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Effect of the  Self-Magnetic  Field 
on Galvanomagnetic  Effects in Bismuth 

Abstract: The magnetoresistance and  the Hall coefficient for pure  bismuth at 77°K have been  calculated  to 

the second order in the  self-magnetic field, i.e. current  density. The calculations  show that the  observed de- 
pendence of the  galvanomagnetic effects  on  the  current  density at high currents  can be qualitatively ex- 
plained by the  self-magnetic  field.  However,  to obtain quantitative agreement it is necessary to  include  the 

contribution of diffusion currents in the  calculation. The theory for the  self-magnetoresistance, including dif- 

fusion,  has  been carried  out for the  pre-pinc,h  regime of currents. The resulting  curve for the  self-magneto- 

resistance  agrees well  with the  observed  one if the scattering  times  between  ellipsoids  are  taken  to be of 

order 10-9 sec (assuming that the diffusion effects are  not  dominated by the  surface, i.e. that the  surface- 

recombination  velocity is sufficiently  small). 

I. Introduction 

High current experiments on a single-crystal bismuth 
sample at 77'K under an applied magnetic field have 
been done recently by Hattori.' He found that  the I-V 
characteristic deviates from Ohm's law, and  the Hall 
coefficient decreases with increasing current at sufficiently 
high currents.  The dimensions of the sample were 0.0394 
cm width, 0.00428 cm thickness and 0.506 cm length be- 
tween voltage probes. The orientation of the sample was 
chosen such that  the binary, bisectrix and trigonal axes 
are parallel to  the 0.0394 cm, 0.00428 cm and 0.506 cm 
dimensions respectively. 

Figure 1 shows the j -E characteristics at 77' for various 
values of applied magnetic fields (H applied parallel to 
bisectrix axis). For low magnetic fields, the j-E curves 
are sublinear. These departures  from Ohm's law can  be 
attributed to the self-magnetoresistance, as was discussed 
by Hattori  and Steele.' For high magnetic fields, however, 
the j-E curves are superlinear. In these cases, the self- 
magnetic field contributes to  the conductivity in two ways. 
The self-magnetic field is antisymmetric with respect to 
the  center of the cross section of the sample. Therefore, 
the applied and self-magnetic fields are additive in one 
half of the cross section, and subtractive in the  other half. 

* Laboratories RCA Inc., Tokyo. 

Figure 1 The j-E characteristics at 77°K for vari- 
ous  values of the applied magnetic field. 
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Calculations show a net decrease of the resistance relative 
to the low-current case, because the increase of resistance 
in the region of stronger fields  is smaller than  the decrease 
in the region of weaker fields. Also, at each point off center 
the vector addition of the local self-field to  the external 29 1 
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field  gives a net field rotated with  respect to the external 
field,  i.e., the net  field  has an orientation deviating  away 
from the bisectrix  axis,  in  which  direction the magneto- 
resistance coefficient  is larger, toward the binary  axis, in 
which direction the coefficient  is  smaller. The net  result 
gives a decrease of the resistance as the current is increased. 
The Hall coefficient  will  be  discussed  in the same current 
regime. 

I I .  Effect of the  self-magnetic field 
on galvanomagnetic effects in bismuth 

The  calculations were made  using the mobility  tensor for 
bismuth  proposed by  Abeles and Meib~om.~ The con- 
ductivity u(H, j )  along the trigonal axis  is  expanded, out 
to second order, in the self-magnetic field.  Since the self- 
magnetic field  is proportional to the current density j ,  
the result for u(H, j ) ,  averaged  over the cross section, is 
written in the following form: 

U ( H ,  j )  = u ( H ) [ ~  + a(H)j' + .I, (1)  

where u(H) is the low-current  conductivity, and the second 
term in the square bracket gives the contribution of the 
self-magnetic  field.  Figures 2 and 3 show  calculated  values, 
neglecting  diffusion, of a(H) and a(H) respectively. The 
calculation gives qualitative agreement  with the observa- 
tion. 

The  Hall  coefficient R(H,j) is also  calculated to the 
second order in  the self-magnetic field and is written in 
the following form: 

R ( H ,  j )  = R ( H ) ( l  - b(H)j2  + . . .). (2) 

Table 1 shows the calculated  and  observed  values of R ( H )  
and b(H). The calculation  again gives qualitative agree- 
ment  with the observation. 

In the course of these  experiments, Hattori also found 
size  effects on u(H) and R(H). These  size  effects  might 
not be  related to the mean  free path, but to the diffusion 
length.  After all, the scattering times  between  ellipsoids of 
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292 Figure 2 The low current  conductivity  u(H) vs  H. 
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Figure 3 a(H) vs H. 

Table I Hall coefficient. R ( H )  in particular units 
and b ( H )  in units of ( cm4/amps) are 
listed. 

500 -7.40 -3.46 0.094 0.01 3 
1000 -7.20 -2.71 0.046 0.010 
1500 -7.19 -2.42 0.029 0.009 
2000 -7.17 -2.25 0.042 0.010 

* Diffusion effects not included in the calculation. 

electrons and holes are finite, and if the thickness  is  com- 
parable  with the diffusion  length, the carrier density distri- 
bution can be distorted by the transverse  particle flow. 
The distortion of the density distribution creates a dif- 
fusion  force which opposes the Lorentz force.  This  effect 
partially  compensates the magnetoresistance and the Hall 
coefficient. Taking into account this diffusion  will  give 
quantitative agreement  with the observation. 

111. Self-magnetoresistance  effect 

In order to investigate the effect  of the diffusion we  will 
consider the problem of the self-magnetoresistance. 
Hattori4 has done the relevant  experiments. The dimen- 
sions of  his  sample  were 0.0386 cm width, 0.0052 cm 
thickness and 0.481 cm length between voltage  probes. 
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The  orientation of the sample was chosen such that  the 
binary, bisectrix and trigonal axes were parallel to the 
0.481 cm, 0.0386 cm and 0.0052 cm dimensions, respec- 
tively. In this  orientation a significant contribution of the 
diffusion can be expected. 

For this thin slab geometry, the  carrier density will be 
essentially uniform along the bisectrix axis in  the pre- 
pinch regime, and  the diffusion forces in this  direction 
can be ignored except near the  two  ends of the cross 
section. Furthermore, the magnetoresistance coefficient3 
qI1(3) is about 1/6 of qI1(2). The neglect of the diffusion 
forces does not give any serious error. Therefore, the 
effect  of the inward-driven particle flow along the bi- 
sectrix axis, due to  the magnetic field component H3 
(along the trigonal axis), approximately gives a contri- 
bution qI1(3) (If3') to the self-magnetoresistance, where 
( ) denotes an average over the cross section. 

On the  other hand, for the inward-driven particle flow 
parallel to  the trigonal axis due to H2 (component along 
the bisectrix axis), the diffusion forces give an  important 
correction to q,,(2)(H22). It is also assumed that  the 
carrier densities and the electric field are uniform along 
the binary axis. 

The calculations were based on  the Abeles and Mei- 
boom model3 for Bi, and were made for the  thin slab 
geometry. Complete results have been obtained for the 
pre-pinch regime in which the current is low enough to 
make the self-magnetic pressure smaller than  the kinetic 
pressure of the electron-hole plasma. The conductivity u 
is calculated to the second order  in  the self-magnetic 
field or j .  

The steady-state equations describing the problem are: 
1) The current flow equations for electrons in each ellips- 
oid and holes, respectively. The diffusion contribution is 
included in these equations. 2) The charge neutrality 
equation. 3) The Maxwell equations. 4 )  The conservation 
equations for electrons in each ellipsoid and for holes, 
respectively. The inter-ellipsoid transitions are included 
in these conservation equations. The transition probability 
between two electron ellipsoids is specified by the  tran- 
sition  time while the transition probability between 
electron and hole ellipsoids is specified  by T,,h. 5)  The 
boundary conditions, specified in terms of the surface 
recombination velocity S. Here we assume equal surface 
recombination velocities for electrons in each ellipsoid. 

After  straightforward calculations, the current density j 
along  the  binary axis is obtained as a function of the  ap- 
plied electric and  the self-magnetic fields. Averaging j 
over the cross section gives the  conductivity: 

1 

where 

3(1 + a) x - tanh x 
g ( x ,  a> = 2 

X x + a tanh x 

uo = low current conductivity 

= (P3 + V3)(Pl - P Z ) ~ / ~ V ~ ( ~ V I  + PI + P2)' 

1/7 = l / T e . h  + 3 / T , , ,  

ro = 47raob2/c2 

LD [ D a T e , h l  

LA = 

D, = (p3 Dh + v3 D e ) / ( p 3  + v3).  

pl, p2, p3 are  the electron mobilities along the binary, bi- 
sectrix and trigonal axes of each ellipsoid respectively; 
vl, v2 and u3 are  the hole mobilities along the binary, 
bisectrix and trigonal axes respectively; b is the half- 
thickness of the  slab; De and Dh are  the diffusion constant 
along the trigonal axis for electrons and holes respec- 
tively; and c is the velocity of light in vacuum. 

The second term, and qll(2)(H2') in  the  third  term  on 
the right  hand side of Eq. (3), are  the pure self-magneto- 
resistance contributions.  The re,,-dependent term  in  the 
third  term is the diffusion contribution associated with 
the hole and net  electron flows. The r-dependent term 
is the diffusion contribution associated with the difference 
between the electron flows  of different electron ellipsoids. 
If both 00 and re,e-+ , then ql1(2)(H,') is perfectly 
compensated by these diffusion contributions. In this case 
the diffusion contribution to q11(3)(H32) should also be 
taken  into account. 

The last  term represents the contribution of the sur- 
faces. Owing to the inward-driven particle flow, the car- 
rier densities on  the surfaces become smaller than their 
thermal equilibrium values and,  as a result, the carriers 
are generated on  the surfaces. The r,,h-dependent  term is 
related to hole and  net electron flows, and the 7-dependent 
term is related to the difference between electron flows 
of different electron ellipsoids as mentioned in  the pre- 
ceding paragraph.  This generation on  the surfaces in- 
creases the number of carriers, thus increasing the con- 
ductivity. If S + 0 or T , , ~  -+ 0, there are  no changes in 293 

1/2 

GALVANOMAGNETIC EFFECTS IN Si 



the number of carriers in the plasma and the last term 
goes to zero. 

Eq. (3) can  be written in the form of Eq. (1). If Eq. (1) 
is  fitted to the observed  data: in the region of onset of the 
departure from Ohm's law, it is found that a(0) = - 5.8 X 

(amp/cm')-',  which  is smaller than the Abeles- 
Meiboom  value. In order to obtain values  of T,,h and 
T ~ , ~  from a(0) = -5.8 X 10"' (amp/cm')-zy  something 
must  be  known about the relative  values of T ~ , ~  and 
b/S .  Here we assume that b/%,,h and  ST are much 
larger than unity.  There  is  some justification for this as- 
sumption based on the recent  experimental  work of 
Zitter5 on the magnetoresistance of  Bi. The computation 
of T,,h and T ~ , ~  used the known  mobilities3 of carriers 
at 77'K, the diffusion constants De and Dh, and the value 
of a(0) as determined  from the experimental data. The 
diffusion constants are calculated by  use  of the Einstein 
relation,  knowing the effective temperatures and mobilities 
of carriers.  The effective temperature is  defined  by: 

gradient of the partial pressure of carriers 
= kTeff X gradient of the carrier density. 

Using the ellipsoidal  model for the electrons and holes, 
and taking the Fermi energies to be 0.022 eV for electrons 
and 0.014 eV for holes:  we estimate the effective  temper- 
atures 200°K for  electrons and 140°K for holes at T = 
77'K. Table 2 shows T,,~ and T ~ , ~  computed  for  different 
values  of the ratio T,,,/T~,~. 

IV. Conclusion 

The observed  dependence of galvanomagnetic  effects in 
Bi on the current density can be  explained by taking into 
account the self-magnetic field. Conductivity and Hall 
coefficients  were  calculated to the second order in the self- 
magnetic field,  i.e. current density.  Calculations  using the 
mobilities  proposed by  Abeles and Meiboom  for Bi  gave 
only qualitative agreement  with the observation. To ob- 

Table 2 Inter-ellipsoid  transition times Te,h and T ~ , ~  

(seconds). 

Te ,e /T . ,*  T e , h  Te ,  e 

1/10 9.3 X io-' 0.93 x lo-' 
1 1 .6 X lo-' 1 .6 X lo-' 
10 o .9 X io-' 9 x io-' 

tain quantitative agreement, it appears  necessary to in- 
clude the effects of diffusion in the calculation.  The  theory 
for the self-magnetoresistance,  including  diffusion,  has 
been  worked out for the pre-pinch  regime of currents. To 
fit the calculated  value of the self-magnetoresistance to 
the observed  one, the transition times between  ellipsoids 
must be  of the order of lo-' sec, if the diffusion  effects are 
not dominated by the surface,  i.e., if S is  sufficiently  small. 

The size  effects on the low current conductivity and 
the Hall  coefficient  can  also,  very  likely,  be  explained 
quantitatively by taking into account the effects of dif- 
fusion.  Such  calculations are now in progress. 
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