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Abstract: The acoustic  plasma wave  suffers severe landau damping for equal-temperature  carriers obey- 

ing Boltzmann  statistics, but can be relatively weakly landau damped in semimetals if in the propagation 
direction  the Fermi  velocities  and  masses of the two carriers  are  very  unequal.  Only  the  carriers with the 

smaller  Fermi  velocity  are important in producing  collision damping since the  other  carriers  store  no  appre- 

ciable momentum.  Some  results for many-valley semimetals like bismuth  are  given,  together with a discus- 

sion of the  problem of exciting  and  detecting  this  essentially neutral and longitudinal wave.  Experiments 

undertaken  to  detect  the  acoustic  plasma  wave by transmission through thin wafers of bismuth at 10 Gc/sec 

have  been  unsuccessful  thus  far, but have  revealed the  existence of a higher  velocity wave of weak ampli- 
tude that has  not  yet  been  identified. A discussion is also given of some magnetic  quantum  effects that should 

be  associated with the  acoustic  wave. 

Introduction 

As was  first  pointed out by Tonks and Langmuir,’  a 
plasma containing two  types  of  mobile  charge carriers has 
two  branches to its longitudinal oscillation  spectrum, as 
shown in Fig. 1. In the higher  frequency branch the two 
carriers oscillate out of  phase  (assuming  they are of 
opposite charge)  with the long  wavelength  limit at the 
so-called  plasma  frequency, while in the lower branch 
the carriers oscillate in phase,  exhibiting at long wave- 
lengths  a  dispersion relation like that of a sound wave. 
In analogy to the classification  of lattice vibrations, 
Pines’ has  called the upper branch “optical” and the lower 
branch “acoustic.” In the gas  plasma field the lower 
branch is usually  referred to as the ion wave or the ion 
acoustic wave. The acoustic branch was  first  discussed 
for  solid state plasmas by  Pines: and more recently by 
Pines and Schrieffer3 and by Harrison4 in connection  with 
the possibility of obtaining growing  waves in a drifted 
plasma.  Despite the considerable  interest in these waves, 
they have not yet  been  observed in solids and were  only 
recently  seen in gas  plasma^.^'^ The reason lies both in 
the large  damping  usually  associated  with this mode and 
in the experimental  difficulty of exciting and detecting an 
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essentially neutral longitudinal wave. As will  be  discussed 
in the next  section, the damping can theoretically  be  re- 
duced to a  tolerable level  by working at liquid  helium 
temperature with  a  high-purity  semimetal, while it should 
be  possible to overcome the excitation-detection  problem 
by measuring the transmission through thin  samples  using 

Figure I .  Dispersion relation for longitudinal 
waves in a two-component  plasma. 
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a very  sensitive  microwave  detection  method to be de- 
scribed.  Experiments  performed at 10 Gc/sec  using  wafers 
of bismuth about 1OOp thick have  been  unsuccessful thus 
far in detecting the acoustic  plasma wave, but have  revealed 
the existence  of a higher  velocity  wave  of  weak amplitude, 
whose origin will  be speculated upon in Section 6. 

2. Properties of acoustic mode 

The condition for  longitudinal  plasma  oscillations  is that 
the total (longitudinal)  dielectric constant vanish: 

€ t o t  = € l a t t i c e  + € e l e c t  + €boles = 0 ,  (1) 

when eeleot and eholes refer to the intraband contributions 
only, the interband parts being  included in the lattice 
term. For collision-free carriers in a spherical, parabolic 
band at O'K, the long-wavelength  dielectric constant, de- 
termined either classically or quantum mechani~ally,~'~ is 

e(w, k )  = (3~,2/k'v,')[1 - (w/ku,) tanh" (ku,/w)] (2) 

I-(w."/w') for w / k  >> ( 3  a) 

\(kpyz/k2)(l - i ~ ~ / 2 k ~ p )  for w / k  << u p ,  

(3b) 

where u p  is  the Fermi velocity, up = ( 4 r t ~ e ~ / / m ) ~ ,  and 
k p T  = fi w,/uF is the Fermi-Thomas  screening wave 
vector.  These equations are also  valid  for  ellipsoidal bands 
with k along a principal  axis if the values of uF and m 
corresponding to  that direction are used.  When the propa- 
gation is not along a principal  axis,  one  must in general 
deal with a dielectric  tensor, as will be discussed later. 

In the optical branch the phase  velocity up of the wave 
is  greater than uF for both carriers, and the positive 
dielectric constant of the lattice is counterbalanced by the 
negative contributions of the two carriers. In the acoustic 
mode up is  intermediate  between  the Fermi velocities  of 
the holes and electrons. The carriers with the smaller u p  
give a negative contribution to E and store energy in the 
form of kinetic  energy  resulting  from  their  average ve- 
locity. The carriers with the larger u p  tend to adiabatically 
screen the slower carriers; their  dielectric constant is  posi- 
tive and corresponds to a storage of potential energy 
through a variation in density. At long wavelengths the 
dielectric constant of the lattice can be  neglected  for  this 
mode. 

It is important to note that e for the carriers with 
uF > up has an imaginary part and hence that the acoustic 
wave  is damped even  when  collisions are neglected.  This 
effect,  known as Landau dam~ing ,~  arises  from the strong 
coupling of the wave to those carriers travelling at ve- 
locity up and which therefore see a nearly static field for 
a long  time. The same  phenomenon is met in  many other 
situations, such as in acoustic attenuation, and may  also 
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particle excitations. In a semiconductor  where Maxwell- 
Boltzmann  statistics are obeyed it is  difficult to achieve 
small Landau damping.  Designating the two carrier 
types"  by + and - and assuming that the + carriers 
are the heavier, the requirements  for  small  damping  are3 

rn-/m+ << n-/n+ << T J T +  . (4) 

Generally it is quite difficult in a solid to have T- >> T ,  
because of  collisions  with the lattice, while m- is not much 
less than m+ in existing  semiconductors.  Also  if the lattice 
is  cooled to reduce  collision  damping n- will probably 
differ from n+ by several orders of  magnitude  unless addi- 
tional nonthermal carriers are supplied.  However, in a 
semimetal  where  Fermi  statistics are obeyed  the  slow 
carriers with uF < up will produce  negligible Landau 
damping  near O'K; while  if u p  >> up for the other carriers 
their  damping will  be  small  since  relatively  few  will  be 
travelling in synchronism  with the wave.  Assuming that 
the + carrier is the slower and that u p -  >> u,, but not 
necessarily that uF + << up, we find  from (1) and (2) that 
the ratio q = u P / u F +  is  given  by 

where Fo = (kF T+/kF T-)2 .  The notation has been  chosen 
to show the analogy  with  Landau's  theory"  of  zero sound 
in liquid Hea, the two  cases  being  mathematically  equiv- 
alent since in the acoustic  plasma wave the adiabatic 
screening  of the holes by the electrons  leads to an effective 
short range repulsion  between the ho1es.l' If Fo >> 1 then 
q>> 1 and 

UpzV~+(Fo/3)' = W , + / k F T -  = ( I?I -n+ /3m+n- ) 'Vp- .  (6) 

If Fo ,< 1 then up is  only  slightly  greater than u p +  and is 
given  by 

u, N N u F + [ ~  + 2 exp ( -2  - 2 / F 0 ) ] .  (7) 

In either  case the necessary and sufficient conditions for 
small Landau damping  near O°K are 

up+ <<up-  and m - / m +  << n-/n+ . (8) 

Bismuth  meets  these  requirements  fairly  well  if k is in 
the trigonal direction, the value  of u, for this orientation 
being about 8 X lo6 cm/sec. 

We next  consider the damping  due to collisions. In 
terms of the  usual  phenomenological  collision  time r, 
the dielectric constant including  collisions  is 

€(a, k )  = - (a - tan-' a) 
3w:. 1 

i W ( 1  + iw.) a3 

X 1 - ~ (a - tan-' i [ wra a)]" 9 

where a = k u p ~ / ( l  + iwr). 
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In obtaining (9) it  has been assumed that  the distribution 
relaxes to a local  equilibrium  distribution with zero  aver- 
age velocity but with the perturbed density. One often 
sees (9) without the factor in the square brackets; this 
results from incorrectly assuming a relaxation to  the ther- 
mal equilibrium density, which would not conserve par- 
ticle number. When UT 2 1 we find 

- (w,2/w2)( 1 - i/w.)-' I for w/k  >> uF (loa) 
€ ( W ,  k )  NN 

(kFT2/k2)( 1 - i7rw/2kuF) 

for w/k << u p  . (lob) 

Hence, hole collisions (still assuming holes are  the slower 
carrier)  can  produce  appreciable  damping; but electron 
collision damping is negligible in  comparison  with elec- 
tron  Landau damping. This is to be expected physically 
since the electrons do  not carry  appreciable momentum; 
they store energy through their density  perturbation^.'^ 
From  (loa)  it is easily found  that when UT+ >> 1 the wave 
will decay as a result of hole collisions by l /e  in a dis- 
tance 6 = upr+, independent of the frequency. For bismuth 
with k in the trigonal  direction 6 - lo-' cm for T+ - lo-' 
sec. Landau damping from  the electrons would lead to a 
decay length of  about 5 X cm in  this  same  con- 
figuration at 10 Gc/sec. 

All of  the preceding discussion has been for spherical 
energy surfaces or  for ellipsoidal surfaces with propa- 
gation along a principal axis. If we have an energy ellips- 
oid with axes labelled 1, 2, 3 with k in the 1-3 plane at 
an angle 0 to axis 3, a straightforward modification of 
the usual spherical band results7 gives for the components 
of the dielectric tensor in the ellipsoidal coordinate system 

e l l  = (m/ml)(cos2e m3-'t'l + sin28 ml-'ttC) 

€13 = €31 = ( t i /mIms)  cos0 sine ( d Z  - E'J 
e33 = (rn/m3)(cos2e m3-1e'1 + sin20 ml- ldc )  ( 1  1) 

where 

€ ' I  = - ( a  - tan" u) 
4?rne2r 3 

iw(1 + iw.) a3 

E = (Cos'e m3-l + sin28 ml-')-l 

a = (UF3' cos2e + u F I 2  sin20)+  kr/(1 + iwr) .  (12) 

For bismuth with k in the trigonal  direction the  total dielec- 
tric tensor is still diagonal and  for a>> 1 the electron contri- 
bution to the longitudinal  component is still given  by 

(lob),  but with kp; = 4nN(Ep)e2, where N(&) is the 
total denisty of states at  the  Fermi surface of the electron 
ellipsoids. In determining  the Landau damping uF = 
(up: cos2t9 + uplz  sin20)* should  be used, with 0 the tilt 
angle of the ellipsoids. 

In general, for k not along a crystallographic axis of 
high symmetry, purely longitudinal waves  will no longer 
exist. Although  this  introduces considerable algebraic 
complexity into  the theory, the presence of transverse field 
components is useful since they greatly aid  in excitation. 
It should  also  be  mentioned that in  bismuth, because of the 
existence of three  electron ellipsoids, there will generally 
be a total  of four plasma waves plus the  two electromag- 
netic waves. 

3. Excitation 

Reflection or surface  impedance measurements cannot be 
used to detect the existence of  the acoustic  plasma mode 
because the wave is excited so much  more weakly than 
the transverse skin depth wave. However, transmission 
measurements with the sample  mounted as a diaphragm 
in a waveguide should  be feasible since the longitudinal 
wave decays quite slowly in comparison with the trans- 
verse wave (although on  an absolute basis rather rapidly, 
as indicated above). Consider first a semimetal with spheri- 
cal energy bands. An analysis assuming specular reflection 
at  the two surfaces has been carried out for this case using 
techniques similar to those employed in  treatments of the 
anomalous skin effect;14 but  in view of  the recently pub- 
lished work of Platzman and Buchsbauml' on transmission 
of transverse waves through plasma slabs the details will 
not be presented. It is of course  obvious that  if we were 
dealing with a purely transverse wave incident on a slab 
of infinite transverse extent  there would be no coupling 
to the longitudinal wave. However, in the  actual  problem 
coupling will occur as a result of  both  the waveguide 
boundaries and  the finite transverse dimensions of the 
sample. In fact if the  sample fills the entire  cross section 
of  the guide it is clear that a strictly longitudinal  normal 
mode  cannot exist, because of  the boundary  conditions 
at  the waveguide walls, and hence the coupling  does not 
vanish. On  the  other  hand, if the sample is mounted on a 
frame and illuminated through  an aperture, as  if  the case 
experimentally, then even a purely transverse and uniform 
incident wave wi!l couple because of  the diffracted longi- 
tudinal waves that  propagate  at  an angle to the normal. 

We can determine the coupling  in  the second case by 
the following simple argument, which may be generalized 
to cover transverse waves as well. Expressing the power 
carried by the  longitudinal  acoustic wave in  terms of the 
dielectric constant," we have 
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Figure 2. Block diagram of microwave circuit for 
detecting  transmitted  signals of the  order 
of 10-20  w. 

If k is in the x-z plane,  with the normal to the surface in problem  of  detecting  a  weak  signal into the problem of 
the  z-direction,  then the component of the Poynting detecting  a weak modulation or as a poor man’s corre- 
vector at the surface which  supplies  this  power  is lator (or matched  filter). The first point of view is  fairly 

obvious and the ability to detect 10-20W or less  is  well 
- E,[ff,(k,)]* = E[ff&,)l*k,/k, 87r 

(14) known in paramagnetic  resonance ~ o r k . ’ ~  However, it is 
rather instructive to see the circuit  from the other aspect 

where H,(k,) is the Fourier component  of H,. Equating and appreciate why a  small modulation is easy to detect. 
the two  expressions  gives The optimum  procedure  for  extracting  a  signal  of 

known  waveform  from  white  additive Gaussian noise 
W , )  = - 2 Iff,(k,)12. (15) consists  simply  of  cross correlating the received  signal 

wkpT- plus  noise  with the known  signal waveform.” This is also 

C C 

c2 kkZ2 

If the sample  is  of  half-width L, and uniformly  illumi- 
nated, then [H,(kz)/2 is proportional to (sin k,L,/k,LJ2. 

It is  easy to see that the above situation would  lead to 
a very large  diffraction  of the transmitted wave and con- 
siderable  destructive  interference at the far surface of the 
sample.  However, the actual case in bismuth  is  one of ellips- 
oidal  energy  surfaces. As mentioned in the preceding  Sec- 
tion, one  can  easily  produce  a  small admixture of transverse 
field  components by simply  orienting the sample  slightly 
off of the trigonal  axis.  This can give a  larger  coupling 
than either  mechanism  considered above and one which 
is  free  from  excessive  diffraction  effects. It is also possible 
to produce  a mixed transverse-longitudinal wave  by apply- 
ing  a  small  magnetic  field. 

4. Detection 

A block  diagram of the microwave  circuit  is  shown in 
Fig. 2. The detection  system  employs  a  conventional 
microwave  receiver and synchronous  detector  with one 
unusual feature: some  of the unmodulated  microwave 
signal  is added to the modulated  signal  going to the mixer. 
This arrangement  permits a signal  of about 10-20W to be 
detected  with  a  one-second integration time. Equally 
important for this  experiment, it can also  be  used to meas- 
ure the phase  shift  (within  multiples  of 27r) through the 
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known as a  matched  filter and gives a  signal-to-noise of 
P,At/kTN, where P, is the average input signal  power to 
the receiver, At is the integration time, and T N  is the noise 
temperature of the receiver. For a  good  X-band  receiver 
with,  say,  a 7 db noise  figure, T N  1200°K, and hence 
for At = 1 sec. P, - 10-20W for unity  signal-to-noise. 
It will  now  be  shown that the circuit  of  Fig. 2 is  equivalent 
to  an optimum  linear  filter. 

Let m(t) be the modulation waveform, wo the IF fre- 
quency, and assume for simplicity that the detector is a 
square-law device (the nonlinearity  is the only  essential 
feature).  Then the operation of detection,  phase  sensitive 
detection at m(t), and low-pass  filtering (integration) gives 
an output at time t proportional to 

L t  
m(t’)[rn(t’) COS wot’ + A COS wot’ + n(t’)]* dt’ , 

(16) 

where n(t) is the noise and A cos wot is the large unmodu- 
lated, but properly  phase  shifted,  signal added in at the 
receiver input. The term proportional to A2 gives a  negli- 
gible output after integration, so  the dominant contri- 
bution is 

2 A  [ : A t  m(t’) cos wot’[m(t’) cos oot’ + n(t’)] dt’, 

(17) 



which  is  just the optimum  filtering. Note that without 
the addition of A cos w o t  cross  terms  of the noise  with 
itself and with the signal  would  come through the low-pass 
filter and degrade the signal-to-noise  in proportion to the 
square root of the ratio of  the IF bandwidth to the low- 
pass  filter  bandwidth. 

This  same  detection  scheme  can  be  used  for  waveforms 
other than pure sinusoids; the signal-to-noise will still 
be the optimum if non-additive  sources  of  noise,  such as 
gain  fluctuations, are negligible. We have in fact  achieved 
the  theoretical  limit  with the above  circuit. 

5. Sample preparation and mounting 

The  requirements on the sample are rather severe. It 
should  be about 1 X 1 X 0.01 cm in  size,  work- and 
strain-free in order to minimize  collision  damping,  with 
faces smooth and parallel to about 2 microns.  Conven- 
tional grinding and polishing  techniques cannot be  used 
since  bismuth  is very soft. Success has  been  achieved  by 
etching  with  glacial  acetic  acid and concentrated nitric 
acid on Dextilose paper in a manner  similar to  that used 
by S~llivan'~ for GaAs. The resulting  surface  is  shiny, 
but slightly rough (-0.5 micron), and rather flat.  Another 
technique which  has  been  used  is that of  growing  single- 
crystal  slabs to size  between  microscope  slides on a hot 
stage." The surfaces are flat,  but  show  some  dimples that 
seem to come  from adsorbed gas. 

In order to avoid straining, the  sample is mounted on a 
thicker  oriented  bismuth  frame, which  is  soldered  with a 
Bi-Cd solder onto a metal  plate  inserted into the wave- 
guide.  The  metal structure is  of  type 310 stainless  steel, 

Figure 3. Diagram showing landau level forma- 
tion in a magnetic  field, with the energy 
plotted against the  velocity parallel to 
the  magnetic  field. Dotted line shows  a 
value of the phase velocity v2 for  which 
there will be no Landau damping. 
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which has  the  same total thermal  expansion  as  bismuthz1 
between 4.2' and 300'K. 

6. Discussion of results 

No indication  has been found thus far  of a transmitted 
acoustic  plasma wave, despite the use of both magnetic 
fields and crystallographic orientation to enhance the 
coupling.  The  difficulty  may  lie in a degradation of T by 
the sample preparation or mounting  procedure. A check 
at larger  longitudinal  magnetic fields  showed that the 
effective T for AlfvCn  wave propagation was only 5 X lo-" 
sec,  whereas the starting bismuth  crystal had a residual 
resistivity ratio (R3000/R4.2 0 )  of about 200, corresponding 
to a much  larger T .  This  problem is  now  being  investigated. 

A transmitted wave has  been  seen,  however. It is  very 
weak (190-200 db transmission  loss), and over the fre- 
quency  range 8.8 to 9.8 Gc/sec it has a phase  velocity  near 
10' cm/sec, about  an order of magnitude greater than 
that expected for the acoustic  mode.  More  work will  be 
required to make a precise  measurement, but these  pre- 
liminary  results are suggestive  of a wave travelling ap- 
proximately at the Fermi velocity of the electrons. If this 
is so, two  possibilities  come to mind.  One  is the long, 
non-exponential tail on the transverse  skin depth excita- 
tion, which  was  derived  theoretically by Reuter and 
Sondheimer.'*  The other is a zero-sound wave,  which 
Gorkov and DzyaloshinskiiZ2  have  recently  discussed  for 
metals.  The latter showed that spin-dependent  oscillations 
should exist  for  vanishingly  small  Fermi-liquid  correc- 
tions, while  spinless  waves should  exist  in  this  limit  if 
certain symmetry  conditions are met, which apparently 
can be  satisfied for propagation along the trigonal  direc- 
tion in bismuth. In this  connection, it is worth mentioning 
that, although Gorkov and Dzyaloshinskii  suggest infra- 
red as the most  feasible range in which to see zero-sound 
waves, the greater  sensitivity and easier  sample  tolerances 
in the microwave  region  probably  favor that  part of the 
spectrum. An interesting  question that is raised by this 
work  is the effect of the Fermi-liquid correction on the 
non-exponential tail of the Reuter-Sondheimer  solution. 

7. Magnetic quantum effects 

Classically or semiclassically  there  is  no  effect  of a longi- 
tudinal magnetic field on longitudinal waves.  However, 
quantum mechanically the field produces a series  of  one- 
dimensional Landau sub-bands, as shown  in  Fig. 3 for a 
simple parabolic band. If ktw, >> kT and W,T >> 1 ,  so that 
the Landau levels are well formed,  one  should  expect 
giant oscillations as a function of  magnetic field to occur 
in the Landau damping  of the acoustic  plasma wave, just 
as has been predictedz3 and recently  seenz4 in ultrasonic 
attenuation in  metals. The reason  is  simply that Landau 
damping will  be present  only if there are electron  states 
at the Fermi  surface  with a velocity  in the propagation 289 
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direction equal  to  the phase velocity of  the wave. For  the 
case shown  by the  dotted line in Fig. 3 no  attenuation 
can occur. 

In addition to this effect it may be possible for a large 
longitudinal  magnetic field to create one or more lightly 
damped  acoustic  modes in a one-carrier plasma,  such as 
a metal. In a sense each Landau sub-band  acts as a sepa- 
rate  carrier; those with v F  > up give a positive contri- 
bution to E, while those with v F  < v,  give a negative 
contribution,  with the magnitude of E becoming very large 
for v F  w up.  Hence, just as  in a multicomponent plasma, 
there will be (n - 1) acoustic  plasma waves when there 
are n Landau sub-bands intersecting the  Fermi surface, 
the phase velocities of  the waves being interspersed be- 
tween the sub-band Fermi velocities. Of course, for a 
nonzero  temperature and a finite T most  of these waves 
will be strongly damped, but  the ones  with  intermediate 
phase velocities are  the  most weakly damped and may be 
observable. As the applied field approaches zero, these 
modes become infinitely dense and go over into  the van 
Kampen modes.25 In fact  this can  be used as a physical 
argument for  the existence of the  van Kampen modes as 
an alternative to  the usual electron beam approach.26 
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Discussion 
R. Bowers: How are you  proposing to couple  transverse  waves 
to the  longitudinal  acoustic  plasma  wave? 

A.  L. Mc Whorter : I am  sorry that I did  not  have  time to discuss 
this  point,  but it is  covered  in  the  written  form  of the paper. 
First of all, except  when the  propagation is  exactly along a 
symmetry direction,  an  acoustic  plasma wave  in  bismuth will 
actually  have  transverse  components to which an  external 
transverse  wave  can  directly  couple. In addition, in a bite 
sample the boundary  conditions will  produce  transverse  com- 

ponents,  or  one  can  apply a small  magnetic  field to mix the 
transverse and longitudinal waves. 

D. Pines: Can  one  detect  the  existence of the  acoustic  plasma 
wave  by  using  ultrasonic attenuation? 

Mc Whorter: I do  not  think so, but I have not  made  any  cal- 
culations.  The  coupling  between the acoustic  plasma  wave and 
the sound wave should be  small  because  of the  large difference 
in  their  velocities. 
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