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Alfvén Wave Propagation in Bismuth:
Quantum Oscillations of the Fermi Surface

Abstract: Alfvén wave propagation in single crystal bismuth has been studied as a function of magnetic
field to 105 kilogauss for frequencies between 13 and 18 kMc/sec. Small deviations from a linear depend-
ence of wave velocity on magnetic field are found and are interpreted as quantum oscillations in the
mass density of carriers. Theory and experiment are compared for the magnetic field along o bisectrix
axis and along a two-fold axis. Good agreement is found for the first case, but significant discrepancies

exist for the magnetic field along a two-fold axis.

Introduction

Alfvén waves are magnetohydrodynamic waves which
propagate in a magnetic field in a plasma of high con-
ductivity consisting of equal numbers of mobile positive
and negative carriers. Their existence and properties were
first predicted by Alfvén." Experiments to verify this pre-
diction have been attempted in gaseous plasmas™® and
in liquid metals.>*® In both cases there are many experi-
mental difficulties which prevent an accurate comparison
between theory and experiment. A compensated semi-
metal such as bismuth or antimony provides a very well
defined medium in which the propagation of Alfvén waves
can be studied and theory and experiment compared, as
has been proposed by Buchsbaum and Galt.® The first
direct observation of Alfvén wave propagation in a solid
was by Williams.” Other work on bismuth has been re-
ported by Kirsch and Miller,>® Khaikin et al.,' and
Bartelink.”" Alfvén wave propagation in antimony has
been observed by Williams."* It is believed that the present
experiments provide the clearest experimental observa-
tion of Alfvén waves, and the best fit between theory and

- experiment of any of the attempts to observe Alfvén wave

behavior.

In the present paper we emphasize deviations from the
simple theory for Alfvén waves, and attribute these devia-
tions to periodic variations in the total number of carriers
in bismuth with magnetic field. Other papers will describe
in more detail the study of Alfvén waves in bismuth and

* Bell Telephone Laboratories.
T Present address: Physics Department, Cornell University.

IBM JOURNAL * JULY 1964

antimony,"® both from the viewpoint of verifying that true
Alfvén wave behavior is being observed and also in order
to obtain information about the band structures of these
materials.

Theory

A simple theory which illustrates the properties of Alfvén
waves in a completely classical situation is presented
here. This treatment appears in many places in the
literature."*™*"*® The equation of motion for n carriers
of charge e and effective mass m* in a magnetic field H is

nem* dv/dt = ne’(E + v X H/c) — nem* v/r. (1)

Here nev = J, the current density, 7 is the scattering time,
and the other symbols have their usual meaning. If, for
simplicity in the final result, we take H to be in the z
direction and circularly polarized microwave radiation
propagating along the z axis, this equation may be solved
for the current J. Since J = ¢-E, we can obtain the
tensor conductivity 6, and thus the effective dielectric
constant

g = £, — 4mid/w. 2)

When one obtains the conductivity from equation (1)
under these conditions, there follows
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If (w— w,)T>> 1, one obtains

€t — € + w,,z/w(wc _ O)), (4)
where w, is the classical plasma angular frequency, given by
w,. = dane’/ m*, (5)

for the single group of carriers under consideration at
the moment.

For low magnetic fields and microwave frequencies
w, > w and w, 3> w,, and the lattice dielectric constant is
negligible; that is, the displacement current can be neg-
lected. When w, = w the effective dielectric constant
changes sign. At this point the material passes from
metallic behavior, with a negative dielectric constant and
thus an imaginary refractive index, to dielectric behavior,
with a positive dielectric constant and a real refractive
index. Of course, the point at which this transition occurs
is the cyclotron resonance frequency as studied by Galt
et al."

If one increases the magnetic field, so that w, > w,
one finds that electromagnetic radiation can propagate in
the medium. For a compensated material such as bismuth
with equal numbers of electrons and holes this is an
Alfvén wave, as pointed out by Buchsbaum and Galt.®
The effective dielectric constant for a medium with equal
numbers of electrons and holes can be calculated using
the results of Eq. (4). If one takes a term like the second
term in Eq. (4) for each group of carriers, the result is

(6)
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where w,, and w,, are the cyclotron frequencies of elec-
trons and holes and w,, and w,, are the electron and hole
plasma frequencies. Thus ao,,,2 = 41rn,e2/m,*, where n,
is the number of electrons and m,* their effective mass.
Also, w,, = —eH/m/*c and w,, = -eH/m*c. The
present treatment assumes isotropic masses.

For w. > w, one can expand the denominators in Eq.
(6) to obtain

Gefr=fz+£2’_{1+i+ }
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which yields, when the values of w,.%, w,s’, w.., and w,
are substituted,

4 4rc®
€t = € e (m — n) + 7cm (rom * 4 mymy*) .
Hu H (8)

For a compensated material, the second term, which de-
scribes Helicon wave behavior,'” vanishes. The third
termis ¢ /v, where v, is the Alfvén wave velocity, given by

v, = H'/4r(n,m* + nym,*). (9)

Alfvén has proposed a simple mechanical model for the
behavior of these waves.""'® Obviously for an anisotropic
material such as bismuth the mass density expression,
(n,m,* 4+ n,m,*), will be more complex, but the general
physical model holds and, in particular, the linear de-
pendence of effective dielectric constant on 1/H? and its
independence of frequency remain. These are the two
features which the propagation of the observed wave
must show if it is to be considered an Alfvén wave.

Figure I Schematic diagram of the sample holder

arrangement. The entire region was evacu-
ated and operated at an exchange gas pres-
sure of He of approximately 20 u Hg.
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Figure 2 Interference fringes at 13.54 kMc/sec in
a sample of bismuth with the magnetic
field normal to the surface and parallel
to a bisectrix axis. These are “leakage”
fringes—interference between the micro-
waves leaking around the sample and those
which have passed once through the sample
(see text).

Experimental

Figure 1 shows the experimental arrangement for the
Alfvén wave experiments on bismuth. In all of the experi-
ments described in this work the magnetic field is normal to
the sample surface, but experiments have also been per-
formed with the magnetic field parallel to the sample
surface.”

Microwave radiation is incident on the sample surface
from above. 12-18 kMc/sec was chosen for the microwave
frequency in order to have wr > 1 but still allow w, >
to be reached at reasonable magnetic fields. The radiation
transmitted through the sample is detected using a bolome-
ter cut from a carbon resistor similar to that used by Boyle
and Rodgers'® in the infrared. The microwaves were ampli-
tude modulated at 27 cps, and the bolometer signal fed to
a 27 cps, Baird Atomic coherent detector. A more detailed
discussion of the experimental arrangement will be pub-
lished elsewhere.

We find interference fringes, or intensity maxima, in
the signal transmitted, which can be called geometric
resonances or Fabry-Perot type of interference fringes.
The optical thickness of the sample varies with magnetic
field and thus a series of fringes are observed. These fringes
are formed by radiation reflected back and forth between
the plane parallel faces of the sample. Also a certain
amount of microwave power leaks around the sample,
and leads to an interference pattern with the signal which
has made one pass through the sample. These fringes have
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Figure 3 Plot of fringe index as a function of 1/H
for the data of Fig. 2. The solid line is a
least squares line through the data points.

twice the period of the Fabry-Perot fringes and cause little
confusion. They will be called “leakage” fringes in this
paper.

The optical thickness of the sample is calculated di-
rectly from the refractive index %, which is equal to
€t If €, K & /v,%, then 9 = ¢/v, where v,, the Alfvén
velocity for an anisotropic medium, is given by v, =
H/(41rm0)) [nf(m*)]!. Here m, is the free electron mass
and f(m*) is a function of the effective masses in units
of the free electron mass which can be calculated from
the magnetoconductivity tensor.'® nj(m*) is the mass
density for the anisotropic case which replaces the simple
expression in Eq. (8).

The interference relationship is N\, = 2dny, where )\,
is the free space wavelength and N the fringe index, or
number of half wavelengths in a sample thickness. The
cos @ term usually found in such a formula is set equal
to 1 because in a medium of very high refractive index
the propagation is normal to the sample surface. Then
we find

N = (2d/\o)(drmo)(c/ H)[nf(m®)], (10)
or
N = (4/H)nfn)], (11)

where A contains all of the constants. Therefore one
expects that if fringe index N is plotted as a function of




1/H a straight line should be obtained whose slope is
A [nf(m*)]%. For some of these experiments’ excellent
straight line behavior is found. We also find that the
effective refractive index has no frequency dependence,
and thus true Alfvén wave behavior is demonstrated.
Figure 2 shows typical experimental data taken with
the magnetic field normal to the sample surface and
parallel to a bisectrix axis. Arbitrarily the peak at highest
field is assigned a fringe index of one, and fringe index
is plotted as a function of 1/H. This is shown in Fig. 3.
Here is found the first indication of the deviations that
are of interest in this paper. Small deviations from
straight line behavior can be seen. This orientation
of crystal axis with respect to the magnetic field results in
the largest magnitude of this effect. The precision of the
data is actually better than that indicated in Fig. 3. To
demenstrate this, a least-squares straight line was drawn
through the points in Fig. 3 and the vertical deviations of
the data points from straight-line behavior was plotted as
a function of 1/H. This is shown in Fig. 4. A smooth, al-
though complex, curve can be drawn through these points.
To account for this behavior it has been assumed that
the mass density, nf(m*), is varying with magnetic field
in an oscillatory way, related to the de Haas - van Alphen
effect. However, these experiments measure a carrier mass
density, which will be sensitive to changes in the position
of the Fermi surface, rather than changes in the density
of states at the Fermi surface. The theory which Smith

Figure 4 Plot of the deviations of the data points
in Fig. 3 from the least squares line as a
function of 1/H. Deviations are measured
in fractions of a fringe.
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et al.”® presented earlier at this conference yields directly
the value of the Fermi energy as a function of magnetic
field for bismuth, and therefore can be used to predict mass
densities for comparison with these experiments.

In order to compare the experimental data with the
theory, Eq. (11) is rearranged to yield:

nf(m*) = (NH/ A)*. (12)

One should note that this assumes a knowledge of the
absolute fringe index. For the first set of data to be shown,
this has been chosen to fit the shape of the highest field
data. An error in this index will not affect the conclusions
to be drawn in a major way. Its predominant effect is to
shift the data curves vertically without changing their
shape, except at the highest fields.

Fig. 5 shows the calculated Fermi energy for bismuth
with the magnetic field parallel to the bisectrix direction,
as a function of 1/H, as calculated using the program of
Smith et al.” There are four major peaks in the Fermi
energy before it drops drastically at high magnetic fields.
From this can be obtained a mass density as a function
of magnetic field. The calculation includes the effects of
non-parabolic bands. The calculated mass densities are
compared in Fig. 6 with those obtained from the data
using Eq. (12). Two theoretical curves are given. One
shows the calculated mass densities for Smith’s set of
parameters, set 52, and the second for set 53, a small
modification of set 52. The vertical fit is not significant,

Figure 5 Plot of calculated Fermi energy as a func-
tion of 1/H for the magnetic field paral-
lel to o bisectrix axis.

H (KG)
10
T S S— - :
28t Ef(B=0)
i,
26}

n
»
T

H/Y (BISECTRIX AXIS)
20}

FERMI ENERGY (meV)
n
n
T

14 L 1 ! 1 L
(o] 2 4 6 8 10 12 14 16 18

1/H (GAUSS™) x1073

279

ALFVEN WAVES IN BISMUTH




Table 1 Summary of parameters in sets 52 and
53 used to calculate the theoretical curves
in Fig. 6. For the electron bands the effective
mass at the top of the band is related to that
at the bottom by the relation m,,, = [I +
(2E; / Eg)] my,.. For details of the calcula-

tion, see Reference 20.

Effective masses (m, as unit)

Electrons: bottom of band top of band
m, = 0.00113 0.00521
my=0.26 1.20
ms; = 0.00443 0.0204
me = —0.0195 —0.090

Holes: M, = 0064
M,= 069

Set 52 Set 53

Eg = 153X 107% eV 14.4 X 107% eV

Ep = 276 X 1072 eV 26.0 X 107 eV

E, = 385X 107 eV 36.0 X 107 eV

n, = 275X 107ecm™ n, = 255X 107 em™?

Figure 6 Plot of experimental and theoretical mass
density for the magnetic field parallel to
a bisectrix axis. The high field data was
taken in a Bitter solenoid, the low field data
in a superconducting solenoid. The solid and
dotted curves are calculated using the the-
ory of Smith and parameter sets 52 and 53.
The data points are calculated using Eq.
(12). The vertical fit is not significant be-
cause of the uncertainty in absolute fringe
index as discussed in the text.

because of the uncertainty in fringe index, but the fit in
the position of the valleys in the mass density curves is.
Table 1 summarizes the parameters used in these sets.
On the basis of the data for this orientation, it seems that
the fluctuations can be accounted for as a mass density
fluctuation associated with variation in the position of the
Fermi surface as a function of magnetic field.

With the magnetic field parallel to a two-fold axis of
symmetry it is found that Alfvén waves with the E field
of the microwaves parallel to either the three-fold or the
bisectrix axis are suitable for handling in this manner.
With the magnetic field along the bisectrix direction, only
one of the two possible waves is convenient. The other
has a very long period, and is harder to analyze. Figure 7
shows data to 105 kilogauss with the magnetic field parallel
to a two-fold axis. These are pure Fabry-Perot type fringes.
The data with the microwave field parallel to the three-
fold axis and the E field parallel to the bisectrix axis is also
good, and is not shown. Figure 8 is a plot of fringe index
as a function of 1/H for the data of Fig. 7, and also

for data at another frequency. The peaks at 1/H =

2.0 X 107° (50 kilogauss) are at the same field for both
frequencies. This perriits' the statement that the fringe
indices for these two points must be in the ratio of the
two frequenecies, which is 14:11 (19:15 and 9:7 are other
possible choices). Mass densities for these three possible
choices of absolute fringe index will be plotted in the data
figures. ‘

Figure 9 shows the Fermi energy as a function of 1/H
for the magnetic field parallel to a two-fold axis. Two
major peaks occur before it falls off at high fields. Figure
10 gives the number of carriers in the individual bands
as obtained in this calculation. The important point to
note here is that the number of electrons in the band N;
goes down at high field. This is a general feature of the
model and does not depend on the specific parameters

5.0 -2.68
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1 e oo oo s Figure 11 is a plot similar to Figure 6 of mass density
B BIS AXiS as a function of 1/H, for the magnetic field parallel to a
‘o= A :"J.HSZU::::DE ATS 7 two-fold axis and the microwave electric field parallel to
\ fin®) = “ﬁmfm_z*“s] a three-fold axis. The data are plotted for three choices
| - I:z:: Zg :: of fringe index at the highest field (N, = 3, 7, 12) as dis-
=301 cussed above. The theoretical mass density is the solid
§ line. At high magnetic fields, the finite lattice dielectric
‘E constant should be included in the theoretical curve, and
a0l for €, = 100 the actual curve would follow the dashed
line. The data curve for N, = 3 can be ruled out on these
grounds. The other two data curves have similar shapes,
ol and rise at high fields while the theoretical curve drops
7 until about 50 kilogauss. The shape of the theoretical
curve is determined by the fact that the number of carriers
in band N,° is dropping, and this band contributes the
° l 1 !., L L ,Iz ,L lle L L term § m,, which is the dominant term in the mass density
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Figure 7 Fabry-Perot type interference fringes in
bismuth at 16.61 kMc/sec with the mag-
netic field parallel fo a two-fold axis.

Figure 8 Plot of fringe index as a function of 1/H
for the data of Fig. 7 and also data at
13.04 kMc/ sec.
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Figure 12 is a plot of mass density as a function of 1/H
for the magnetic field along a two-fold axis and the micro-
wave electric field parallel to a bisectrix axis. Again three
choices of absolute fringe index are shown. Ruling out
the choice N, = 5 as before, one is left with N; = 10
or 15. These have similar shapes, which do not agree with
the valleys of the theoretical curve. In fact, if one stretches
a point, there are indications of broad humps where the
valleys should occur.
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Figure 9 Plot of calculated Fermi energy as a func-
tion of 1/H for the magnetic field par-
allel to a two-fold axis.

Figure 10 Plot of the number of carriers in each
of the bands in bismuth vs 1/H for the
magnetic field paraliel to a two-fold

axis.
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Summary and Conclusions

It is found that with the magnetic field along a bisectrix
axis the valleys in the mass density curve can be accounted
for using a two band non-parabolic model for the varia-
tion in Fermi energy with magnetic field. It is felt that
the basic fact is ‘established, that the deviations from
straight line behavior in the Alfvén wave plots are due
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Figure 11 Plot of experimental and theoretical
mass density for bismuth with the mag-
netic field parallel to a two-fold axis
and the microwave electric field parallel
to a three-fold axis. The solid curve is
calculated using Smith’s theory. The dotted
curve indicates the modification of this
curve at high magnetic field for an as-
sumed lattice dielectric constant ¢, = 100.
The three sets of data points are plotted
for the choices shown of fringe index at
highest field.

to quantum fluctuations in the Fermi surface leading to
fluctuations in the mass density, both because n changes
and also because the electron masses change since the
bands are not parabolic.

However, when the magnetic field is along a two-fold
axis, theory and experiment do not agree, and the dis-
agreement is not of a character to be resolved by small
changes in the parameters used. Since these parameters
have been used to fit very detailed de Haas - van Alphen
data®® no gross variations are allowed.

Several possible ways of accounting for this difficuity
are under consideration. Because of the good fit for the
bisectrix data, it is believed the method of analysis is
valid. The postulation of a third band, the famous heavy
holes, which might lie just at or above the Fermi surface

WILLIAMS AND SMITH

at zero field is being studied as one way out of the difficulty.
One can also consider various complicated effects, such
as field dependence of the overlap or gap energies or the
band shape. Any such ideas, however, must not destroy
the agreement between the present model of the band
structure and other data on bismuth.
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Discussion

Unidentified questioner: What fraction of the incident micro-
wave energy was converted to Alfvén waves, and what was the
wavelength of the latter?

G. A. Williams: The fraction converted depends upon the
magnetic field. Except at the highest fields, reflection coefficients
are large and the conversion is quite small. At low fields, it is
a question of reflection from a material whose effective dielectric
constant is about 10,000. At the highest magnetic field there were
5 to 10 half wavelengths in a sample 3 mm thick. The wave-
length varies linearly with magnetic field.

M. H. Cohen: Was the departure of the energy bands from
parabolicity taken into account not only in the theory of the
Fermi energy and concentration but also in the theory of the

dielectric constant of the charge carriers?

G. E. Smith: In calculating the mass density of the carriers,
nonparabolicity and the resulting change of the effective mass
were taken into account.

R. N. Dexter: To what extent did you force the theoretical fit
to your data by assuming that no helicon term contributed?

Williams : The low-field data says that these samples are com-
pensated to within a percent or so. That is to say, there is no
frequency dependence to the Alfvén velocity. At high fields it
would be more difficult to prove that point from the data.
Because of curvature in the experimental curves at high fields, it
is more difficult to compare data at various frequencies.
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