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Acoustic Plasma Waves in Semimetals

Abstract: The acoustic plasma wave suffers severe Landau damping for equal-temperature carriers obey-
ing Boltzmann statistics, but can be relatively weakly Landau damped in semimetals if in the propagation
direction the Fermi velocities and masses of the two carriers are very unequal. Only the carriers with the
smaller Fermi velocity are important in producing collision damping since the other carriers store no appre-
ciable momentum. Some results for many-valley semimetals like bismuth are given, together with o discus-
sion of the problem of exciting and detecting this essentially neutral and longitudinal wave. Experiments
undertaken to detect the acoustic plasma wave by transmission through thin wafers of bismuth at 10 G¢/sec
have been unsuccessful thus far, but have revealed the existence of a higher velocity wave of weak ampli-
tude that has not yet been identified. A discussion is also given of some magnetic quantum effects that should
be associated with the acoustic wave.

Introduction

essentially neutral longitudinal wave. As will be discussed
in the next section, the damping can theoretically be re-

As was first pointed out by Tonks and Langmuir,' a
plasma containing two types of mobile charge carriers has

two branches to its longitudinal oscillation spectrum, as
shown in Fig. 1. In the higher frequency branch the two
carriers oscillate out of phase (assuming they are of
opposite charge) with the long wavelength limit at the
so-called plasma frequency, while in the lower branch
the carriers oscillate in phase, exhibiting at long wave-
lengths a dispersion relation like that of a sound wave.
In analogy to the classification of lattice vibrations,
Pines” has called the upper branch “optical” and the lower
branch “acoustic.” In the gas plasma field the lower
branch is usually referred to as the ion wave or the ion
acoustic wave. The acoustic branch was first discussed
for solid state plasmas by Pines,” and more recently by
Pines and Schrieffer® and by Harrison®* in connection with
the possibility of obtaining growing waves in a drifted
plasma. Despite the considerable interest in these waves,
they have not yet been observed in solids and were only
recently seen in gas plasmas.”’® The reason lies both in
the large damping usually associated with this mode and
in the experimental difficulty of exciting and detecting an
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Force) and Electrical Engineering Department, Massachusetts Institute
of Technology.

duced to a tolerable level by working at liquid helium
temperature with a high-purity semimetal, while it should
be possible to overcome the excitation-detection problem
by measuring the transmission through thin samples using

Figure 1. Dispersion relation for longitudinal
waves in a iwo-component plasma.
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a very sensitive microwave detection method to be de-
scribed. Experiments performed at 10 Ge/sec using wafers
of bismuth about 100 thick have been unsuccessful thus
far in detecting the acoustic plasma wave, but have revealed
the existence of a higher velocity wave of weak amplitude,
whose origin will be speculated upon in Section 6.

2. Properties of cacoustic mode

The condition for longitudinal plasma oscillations is that
the total (longitudinal) dielectric constant vanish:

€iot = €lattice + €elect + €holes = 0: (1>

when €, and €,,;,, refer to the intraband contributions
only, the interband parts being included in the lattice
term. For collision-free carriers in a spherical, parabolic
band at 0°K, the long-wavelength dielectric constant, de-
termined either classically or quantum mechanically,”® is

ew, k) = (3w," /Kol = (w/kvr) tanh™ (kvp/w)] (2)

o [—@ /) for w/k> o, (3a)
l(kp7,2/k2)(1 — imw/2kvp)  for w/k K vp,

(3b)

where vy is the Fermi velocity, @, = (4rne’/m)*, and
krr = V/3 w,/vy is the Fermi-Thomas screening wave
vector. These equations are also valid for ellipsoidal bands
with k along a principal axis if the values of v and m
corresponding to that direction are used. When the propa-
gation is not along a principal axis, one must in general
deal with a dielectric tensor, as will be discussed later.

In the optical branch the phase velocity v, of the wave
is greater than v, for both carriers, and the positive
dielectric constant of the lattice is counterbalanced by the
negative contributions of the two carriers. In the acoustic
mode v, is intermediate between the Fermi velocities of
the holes and electrons. The carriers with the smaller vy
give a negative contribution to e and store energy in the
form of kinetic energy resulting from their average ve-
locity. The carriers with the larger v tend to adiabatically
screen the slower carriers; their dielectric constant is posi-
tive and corresponds to a storage of potential energy
through a variation in density. At long wavelengths the
dielectric constant of the lattice can be neglected for this
mode.

It is important to note that e for the carriers with
vr > U, has an imaginary part and hence that the acoustic
wave is damped even when collisions are neglected. This
effect, known as Landau damping,” arises from the strong
coupling of the wave to those carriers travelling at ve-
locity v, and which therefore see a nearly static field for
a long time. The same phenomenon is met in many other
situations, such as in acoustic attenuation, and may also
be described quantum mechanically in terms of single
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particle excitations. In a semiconductor where Maxwell-
Boltzmann statistics are obeyed it is difficult to achieve
small Landau damping. Designating the two carrier
types'® by + and — and assuming that the - carriers
are the heavier, the requirements for small damping are®

m./m, Ln_[n. LT./T, . (4)

Generally it is quite difficult in a solid to have T_ > T,
because of collisions with the lattice, while m_ is not much
less than m. in existing semiconductors. Also if the lattice
is cooled to reduce collision damping n_ will probably
differ from n, by several orders of magnitude unless addi-
tional nonthermal carriers are supplied. However, in a
semimetal where Fermi statistics are obeyed the slow
carriers with vy < v, will produce negligible Landau
damping near 0°K; while if v 3> v, for the other carriers
their damping will be small since relatively few will be
travelling in synchronism with the wave. Assuming that
the + carrier is the slower and that vy_ >> v,, but not
necessarily that vy, << v,, we find from (1) and (2) that
the ratio 1 = v,/vp. is given by

7. 7+1 1
—In = —
2 yp — 1 o

+ 1, (5)

where Fy = (kpr+/kr r—)F. The notation has been chosen
to show the analogy with Landau’s theory" of zero sound
in liquid He®, the two cases being mathematically equiv-
alent since in the acoustic plasma wave the adiabatic
screening of the holes by the electrons leads to an effective
short range repulsion between the holes.'” If F, >> 1 then
7> 1 and

vy vp o (Fo/3) = w0 /kpr- = (m_n,/3m,n_Yvp_. (6)
If F, < 1 then v, is only slightly greater than vy, and is
given by

Up R//UF+[1 + 2 exp (_2 - Z/FO)] (7)

In either case the necessary and sufficient conditions for
small Landau damping near 0°K are

vp, Kvp. and m_/m, <K n_/n, . (8)

Bismuth meets these requirements fairly well if k is in
the trigonal direction, the value of v, for this orientation
being about 8 X 10° cm/sec.

We next consider the damping due to collisions. In
terms of the usual phenomenological collision time 7,
the dielectric constant including collisions is

3w, T 1 1
k)= ——2— —(a—tan' g
(. &) iw(1 + iwr) d° ( )
X [1 _ (a — tan™" a)] , (9
wra

where a = kvpr/(1 + iwT).




In obtaining (9) it has been assumed that the distribution
relaxes to a local equilibrium distribution with zero aver-
age velocity but with the perturbed density. One often
sees (9) without the factor in the square brackets; this
results from incorrectly assuming a relaxation to the ther-
mal equilibrium density, which would not conserve par-
ticle number. When wr = 1 we find

— (@, /)1 — ifwr)™

for w/k>v,  (10a)
(kpo’ /KDY — imw/2kvp)

for w/k <vy. (10b)

elw, k) =~

Hence, hole collisions (still assuming holes are the slower
carrier) can produce appreciable damping; but electron
collision damping is negligible in comparison with elec-
tron Landau damping. This is to be expected physically
since the electrons do not carry appreciable momentum;
they store energy through their density perturbations.”®
From (10a) it is easily found that when wr, > 1 the wave
will decay as a result of hole collisions by 1/e in a dis-
tance & = v,7,, independent of the frequency. For bismuth
with k in the trigonal direction § ~ 1072 ¢cm for 7, ~ 107°
sec. Landau damping from the electrons would lead to a
decay length of about 5 X 107° c¢m in this same con-
figuration at 10 Gc/sec.

All of the preceding discussion has been for spherical
energy surfaces or for ellipsoidal surfaces with propa-
gation along a principal axis. If we have an energy ellips-
oid with axes labelled 1, 2, 3 with k in the 1-3 plane at
an angle 8 to axis 3, a straightforward modification of
the usual spherical band results’ gives for the components
of the dielectric tensor in the ellipsoidal coordinate system

e = (m/my)(cos’8 m;~ e, + sin’8 m, " '¢’))

€13 = €31 = (r?t/mlmg) cosf sinf (G,z - 6,1)
&3 = (m/m3)(cos’8 m, "¢y + sin’0 m, '¢’,) (11)
where

4mne’ 3 -
€ =—7mel——g(a—tanla)
iw(l + iwr) a

X [1 — % (a— tan a)]_
wTa

2
¢, = __Amner _33 [(a®+ 1) tan"' a — 4]
iw(l + iwr) 2a

m = (cos’0 my" + sin’f m, 7)™

a = (vps° cos’0 + vg;” sin’0) kr/(1 + iwr). (12)
For bismuth with K in the trigonal direction the total dielec-
tric tensor is still diagonal and for @3> 1 the electron contri-
bution to the longitudinal component is still given by

(10b), but with kpr° = 4xN(Ep)e’, where N(Ey) is the
total denisty of states at the Fermi surface of the electron
ellipsoids. In determining the Landau damping vy =
(vrs” c0s°6 + vg,” sin®6)? should be used, with @ the tilt
angle of the ellipsoids.

In general, for k not along a crystallographic axis of
high symmetry, purely longitudinal waves will no longer
exist. Although this introduces considerable algebraic
complexity into the theory, the presence of transverse field
components is useful since they greatly aid in excitation.
Tt should also be mentioned that in bismuth, because of the
existence of three electron ellipsoids, there will generally
be a total of four plasma waves plus the two electromag-
netic waves.

3. Excitation

Reflection or surface impedance measurements cannot be
used to detect the existence of the acoustic plasma mode
because the wave is excited so much more weakly than
the transverse skin depth wave. However, transmission
measurements with the sample mounted as a diaphragm
in a waveguide should be feasible since the longitudinal
wave decays quite slowly in comparison with the trans-
verse wave (although on an absolute basis rather rapidly,
as indicated above). Consider first a semimetal with spheri-
cal energy bands. An analysis assuming specular reflection
at the two surfaces has been carried out for this case using
techniques similar to those employed in treatments of the
anomalous skin effect;'* but in view of the recently pub-
lished work of Platzman and Buchsbaum'® on transmission
of transverse waves through plasma slabs the details will
not be presented. It is of course obvious that if we were
dealing with a purely transverse wave incident on a slab
of infinite transverse extent there would be no coupling
to the longitudinal wave. However, in the actual problem
coupling will occur as a result of both the waveguide
boundaries and the finite transverse dimensions of the
sample. In fact if the sample fills the entire cross section
of the guide it is clear that a strictly longitudinal normal
mode cannot exist, because of the boundary conditions
at the waveguide walls, and hence the coupling does not
vanish. On the other hand, if the sample is mounted on a
frame and illuminated through an aperture, as if the case
experimentally, then even a purely transverse and uniform
incident wave will couple because of the diffracted longi-
tudinal waves that propagate at an angle to the normal.

We can determine the coupling in the second case by
the following simple argument, which may be generalized
to cover transverse waves as well. Expressing the power
carried by the longitudinal acoustic wave in terms of the
dielectric constant,'® we have

L

" 6r &r i

13
167 0k (13)
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Figure 2. Block diagram of microwave circuit for
detecting transmitted signals of the order
of 1020w,

If k is in the x-z plane, with the normal to the surface in
the z-direction, then the component of the Poynting
vector at the surface which supplies this power is

c * c
L = - E[H *
< ELH()* = o ELH,E)/K, (14)
where H,(k,) is the Fourier component of H,. Equating
the two expressions gives

S kk,

Pk,) = 87 ok

— [HE)] (15)
FT—
If the sample is of half-width L, and uniformly illumi-
nated, then [H,,(k,;)l2 is proportional to (sin k.L,/ kL)

It is easy to see that the above situation would lead to
a very large diffraction of the transmitted wave and con-
siderable destructive interference at the far surface of the
sample. However, the actual case in bismuth is one of ellips-
oidal energy surfaces. As mentioned in the preceding Sec-
tion, one can easily produce a small admixture of transverse
field components by simply orienting the sample slightly
off of the trigonal axis. This can give a larger coupling
than either mechanism considered above and one which
is free from excessive diffraction effects. It is also possible
to produce a mixed transverse-longitudinal wave by apply-
ing a small magnetic field.

4. Detection

A block diagram of the microwave circuit is shown in
Fig. 2. The detection system employs a conventional
microwave receiver and synchronous detector with one
unusual feature: some of the unmodulated microwave
signal is added to the modulated signal going to the mixer.
This arrangement permits a signal of about 107*°W to be
detected with a one-second integration time. Equally
important for this experiment, it can also be used to meas-
ure the phase shift (within multiples of 2x) through the
sample. One can view the circuit either as converting the
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problem of detecting a weak signal into the problem of
detecting a weak modulation or as a poor man’s corre-
lator (or matched filter). The first point of view is fairly
obvious and the ability to detect 107*°W or less is well
known in paramagnetic resonance work.'” However, it is
rather instructive to see the circuit from the other aspect
and appreciate why a small modulation is easy to detect.

The optimum procedure for extracting a signal of
known waveform from white additive Gaussian noise
consists simply of cross correlating the received signal
plus noise with the known signal waveform.'® This is also
known as a matched filter and gives a signal-to-noise of
P,At/kTy, where P, is the average input signal power to
the receiver, At is the integration time, and Ty is the noise
temperature of the receiver. For a good X-band receiver
with, say, a 7 db noise figure, Ty R 1200°K, and hence
for At = 1 sec. P, ~ 107°°W for unity signal-to-noise.
It will now be shown that the circuit of Fig. 2 is equivalent
to an optimum linear filter.

Let m(?) be the modulation waveform, w, the IF fre-
quency, and assume for simplicity that the detector is a
square-law device (the nonlinearity is the only essential
feature). Then the operation of detection, phase sensitive
detection at m(?), and low-pass filtering (integration) gives
an output at time ¢ proportional to

ft m(t)[m(t") cos wet’ 4+ A coswet’ + n(t)] at’,
t—-At
(16)

where n(f) is the noise and A4 cos w,t is the large unmodu-
lated, but properly phase shifted, signal added in at the
receiver input. The term proportional to 4° gives a negli-
gible output after integration, so the dominant contri-
bution is

24 f m(t’) cos wot’[m(t’) cos wet’ + n(¢)] dr’,
t—At
(17




which is just the optimum filtering. Note that without
the addition of 4 cos wot cross terms of the noise with
itself and with the signal would come through the low-pass
filter and degrade the signal-to-noise in proportion to the
square root of the ratio of the IF bandwidth to the low-
pass filter bandwidth.

This same detection scheme can be used for waveforms
other than pure sinusoids; the signal-to-noise will still
be the optimum if non-additive sources of noise, such as
gain fluctuations, are negligible. We have in fact achieved
the theoretical limit with the above circuit.

5. Sample preparation and mounting

The requirements on the sample are rather severe. It
should be about 1 X 1 X 0.01 cm in size, work- and
strain-free in order to minimize collision damping, with
faces smooth and parallel to about 2 microns. Conven-
tional grinding and polishing techniques cannot be used
since bismuth is very soft. Success has been achieved by
etching with glacial acetic acid and concentrated nitric
acid on Dextilose paper in a manner similar to that used
by Sullivan'® for GaAs. The resulting surface is shiny,
but slightly rough (~0.5 micron), and rather flat. Another
technique which has been used is that of growing single-
crystal slabs to size between microscope slides on a hot
stage.”® The surfaces are flat, but show some dimples that
seem to come from adsorbed gas.

In order to avoid straining, the sample is mounted on a
thicker oriented bismuth frame, which is soldered with a
Bi-Cd solder onto a metal plate inserted into the wave-
guide. The metal structure is of type 310 stainless steel,

Figure 3. Diagram showing Landau level forma-
tion in a magnetic field, with the energy
plotted against the velocity parallel to
the magnetic field. Dotted line shows a
value of the phase velocity v, for which
there will be no Landau damping.
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which has the same total thermal expansion as bismuth®
between 4.2° and 300°K.

6. Discussion of results

No indication has been found thus far of a transmitted
acoustic plasma wave, despite the use of both magnetic
fields and crystallographic orientation to enhance the
coupling. The difficulty may lie in a degradation of = by
the sample preparation or mounting procedure. A check
at larger longitudinal magnetic fields showed that the
effective 7 for Alfvén wave propagation was only 5 X 107
sec, whereas the starting bismuth crystal had a residual
resistivity ratio (Rso0°/R4.2°) of about 200, corresponding
to a much larger 7. This problem is now being investigated.

A transmitted wave has been seen, however. It is very
weak (190-200 db transmission loss), and over the fre-
quency range 8.8 to 9.8 Gc¢/sec it has a phase velocity near
10% cm/sec, about an order of magnitude greater than
that expected for the acoustic mode. More work will be
required to make a precise measurement, but these pre-
liminary results are suggestive of a wave travelling ap-
proximately at the Fermi velocity of the electrons. If this
is so, two possibilities come to mind. One is the long,
non-exponential tail on the transverse skin depth excita-
tion, which was derived theoretically by Reuter and
Sondheimer."* The other is a zero-sound wave, which
Gorkov and Dzyaloshinskii’® have recently discussed for
metals. The latter showed that spin-dependent oscillations
should exist for vanishingly small Fermi-liquid correc-
tions, while spinless waves should exist in this limit if
certain symmetry conditions are met, which apparently
can be satisfied for propagation along the trigonal direc-
tion in bismuth. In this connection, it is worth mentioning
that, although Gorkov and Dzyaloshinskii suggest infra-
red as the most feasible range in which to see zero-sound
waves, the greater sensitivity and easier sample tolerances
in the microwave region probably favor that part of the
spectrum. An interesting question that is raised by this
work is the effect of the Fermi-liquid correction on the
non-exponential tail of the Reuter-Sondheimer solution.

7. Magnetic quantum effects

Classically or semiclassically there is no effect of a longi-
tudinal magnetic field on longitudinal waves. However,
quantum mechanically the field produces a series of one-
dimensional Landau sub-bands, as shown in Fig. 3 for a
simple parabolic band. If 4w, > kT and w .7 >> 1, so that
the Landau levels are well formed, one should expect
giant oscillations as a function of magnetic field to occur
in the Landau damping of the acoustic plasma wave, just
as has been predicted®™ and recently seen™ in ultrasonic
attenuation in metals. The reason is simply that Landau
damping will be present only if there are electron states
at the Fermi surface with a velocity in the propagation
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direction equal to the phase velocity of the wave. For the
case shown by the dotted line in Fig. 3 no attenuation
can occur.

In addition to this effect it may be possible for a large
longitudinal magnetic field to create one or more lightly
damped acoustic modes in a one-carrier plasma, such as
a metal. In a sense each Landau sub-band acts as a sepa-
rate carrier; those with v > v, give a positive contri-
bution to e, while those with v, < v, give a negative
contribution, with the magnitude of ¢ becoming very large
forvy v,,.23 Hence, just as in a multicomponent plasma,
there will be (n — 1) acoustic plasma waves when there
are n Landau sub-bands intersecting the Fermi surface,
the phase velocities of the waves being interspersed be-
tween the sub-band Fermi velocities. Of course, for a
nonzero temperature and a finite 7 most of these waves
will be strongly damped, but the ones with intermediate
phase velocities are the most weakly damped and may be
observable. As the applied field approaches zero, these
modes become infinitely dense and go over into the van
Kampen modes.”® In fact this can be used as a physical
argument for the existence of the van Kampen modes as
an alternative to the usual electron beam approach.26
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Discussion

R. Bowers: How are you proposing to couple transverse waves
to the longitudinal acoustic plasma wave?

A. L. McWhorter: 1 am sorry that I did not have time to discuss
this point, but it is covered in the written form of the paper.
First of all, except when the propagation is exactly along a
symmetry direction, an acoustic plasma wave in bismuth will
actually have transverse components to which an external
transverse wave can directly couple. In addition, in a finite
sample the boundary conditions will produce transverse com-

ponents, or one can apply a small magnetic field to mix the
transverse and longitudinal waves.

D. Pines: Can one detect the existence of the acoustic plasma
wave by using ultrasonic attenuation?

McWhorter: 1 do not think so, but I have not made any cal-
culations. The coupling between the acoustic plasma wave and
the sound wave should be small because of the large difference
in their velocities.
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