current density j,
the result for o(H, j), averaged over the cross section, is
written in the following form:

o(H, j) = o(H)[1 + a(H)} + -], (1)

where ¢(H) is the low-current conductivity, and the second
term in the square bracket gives the contribution of the
self-magnetic field. Figures 2 and 3 show calculated values,
neglecting diffusion, of o(H) and a(H) respectively. The
calculation gives qualitative agreement with the observa-
tion.

The Hall coefficient R(H,j) is also calculated to the
second order in the self-magnetic field and is written in
the following form:

R(H, j) = R(H)(1 — b(H)] + ). 2

Table 1 shows the calculated and observed values of R(H)
and b(H). The calculation again gives qualitative agree-
ment with the observation.

In the course of these experiments, Hattori also found
size effects on o(H) and R(H). These size effects might
not be related to the mean free path, but to the diffusion
length. After all, the scattering times between ellipsoids of
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Figure 2 The low current conductivity o(H) vs H.
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Figure 3 a(H) vs H.

Table 1 Hall coefficient. R(H) in particular units
and b(H) in units of 107 (cm'/amp®) are

listed.
H R(H) R(H) b(H) b(H)
(gauss) [calc]* [obs] [calc]* [obs]
500 —17.40 —3.46 0.094 0.013
1000 —7.20 —2.7 0.046 0.010
1500 —17.19 —2.42 0.029 0.009
2000 —7.17 —2.25 0.042 0.010

* Diffusion effects not included in the calculation.

electrons and holes are finite, and if the thickness is com-
parable with the diffusion length, the carrier density distri-
bution can be distorted by the transverse particle flow.
The distortion of the density distribution creates a dif-
fusion force which opposes the Lorentz force. This effect
partially compensates the magnetoresistance and the Hall
coefficient. Taking into account this diffusion will give
quantitative agreement with the observation.

lll. Self-magnetoresistance effect

In order to investigate the effect of the diffusion we will
consider the problem of the self-magnetoresistance.
Hattori* has done the relevant experiments. The dimen-
sions of his sample were 0.0386 cm width, 0.0052 cm
thickness and 0.481 cm length between voltage probes.




The orientation of the sample was chosen such that the
binary, bisectrix and trigonal axes were parallel to the
0.481 cm, 0.0386 cm and 0.0052 cm dimensions, respec-
tively. In this orientation a significant contribution of the
diffusion can be expected.

For this thin slab geometry, the carrier density will be
essentially uniform along the bisectrix axis in the pre-
pinch regime, and the diffusion forces in this direction
can be ignored except near the two ends of the cross
section. Furthermore, the magnetoresistance coeflicient®
gu(3) is about 1/6 of gy,(2). The neglect of the diffusion
forces does not give any serious error. Therefore, the
effect of the inward-driven particle flow along the bi-
sectrix axis, due to the magnetic field component H,
(along the trigonal axis), approximately gives a contri-
bution qu(3)<H32> to the self-magnetoresistance, where
{ ) denotes an average over the cross section.

On the other hand, for the inward-driven particle flow
parallel to the trigonal axis due to H, (component along
the bisectrix axis), the diffusion forces give an important
correction to g,(2){H,*). It is also assumed that the
carrier densities and the electric field are uniform along
the binary axis.

The calculations were based on the Abeles and Mei-
boom model® for Bi, and were made for the thin slab
geometry. Complete results have been obtained for the
pre-pinch regime in which the current is low enough to
make the self-magnetic pressure smaller than the kinetic
pressure of the electron-hole plasma. The conductivity ¢
is calculated to the second order in the self-magnetic
field or j.

The steady-state equations describing the problem are:
1) The current flow equations for electrons in each ellips-
oid and holes, respectively. The diffusion contribution is
included in these equations. 2) The charge neutrality
equation. 3) The Maxwell equations. 4) The conservation
equations for electrons in each ellipsoid and for holes,
respectively. The inter-ellipsoid transitions are included
in these conservation equations. The transition probability
between two electron ellipsoids is specified by the tran-
sition time 7, ., while the transition probability between
electron and hole ellipsoids is specified by 7., 5) The
boundary conditions, specified in terms of the surface
recombination velocity S. Here we assume equal surface
recombination velocities for electrons in each ellipsoid.

After straightforward calculations, the current density j
along the binary axis is obtained as a function of the ap-
plied electric and the self-magnetic fields. Averaging j
over the cross section gives the conductivity:

0/0'0 =1~ 6111(3)<H32> - 411(2)<H22>

1
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x x 4 « tanh x
o, = low current conductivity
Y = (ﬂa -+ Va)(ﬂl - /,;2)2/21;3(2;;1 + u + #2)2
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11, Moy us are the electron mobilities along the binary, bi-
sectrix and trigonal axes of each ellipsoid respectively;
v, v, and v, are the hole mobilities along the binary,
bisectrix and trigonal axes respectively; b is the half-
thickness of the slab; D, and D, are the diffusion constant
along the trigonal axis for electrons and holes respec-
tively; and c is the velocity of light in vacuum.

The second term, and ¢,;(2){H,’) in the third term on
the right hand side of Eq. (3), are the pure self-magneto-
resistance contributions. The 7, ;-dependent term in the
third term is the diffusion contribution associated with
the hole and net electron flows. The r-dependent term
is the diffusion contribution associated with the difference
between the electron flows of different electron ellipsoids.
If both 7, ,~— ® and 7,,.— ®, then ¢;,(2){H,") is perfectly
compensated by these diffusion contributions. In this case
the diffusion contribution to g,(3)(H,*) should also be
taken into account.

The last term represents the contribution of the sur-
faces. Owing to the inward-driven particle flow, the car-
rier densities on the surfaces become smaller than their
thermal equilibrium values and, as a result, the carriers
are generated on the surfaces. The 7, -dependent term is
related to hole and net electron flows, and the 7-dependent
term is related to the difference between electron flows
of different electron ellipsoids as mentioned in the pre-
ceding paragraph. This generation on the surfaces in-
creases the number of carriers, thus increasing the con-
ductivity. If § — 0 or 7., — 0, there are no changes in
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the number of carriers in the plasma and the last term

Table 2 Inter-ellipsoid transition times 7., and 7.,

goes to zero. {seconds).

Eq. (3) can be written in the form of Eq. (1). If Eq. (1)
is fitted to the observed data,’ in the region of onset of the Toro/ Teih Ten Tero
departure from Ohm’s law, it is found that a(0) = —5.8 X
107? (amp/cm®) %, which is smaller than the Abeles- 1/10 9.3% 10°° 0.93 X 10~°
Meiboom value. In order to obtain values of 7,, and 1 1.6 X 107° 1.6 X 107°
7,.. from a(0) = —5.8 X 107* (amp/cm”)?, something 10 0.9 % 10 9 %10~

must be known about the relative values of 7,4, 7,,, and
b/S. Here we assume that b/Sr., and b/St are much
larger than unity. There is some justification for this as-
sumption based on the recent experimental work of
Zitter® on the magnetoresistance of Bi. The computation
of 7., and 7,, used the known mobilities® of carriers
at 77°K, the diffusion constants D, and D,, and the value
of a(0) as determined from the experimental data. The
diffusion constants are calculated by use of the Einstein
relation, knowing the effective temperatures and mobilities
of carriers. The effective temperature is defined by:

tain guantitative agreement, it appears necessary to in-
clude the effects of diffusion in the calculation. The theory
for the self-magnetoresistance, including diffusion, has
been worked out for the pre-pinch regime of currents. To
fit the calculated value of the self-magnetoresistance to
the observed one, the transition times between ellipsoids
must be of the order of 10~° sec, if the diffusion effects are
not dominated by the surface, i.e., if S is sufficiently small.

The size effects on the low current conductivity and
the Hall coefficient can also, very likely, be explained
quantitatively by taking into account the effects of dif-
fusion. Such calculations are now in progress.

gradient of the partial pressure of carriers
= kT.; ¥ gradient of the carrier density.

Using the ellipsoidal model for the electrons and holes,
and taking the Fermi energies to be 0.022 eV for electrons
and 0.014 eV for holes,’ we estimate the effective temper-
atures 200°K for electrons and 140°K for holes at T =
77°K. Table 2 shows 7, , and 7, , computed for different
values of the ratio 7, . /7. b
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IV. Conclusion

The observed dependence of galvanomagnetic effects in
Bi on the current density can be explained by taking into .. L
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