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Abstract: A l f v h  wave propagation in single  crystal  bismuth  has  been  studied  as a function of magnetic 

field to 105 kilogauss for frequencies between 13 and 18 kMc/sec. Small deviations from a linear depend- 

ence of wave velocity  on  magnetic field are found and are interpreted as quantum oscillations in the 

mass  density of carriers.  Theory and experiment are compared for the  magnetic field along a bisectrix 

axis and along a two-fold axis.  Good agreement is found for the  first  case, but significant  discrepancies 

exist for the magnetic field along a two-fold axis. 

Introduction 

AlfvCn waves are magnetohydrodynamic waves which 
propagate  in a magnetic field in a plasma of high  con- 
ductivity consisting of  equal numbers of mobile positive 
and negative carriers. Their existence and properties were 
first predicted by AlfvCn.' Experiments to verify this  pre- 
diction have been attempted in gaseous  plasma^"^ and 
in liquid  metal^.^'^'^ In  both cases there are  many experi- 
mental difficulties which prevent an accurate  comparison 
between theory and experiment. A compensated semi- 
metal  such as bismuth or antimony provides a very well 
defined medium  in which the  propagation  of AlfvCn waves 
can  be  studied and theory and experiment compared, as 
has been proposed by Buchsbaum and Galt.' The first 
direct  observation of AlfvCn wave propagation in a solid 
was by  william^.^ Other work  on bismuth has been re- 
ported by Kirsch and  Khaikin et a1.,l0 and 
Bartelink." AlfvCn wave propagation  in antimony has 
been observed by Williams.12 It is  believed that  the present 
experiments provide the clearest experimental observa- 
tion  of AlfvCn waves, and  the best fit between theory and 
experiment of  any  of  the  attempts  to observe AlfvCn wave 
behavior. 

In  the present paper we emphasize deviations from  the 

an t im~ny:~  both  from the viewpoint of verifying that  true 
AlfvCn wave behavior is being observed and  also  in  order 
to  obtain information about  the  band structures of these 
materials. 

Theory 

A simple theory which illustrates the properties of AlfvCn 
waves in a completely classical situation is presented 
here. This treatment  appears  in  many places in the 
literat~re.'~*'~~"  The  equation  of  motion for n carriers 
of charge e and effective mass m* in a magnetic field H is 

nem* dv /d t  = ne2(E + v X H/c) - nem* v / r .  (1) 

Here nev = J, the current density, r is the scattering  time, 
and  the  other symbols have  their usual meaning. If, for 
simplicity in  the final result, we take H to  be  in  the z 
direction and circularly polarized microwave radiation 
propagating  along the z axis, this equation may be solved 
for the  current J. Since J = d. E, we can  obtain  the 
tensor conductivity d, and  thus  the effective dielectric 
constant 

simple theory  for AlfvCn waves, and  attribute these devia- serf = sl - 4aid/w. (2) 
tions to periodic  variations in  the  total number of carriers 
in bismuth with magnetic field. Other  papers will describe When one  obtains  the conductivity from equation (1) 
in  more detail the study of AlfvCn waves in  bismuth and under these conditions,  there follows 
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If (w - w , ) ~  >> 1, one  obtains 

€ , I f  = ez + wa'/w(wc - 4 ,  (4) 

where w, is the classical plasma angular frequency, given by 

wD2 = 4?me2/m*, ( 5 )  

for the single group  of carriers  under  consideration at 
the moment. 

For low magnetic fields and microwave frequencies 
w, >> w and w, >> w,, and  the lattice dielectric constant is 
negligible; that is, the displacement current  can  be neg- 
lected. When w, = w the effective dielectric constant 
changes sign. At this point  the material passes from 
metallic 'behavior, with a negative dielectric constant  and 
thus  an imaginary refractive index, to dielectric behavior, 
with a positive dielectric constant and a real refractive 
index. Of course, the  point  at which this  transition  occurs 
is the cyclotron  resonance frequency as studied by Galt 
et a1.14 

If  one increases the magnetic field, so that w ,  > w, 
one finds that electromagnetic radiation  can propagate in 
the medium. For a compensated material  such as bismuth 
with equal  numbers of electrons and holes this is  an 
Alfvtn wave, as pointed out by Buchsbaum and Galt.' 
The effective dielectric constant for a medium with equal 
numbers of electrons and holes can  be calculated using 
the results of Eq. (4). If one takes a term like the second 
term  in Eq. (4) for  each group  of carriers,  the result is 

2 2 

€,If = € 2  + U P ,  + %h 
(6) 

w ( w c e  - w )  w ( w c h  - a)' 

where w ,  and w , h  are  the cyclotron frequencies of elec- 
trons  and holes and w,, and w p h  are  the electron and hole 
plasma frequencies. Thus ape2 = 4?me2/rn,*, where n e  
is the number of electrons and me* their effective mass. 
Also, w,, = -eH/rn,*c and w,,, = +eH/rnh*c. The 
present treatment assumes isotropic masses. 

For w ,  > w, one  can expand  the  denominators in Eq. 
(6) to  obtain 

€ * I f  = € 2  + 3% 1 + - + w 

wwc 2 {  e w,, 1 
+ %  1 + w +  .. .  ' ( J c h  

} (7) 
W a c  h 

which yields, when the values of wl)c2, up:, w c ,  and w e  h 

are substituted, 

For a compensated  material,  the  second  term, which de- 
scribes Helicon wave behavior,17 vanishes. The  third 
term is c2/ua2,where u ,  is the Alfvtn wave velocity, given by 

v,' = ~ ~ / 4 7 r ( n ~ m , *  + nhmh*>.  (9) 

Alfvtn has proposed a simple mechanical model for the 
behavior of these waves.l'lR Obviously for an anisotropic 
material such as bismuth  the mass density expression, 
(nerne* + n h m h * ) ,  will be more complex, but  the general 
physical model holds and, in  particular, the linear de- 
pendence of effective dielectric constant  on 1/H2 and its 
independence of frequency remain. These are  the two 
features which the  propagation  of  the observed wave 
must  show if it is to be considered an  Alfvh wave. 

Figure I Schematic diagram of the  sample  holder 
arrangement. The entire region was  evacu- 
ated and operated at an exchange gas pres- 
sure of He of approximately 20 p Hg. 
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Figure 2 Interference fringes at 13.54 kMc/sec in 
a sample of bismuth with the  magnetic 
field normal to the surface and parallel 
to a bisectrix  axis. .These are "leakage" 
fringes-interference between the micro- 
waves leaking  around  the sample and  those 
which  have passed once through the  sample 
(see  text) .  

Experimental 

Figure 1 shows the experimental arrangement for the 
AlfvCn  wave experiments on bismuth. In all of the experi- 
ments  described in this  work the magnetic field  is  normal to 
the  sample  surface, but experiments  have also been per- 
formed  with the magnetic field parallel to the sample 
surface.' 

Microwave radiation is  incident on the sample  surface 
from  above. 12-18 kMc/sec was  chosen for the  microwave 
frequency in order to have UT > 1 but still  allow w ,  > w 
to be  reached at reasonable  magnetic fields. The radiation 
transmitted through the  sample  is  detected using a  bolome- 
ter  cut  from  a carbon resistor  similar to that used by  Boyle 
and Rodger&'  in the infrared. The microwaves  were  ampli- 
tude  modulated at 27 cps, and the bolometer  signal fed to 
a 27 cps,  Baird  Atomic  coherent  detector.  A  more  detailed 
discussion of the experimental  arrangement will  be pub- 
lished e1~ewhere.l~ 

We find  interference  fringes, or intensity  maxima,  in 
the signal transmitted, which can  be  called  geometric 
resonances or Fabry-Perot type  of  interference  fringes. 
The optical thickness  of the sample  varies  with  magnetic 
field and thus a  series  of  fringes are observed.  These  fringes 
are formed by radiation reflected  back and forth between 
the  plane  parallel  faces  of the sample.  Also  a  certain 
amount of  microwave  power  leaks around the sample, 
and leads to an interference pattern with the signal  which 

278 has  made  one  pass through the sample.  These  fringes  have 

Figure 3 Plot of fringe index as a function  of 1/H 
for the data of  Fig. 2. The solid line is a 
least squares line through  the data points. 

twice the period of the Fabry-Perot fringes and cause little 
confusion.  They will  be  called  "leakage"  fringes in this 
paper. 

The optical  thickness of the sample  is  calculated  di- 
rectly  from the refractive  index 7, which  is  equal to 
e,,,$. If E ~ < < C ~ / U , ~ ,  then q = c/o, where u,, the AlfvCn 
velocity for an anisotropic medium,  is given  by u,  = 
H/(4amo)' [nf(m*)]'. Here m, is the free  electron  mass 
and f(m*) is  a function of the effective  masses  in units 
of the free  electron  mass which can  be  calculated  from 
the magnetoconductivity tensor." nf(m*) is the mass 
density  for the anisotropic case which replaces the simple 
expression in E q .  (8). 

The  interference  relationship is NXo = 2d7, where X, 
is the free  space  wavelength and N the fringe  index, or 
number of half  wavelengths in a  sample  thickness. The 
cos 8 term  usually found in such  a  formula  is  set  equal 
to 1 because in a  medium of very  high refractive  index 
the propagation is  normal to the  sample  surface.  Then 
we  find 

N = (2d/~o)(4amo)~(c /~) [nf (m*) l~ ,  (10) 

N = ( A / f m - ( n * ) l i ,  (1 1) 

or 

where A contains all  of the constants. Therefore  one 
expects that if  fringe  index N is plotted as a  function of 
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1/H a straight line should be obtained whose slope is 
A [nf(m*)li. For some of these experiments' excellent 
straight line behavior is found. We also find that the 
effective refractive index has no frequency dependence, 
and thus  true AlfvCn wave behavior is demonstrated. 

Figure 2 shows typical experimental data taken with 
the magnetic field normal to the sample surface and 
parallel to a bisectrix axis. Arbitrarily the  peak at highest 
field is assigned a fringe index of  one, and fringe index 
is plotted as a function of 1/H. This is shown in Fig. 3. 
Here is found the first indication of the deviations that 
are of interest in this paper. Small deviations from 
straight line behavior can be seen. This  orientation 
of crystal axis with respect to the magnetic field results in 
the largest magnitude of this effect. The precision of  the 
data is actually better than  that indicated in Fig. 3. To 
demonstrate this, a least-squares straight line was drawn 
through the points in Fig. 3 and the vertical deviations of 
the data  points from straight-line behavior was plotted as 
a function of 1/H. This is shown in Fig. 4. A smooth, al- 
though complex, curve can be drawn  through these points. 

To account for this behavior it  has been assumed that 
the mass density, nf(m*), is varying with magnetic field 
in an oscillatory way, related to the  de  Haas - van Alphen 
effect. However, these experiments measure a carrier mass 
density, which will  be sensitive to changes in the position 
of  the  Fermi surface, rather than changes in the density 
of states at  the Fermi surface. The  theory which Smith 

Figure 4 Plot  of  the deviations of  the data points 
in Fig. 3 from the  least  squares line as a 
function of 1 /H. Deviations are measured 
in fractions of  a fringe. 
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et aLZo presented earlier at this conference yields directly 
the value of the Fermi energy as a function of magnetic 
field for bismuth, and therefore  can be used to predict mass 
densities for  comparison with these experiments. 

In order  to compare  the experimental data with the 
theory, Eq. (1 1) is rearranged to yield : 

r z j ( r n * )  = ( N H / A y .  (12) 

One  should  note that this assumes a knowledge of the 
absolute fringe index. For the first set of  data to be shown, 
this has been chosen to fit the  shape  of  the highest field 
data. An error in this index will not affect the conclusions 
to be drawn in a major way. Its predominant effect  is to 
shift  the  data curves vertically without changing their 
shape, except at the highest fields. 

Fig. 5 shows the calculated Fermi energy for bismuth 
with the magnetic field parallel to the bisectrix direction, 
as a function of 1/H, as calculated using the program of 
Smith et a1." There are four  major peaks in the Fermi 
energy before it  drops drastically at high magnetic fields. 
From this  can be obtained a mass density as a function 
of magnetic field. The calculation includes the effects of 
non-parabolic bands. The calculated mass densities are 
compared in Fig. 6 with those obtained from the data 
using E q .  (12). Two theoretical curves are given. One 
shows the calculated mass densities for Smith's set of 
parameters, set 52, and the second for set 53, a small 
modification of set 52. The vertical fit is not significant, 

Fizure 5 Plot  of calculated F ermi en 
Y ergy as a func- 

tion of 1/H for the magnetic field paral- 
lel to a bisectrix  axis. 
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Table 1 Summary  of parameters in sets 52 and 
53 used  to calculate  the theoretical curves 
in Fig. 6. For the electron bands the  effective 
mass at the top of the  band  is  related to  that 
at the  bottom  by the  relation m,,, = [ I  + 
(2EF / E , ) ]  mbot. For  details of the calcula- 
tion, see Reference 20. 

~~ ~~ 

Effective masses (mo as unit) 
Electrons:  bottom of band top of band 

ml = 0.00113 0.00521 
m2 = 0.26 1.20 
m3 = 0.00443 0.0204 
m4 = -0.0195 - 0.090 

Holes: MI = 0.064 
M3 = 0.69 

Set 52 Set 53 
EG = 15.3 X eV 14.4 X eV 
EF = 27.6 X eV 26.0 X eV 
Eo = 38.5 X eV 36.0 X eV 
nh = 2.75 X lo” cm-3 nh = 2.55 X IO*’ 

Figure 6 Plot  of exDerimental and theoretical mass 
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density fdr the  magnetic field parallel to 
a  bisectrix  axis. The high field  data was 
taken in  a Bitter  solenoid, the low field data 
in a superconducting  solenoid.  The solid  and 
dotted  curves are calculated using the the- 
ory of Smith and parameter sets 52 and 53. 
The  data  points are  calculated using Eq.  
( 1 2 ) .  The vertical fit is not significant be- 
cause of the  uncertainty in absolute fringe 
index as discussed in the text. 
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because of the uncertainty in fringe  index, but the fit  in 
the position of the valleys in the mass  density  curves  is. 
Table 1 summarizes the parameters used in these  sets. 
On the basis of the data for this orientation, it seems that 
the fluctuations  can  be  accounted for as a mass  density 
fluctuation  associated with variation in the position of the 
Fermi surface as a function of magnetic  field. 

With the magnetic field parallel to a two-fold  axis of 
symmetry it is found that AlfvCn  waves with the E field 
of the microwaves  parallel to either the three-fold or the 
bisectrix  axis are suitable for handling in this  manner. 
With the magnetic field along the bisectrix  direction,  only 
one  of  the two  possible  waves  is convenient.  The other 
has a very long  period, and is harder to analyze.  Figure 7 
shows data to 105 kilogauss  with the magnetic  field  parallel 
to a two-fold  axis.  These are pure Fabry-Perot type  fringes. 
The data with the microwave  field  parallel to the three- 
fold  axis and the E field parallel to the bisectrix  axis  is  also 
good, and is not shown.  Figure 8 is a plot of fringe  index 
as a function of 1/H for the data of Fig. 7, and also 
for data at another frequency. The peaks at 1/H = 
2.0 X (50 kilogauss) are  at the same  field for both 
frequencies.  This  permits the statement that the fringe 
indices for these  two points must  be in the ratio of the 
two  frequencies,  which  is 14’:ll (19:15 and 9:7 are other 
possible  choices). Mass densities for these three possible 
choices of absolute fringe  index will  be plotted in the data 
figures. 

Figure 9 shows the Fermi  energy as a function of 1/H 
for the magnetic field parallel to a two-fold  axis.  Two 
major peaks  occur  before it falls off at high  fields.  Figure 
10 gives the number  of carriers in the individual bands 
as obtained in this  calculation.  The important point to 
note here  is that the number  of  electrons in the band Ni 
goes down at high  field.  This  is a general feature of the 
model and does not depend on the specific parameters 
chosen. 

Figure 11 is a plot  similar to Figure 6 of mass  density 
as a function of 1/H, for the magnetic  field  parallel to a 
two-fold  axis and the microwave  electric  field  parallel to 
a three-fold  axis. The data are plotted for three choices 
of fringe  index at the highest  field (Nl = 3, 7, 12) as dis- 
cussed  above. The theoretical  mass  density  is the solid 
line.  At  high  magnetic  fields, the finite lattice dielectric 
constant should  be  included in the theoretical  curve, and 
for e l  = 100 the actual curve  would  follow the dashed 
line. The data curve  for Nl = 3 can be  ruled out on these 
grounds. The other two data curves  have  similar  shapes, 
and rise at high  fields  while the theoretical  curve drops 
until about 50  kilogauss. The shape of the theoretical 
curve  is  determined by the fact that the number  of carriers 
in band N3’ is dropping, and this band contributes the 
term $ m2, which is the dominant term in the  mass  density 
for  this orientation. 
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Figure 7 Fabry-Perot type  interference fringes in 
bismuth at 16.61 kMc/sec with the  mag- 
netic field parallel to a two-fold axis. 
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Figure 9 Plot  of  calculated  Fermi  energy as a func- 
tion of 1/H for the  magnetic field par- 
allel to a two-fold axis. 

Figure 8 Plot of fringe index as a function of 1/H 
for the data of Fig. 7 and also data at 
13.04 kMc/sec. 
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Figure IO Plot of the  number of carriers in each 
of the  bands in bismuth vs 1/H for the 
magnetic field parallel to a two-fold 
axis. 
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Figure 12 is a plot of mass  density as a function of 1/H 
for the magnetic field along a two-fold  axis and the micro- 
wave electric field parallel to a bisectrix  axis.  Again three 
choices  of absolute fringe  index are shown.  Ruling out It is found that with the magnetic field along a bisectrix 
the choice Nl = 5 as before,  one  is  left  with Nl = 10 axis the valleys in the mass  density  curve can be  accounted 
or 15. These  have  similar  shapes,  which do not agree  with  for  using a two band non-parabolic model for the varia- 
the valleys of the theoretical  curve. In fact, if  one  stretches  tion in Fermi  energy  with  magnetic  field. It is  felt that 
a point, there are indications  of broad humps  where  the  the  basic  fact  is  established, that the deviations  from 
valleys should  occur. straight line  behavior in the AlfvCn  wave plots are due “281 
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Figure 11 Plot  of experimental and theoretical 
mass  density for bismuth with the mag- 
netic field parallel to a two-fold axis 
and the microwave electric field parallel 
to a three-fold axis. The solid curve is 
calculated using Smith's theory.  The  dotted 
curve  indicates the modification of  this 
curve at high magnetic field for  an  as- 
sumed  lattice  dielectric  constant e,  = 100. 
The three sets of data points are plotted 
for the choices shown of fringe  index at 
highest field. 

to quantum fluctuations in the  Fermi  surface  leading to 
fluctuations in the mass  density, both because n changes 
and also  because the electron masses change  since the 
bands are not parabolic. 

However,  when the magnetic field  is  along a two-fold 
axis,  theory and experiment do not agree, and the dis- 
agreement  is not of a character to be  resolved by small 
changes in the parameters used.  Since  these parameters 
have  been  used to fit very detailed de Haas - van  Alphen 
data:' no gross variations are allowed. 

Several  possible  ways of accounting  for  this difficulty 
are under  consideration. Because of the good  fit €or the 
bisectrix data,  it is  believed the method  of  analysis  is 
valid. The postulation of a third band, the famous heavy 

282 holes, which might  lie just at or above the Fermi surface 

at zero  field  is  being  studied as one way out of the difficulty. 
One can also  consider  various  complicated  effects,  such 
as field  dependence  of the overlap or gap  energies  or the 
band shape. Any such  ideas,  however,  must not destroy 
the agreement between the present  model of the band 
structure and other data on  bismuth. 
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Discussion 
Unidentified questioner: What fraction of the incident micro- 
wave energy was converted to  Alfvh waves, and what  was the 
wavelength  of the  latter? 

G. A.  Williams: The fraction converted depends upon the 
magnetic field. Except at the highest fields, reflection coefficients 
are large and  the conversion is quite small. At low fields, it is 
a question of  reflection from  a material whose effective dielectric 

- constant is about 10,OOO. At the highest magnetic field there were 
5 to 10 half wavelengths in a sample 3 mm thick. The wave- 
length varies linearly with magnetic field. 

M .  H. Cohen: Was the  departure of the energy bands from 
parabolicity taken into account not only in  the theory of the 
Fermi energy and concentration but also in the theory of the 

dielectric constant of the charge carriers? 

G. E .  Smith: In calculating the mass density of the carriers, 
nonparabolicity and the resulting change of the effective mass 
were taken  into account. 

R.  N. Dexter: To what extent did you force the theoretical fit 
to your data by assuming that no helicon term contributed? 

Williams: The low-field data says that these samples are com- 
pensated to within a percent or so. That is to say, there is no 
frequency dependence to the Alfvbn  velocity. At high  fields it 
would be more difficult to prove that point from the data. 
Because  of curvature in  the experimental curves at high  fields, it 
is more difficult to compare data  at various frequencies. 
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