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The Fermi Surface of Graphite

Abstract: Recent magnetoreflection measurements in pyrolytic graphite have been interpreted using the

magnetic energy levels obtained from the McClure-Inoue secular equation and the appropriate selection
rules for interband transitions. Combining these resulis with those of the de Haas - van Alphen effect, the
band parameters of the Slonczewski-Weiss model have been evaluated and the Fermi surface determined.
The magnetoreflection experiment indicates considerable warping of the Fermi surface, particularly for
holes. Further experiments to determine this warping more precisely are discussed.

The magnetoreflection technique has been recently ap-
plied to study the electronic band structure of graphite.'
Whereas, previously, at best only a few of the band param-
eters of graphite have been determined’ in a single experi-
ment, the magnetoreflection results have provided a
quantitative evaluation of most of the band parameters
of the Slonczewski-Weiss model in a single experiment.
For some of these band parameters, €.g. vs, 74 and A
using the notation of Ref. 2, quantitative values are now
available for the first time. With these new values of the
band parameters, the shape of the Fermi surface given
by McClure® and Nozitres*® was re-examined in a more
guantitative fashion.

The magnetic field dependence of the optical reflectivity
was measured on the best available pyrolytic graphite
samples,} which were mounted with the trigonal face ex-
posed. The light beam was almost normally incident to
this trigonal plane and the static magnetic field was
directed along the trigonal axis. A typical recorder trace
is shown in Fig. 1 for photon energy #w = 0.0945 eV and
T = 4°K. The oscillatory magnetic field dependence of
the reflectivity is attributed to interband transitions be-
tween quantized magnetic energy levels. The analysis of
the dependence of these oscillations on photon energy
and magnetic field provides us with a determination’ of
the band parameters A, vq, v1, ¥s and v..

Although these measurements were carried out on
pyrolytic graphite, there is reason to believe that the band
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parameters determined in the magnetoreflection experi-
ment are closely related to the actual band parameters
of single-crystal graphite. The pyrolytic graphite samples
used in the magnetoreflection experiment were heat
treated at 3600°C and one of these samples was prepared
at the same time and in the same manner as the samples
used in the resistivity and magnetoresistance measure-
ments of Klein, Straub and Diefendorf’ Such highly
stress-annealed pyrolytic graphite has been shown to
exhibit essentially single-crystal characteristics with re-
gard to carrier mobility, carrier concentration and dia-
magnetic susceptibility.®

In the magnetoreflection experiment, magnetic fields
above 10 kG restrict the electronic motion in the basal
plane to cyclotron orbits of radius <1000 A. There is
evidence that the mean free path for motion in the basal
plane is much larger than the cyclotron radius and is
limited not by boundary scattering of the crystallites but
rather by impurity and thermal scattering of the lattice.
Magnetoreflection oscillations in the best pyrolytic graph-~
ite material are observed even at room temperature, but
the line width of the oscillations decreases rapidly as the
temperature is lowered. A mean free path of /| = 1p is
estimated from the line width of the oscillations at liquid
helium temperature, and this value is consistent with the
mobility determination of Klein, Straub and Diefendorf.’
The electronic motion in the trigonal direction is limited
by microcracks, which are spaced approximately 1 u
apart.® The magnetoreflection experiment is sensitive only
to electrons moving in the infrared skin depth, which is
also ~ 1 u. Increasing the degree of crystalline perfection
of the pyrolytic graphite not only increases the amplitude
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Figure 1 Experimental traces of the oscillatory re-
flectivity of a pyrolytic graphite sample
in a magnetic field. Photons of energy
0.0945 eV are incident along the trigonal
axis, which is parallel to the magnetic field.
The scale for the differential reflectivity is
indicated. Interband transitions associated
with point K of the Brillouin zone are in-
dicated by n = integer. One member of the
series associated with point H is indicated
by B.

of the magnetoreflection oscillations but also slightly
changes the periodicity of the oscillations; the more per-
fect the pyrolytic graphite, the more closely its band
parameters approach the single-crystal values. The values
of the band parameters given in this paper were deter-
mined from measurements on a sample similar to those
used by Klein, Straub and Diefendorf.’

As is shown in Fig. 1, two types of oscillations are ob-
served in a typical magnetoreflection recorder trace. There
is a series of sharp, closely spaced oscillations which are
associated with interband transitions between the two E,
bands in the vicinity of point K in the Brillouin zone of
Fig. 2. In addition, a second series of broader, more
widely spaced oscillations are found, these being associ-
ated with interband transitions between the degenerate E,
bands and the degenerate E, and E, bands located in the
vicinity of point H in the Brillouin zone. Figure 3b illus-
trates the dependence of the energy E(§) of the four =
bands on crystal momentum along the Brillouin zone edge
HK, according to the band structure model of Slonczewski
and Weiss.” The dimensionless wave vector is defined as
£ = «x,co/2w. The location of the Fermi energy is indi-
cated by a dashed line, which encloses pockets of holes
and electrons in the vicinity of points K and H, respec-
tively. As we move in a layer plane away from the edge
at points K and H and towards the center of the Brillouin
zone, the dependence of E(4) on ¢ assumes the form given
in Figs. 3 a and 3c, respectively, in which the dimension-
less wave vector measured from the zone edge is used,
¢ = 24/3a, |x|. We note that the two E, bands are de-
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Figure 2 Brillouin zone for 3-dimensional graphite.
The gquantities a, and c, are, respectively,
the magnitudes of the primitive lattice vec-
tors in and perpendicular to the layer plane.
The Fermi level is located in the vicinity
of the edges HKH and H’'K'H'.

Figure 3 Dependence of the energy of the = bands
on wave vector, according to the band
structure model of Slonczewski and
Weiss. (a) Energy, E(c), versus dimension-
less wave vector o in the layer plane for k, =
0 (i.e. about point K). (b) Energy, E(§),
versus dimensionless wave vector & along
the edges HKH or HK'H'. (c¢) E(o) ver-

sus o in the layer plane for «, = w/c,
(about point H).
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generate only along the edges HKH and H’K’H’ and the
bounding planes k, = == w/c,, while bands E; and E,
are degenerate only in these bounding planes. When a
magnetic field is applied along the trigonal direction, each
of the four 7 bands shown in Fig. 3b splits into quantized
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Figure 4 Magnetic energy contours at 50 kG for
the four = bands in graphite calculated
from solution of the McClure-Inoue equa-
tion for the band parameters determined
by experiment. The Inoue notation is used
to label the levels. The band edges (H = 0)
are indicated by dashed curves.

harmonic oscillator type levels, which are solutions of the
McClure-Inoue determinantal equation’ and are labeled
by the quantum number /. The resulting magnetic energy
levels at H = 50 kG are given in Fig. 4 for the band
parameters deduced from experiment. The two groups of
magnetic levels which are involved in the interband tran-
sitions about point K, and associated with the two E,
bands of Fig. 3b, are represented in the region —0.5 <
£ < 0.5. As £ increases, approaching point H, the bands
E; and E, of Fig. 3b intersect. Interband transitions near
point H occur from the degenerate E,, E, levels to the
degenerate E; levels, illustrated in the extended zone
scheme of Fig. 4 for |£] > 0.5. Interband transitions at
point H obey the selection rules A/ = 1. The resonant
frequency for oscillations in this series at low and high
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magnetic fields are determined by the parameters A and v,,
respectively. Interband transitions at point K also obey
the same selection rules, but now applied to the two E;
bands. In the limit of high photon energies, the magnetic
energy contours about point K approach simple, para-
bolic, equally spaced levels. For fixed values of A and +,,
interband transitions in this limit are most sensitive to
the parameter vi, (vi/v.’) being proportional to the
reduced effective mass. In the low photon energy limit,
the unequal spacing of the energy levels for low quantum
numbers allows the evaluation of the band parameters v;
and v,, and to a lesser extent ;. The exact values of v;
and v, depend upon the magnitudes assigned to v,, v;
and A, while the evaluation of v; is influenced by the
values assigned to all the other parameters.

The magnetoreflection experiment, in principle, is also
sensitive to vy, but only in the limit of very low photon
energies, appropriate to the observation of intraband
transitions. Since the photon energies available with our
experimental setup were much too high for the observa-
tion of de Haas - van Alphen type oscillations, we have
evaluated v, from the results of the oscillatory diamag-
netic susceptibility® and magnetoresistance measure-
ments.” A summary of the band parameters obtained
from experimental data is given in Table 1. Using these
values of the band parameters a quantitative determina-
tion of the Fermi surface was carried out.

The Fermi energy E is determined by the requirement
that the number of holes be equal to the number of elec-
trons. The hole density, n, is given by the unoccupied
volume of the first Brillouin zone, or

mo=-5 [ 1= e e M
4 JB.7Z.

This small unoccupied volume is located near the edges
HKH and H’K'H’ and is bounded by the energy surface
E = ¢ (1) and the Fermi surface E = Eg. (Figs. 3 and 4).
It is convenient to choose the origin of the coordinate
system at point K and to integrate over a cylinder just
large enough to contain all the holes. By symmetry there
are exactly two such complete cylinders with axes along
the «, direction. The volume in the Brillouin zone associ-
ated with the electron carriers is bounded by the energy
surfaces E = ¢'(2) and E = Ey, and the electron con-
centration is given by an expression obtained from Eq. (1)
by replacing [1 — f«(E)] by fo(E). There is also a small
pocket of minority electron carriers near points H and H’,
bounded by the energy surfaces E = ¢*(1) and E = Ey.
The density of these carriers is found in the same manner.

The numerical calculation of the integrals such as in
Eq. (1) was carried out on an IBM 7094 computer. In the
limit v; = O, these integrals can be evaluated exactly,
since in this case the cross sectional areas of the Fermi
surface exhibit no angular variation. This is, in fact, the




Table 1 Band parameters for graphite.

Present work Other recent determinations
Band parameters Values, eV Method of determination* Values, eV Reference
Yo 2 .88 MR, high field, point H 2.8 7
" 0.395 MR, high quantum levels, point K 0.27 10
Y2 0.016 DH VA periods 0.017 10
Vs 0.145 MR, low quantum levels, point K ~0.13 11
Vs —0.20 MR, low quantum levels, point K} ~0.28 12
Ys 0.016 Ys = Ve Ys = VY2 7
A —0.02 MR, low field, point H —0.10 12
E, 0.019 number of holes = number of electrons 0.02 3
*MR = Magnetoreflection t The sign of Y+ is chosen to be consistent with the ratio of the DH
DH VA = de Haas-van Alphen VA periods.
limit which was originally treated by McClure.? In reality, 15
¥s # 0, and the integrals of Eq. (1) can be evaluated only €-=05
approximately.
The two cylinders in the Brillouin zone are each sliced
perpendicular to the trigonal axis to form ¢ thin discs,
each of height Af = 1/¢, and occupied volume = A4 A¢,
in which A is the occupied cross sectional area at the ELECTRONS

median height of the disc. This area 4 can be evaluated
exactly in almost all cases. Those few discs having occu-
pied cross sectional areas for which the radius vector is
a multivalued function of angle were evaluated approxi-
mately by a logical routine. In this case, the discs were
further subdivided into a sufficiently large number of
small cells of equal volume, and the occupancy of each
cell was tested. The occupancy of a cell is determined
by solving the 4 X 4 Hamiltonian of the Slonczewski-
Weiss theory for the coordinates at the center of the cell
and by then comparing this energy to the Fermi energy.
This same 4 X 4 Hamiltonian is also solved when the
occupied cross sectional area is computed directly.

It has been observed by McClure® and shown explicitly
in the present work that v; has only a small effect on the
cross sectional areas, on the Fermi level and on the carrier
density. On the other hand, the effect of v; on the shape of
the Fermi surface is considerable. A model of the Fermi
surface for holes and electrons (both majority and mi-
nority) is shown in Fig. 5. This figure is a generalization
of the Fermi surface previously given by McClure.® The
orbit at £ = 0 encloses the extremal de Haas - van Alphen
hole area and exhibits relatively large fluting as can be
seen in the scale drawing of Fig. 6. The maximum radius
of this cross section is only 1.29, of the distance from
point K to the center of the Brillouin zone. As { increases,
the warping becomes more marked, as is shown in the

Figure 5 Model of the graphite Fermi surface. To
emphasize the trigonal anisotropy, the scale
perpendicular to the ¢ direction has been
expanded by a factor of 5.

contour for ¢ = 0.140. The warping eventually becomes
so large that by £ = 0.209 the Fermi surface has broken
up into four small bits, as is illustrated by the cross sec-
tion for this value of {£. As ¢ is further increased to ¢ =
0.212, the three pieces centered at ¢ =2 0.0165 disappear,
and in their place three pieces of electron;Fermi surface
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Figure 6 Scale drawings of selected hole cross
sections of the Fermi surface showing
the variation from the extremal at £ = 0
to the cross sections near the hole “feet”.
The maximum radius at the extremal cross
section is ¢ = 4.3 X 107 which is only
1.2% of the distance from the Brillouin
zone center to the zone edge.

appear. The central bit of hole surface at £ = 0.212 re-
mains, decreasing in area until £ = 0.222, where it also
disappears and is replaced by a central piece of electron
surface. Thus, for the range of £ values 0.213 < |£| <
0.221, both hole and electron surfaces of small cross
sectional area are simultaneously present. A typical cross
section for the region of the electron “feet” is shown in
Fig. 7 at £ = 0.225. These four bits of Fermi surface in-
crease in size as £ is further increased and eventually at
£ = 0.229 these pieces coalesce. It should be emphasized
that the details given here for the behavior of the Fermi
surface in the vicinity of the electron and hole “feet” is
very sensitive to the exact values of the band parameters.
A cross section appropriate to a relatively large electron
effective mass is given in Fig. 7 by the warped orbit at
£ = 0.245. As £ increases further, the cross sections be-
come more circular as, for example, the extremal de Haas-
van Alphen electron orbit at § = 0.353 and the circular
intersection with the Brillouin zone boundary at ¢ = 0.50.
To summarize these results, plots of the £ dependence of
the Fermi surface cross sectional areas and of the elec-
tron and hole cyclotron effective masses are given in Figs. 8
and 9, respectively. Although it is the hole rather than the
electron Fermi surface which exhibits by far the larger
warping, the effective mass of the holes has a relatively
small ¢ dependence as compared to that of the electrons.
Very large effective masses characterize the boundaries
of the hole-electron transition region. Beyond this region
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Figure 7 Scale drawings of selected electron cross
sections of the Fermi surface: the extremal
cross section at ¢ = 0.353, the warped
cross section at £ = 0.245, one of the elec-
tron “feet” cross sections at ¢ = 0.225 and
the circular cross section at the Brillouin
zone boundary, ¢ = 0.50. The maximum
radius at the extremal cross section is ¢ =
2.9 x 10* which is only 0.8% of the dis-
tance from the Brillouin zone center to the
zone edge.
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Figure 8 The dependence of the hole and electron
cross sectional areas on £ The cross sec-
tional areas for the minority electrons near
&€ = 0.50 are indicated by the dashed line.

of £, an almost linear decrease in the electron effective
mass occurs with increasing £.

The warping of the cross sections of the Fermi surfaces
depends only on the parameter v;. Furthermore, the fine
details of the hole-electron transition region are especially
sensitive to this parameter. The most quantitative deter-
mination of v; has been made from an analysis of the
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Figure 9 The dependence of the hole and electron
cyclotron effective masses on £. The effec-
tive masses for the minority electrons near
¢ = 0.50 are indicated by the dashed line.

magnetoreflection results for interband transitions about
point K in the limit of low quantum number. A more
precise value of this parameter could be obtained by ex-
tending the magnetoreflection experiments to higher mag-
netic fields, and lower photon energies, and by using
samples of higher crystalline perfection. One of the weak-
nesses of the magnetoreflection experiment is that v; is
not determined independently of the other band param-
eters. One experiment which could determine this param-
eter more directly is the observation of a de Haas - van

Alphen hole or electron period with the magnetic field
lying in the basal plane. Such an experiment would be
particularly sensitive to the “feet” of the hole-electron
transition region. Since the extremal areas for the H | ¢
configuration are not very pronounced, the intensity of
the oscillations is expected to be weak. Soule, McClure,
and Smith® have observed such oscillations, but with
very low intensity. However, their results have not yet
been analyzed to yield a quantitative value for -ys.
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Discussion

J. A. Krumhansl: Could you comment on the negative sign
of v4? Is there a physical reason for this choice of sign?

M. S. Dresselhaus: As far as the magnetoreflection experiment
is concerned, it is only the magnitude of v, which enters the
analysis. It measures the departure from mirror symmetry for
magnetic energy levels in the valence and conduction bands.
We have found that the ratio of de Haas - van Alphen hole and
electron periods is sensitive to the sign of vy, In order to get
agreement between the magnetoreflection experiment and these
periods we have been forced to take the negative sign. Since
v4 involves a matrix element of a component of momentum
taken between orbitals on two different carbon atoms, there is
no physical reason to expect one sign rather than another for ..
P. Grosewald: Does your experiment give evidence for “light”
electrons and holes?

Dresselhaus : If the magnetic field is along the ¢ direction, the
major trigonal direction, our calculations show only two
extremal cross sections, one for the usual electron period, one
for the usual hole period. These are both associated with
relatively light mass carriers.

If you tip the magnetic field out of the ¢ direction, you can
get different de Haas - van Alphen periods, depending on the
exact values of the band parameters. These other periods, how-
ever, are short periods and are not associated with low mass
carriers.

Grosewald: Have you seen these other periods in your experi-
ment?
Dresselhaus: In our experiment we have not observed any

de Haas - van Alphen type periods. We do observe an oscillatory
phenomenon which can be interpreted to yield band parameters
for graphite. Using these band parameters, we calculate the
shape of the Fermi surface and predict de Haas - van Alphen
periods.

C. A. Klein: Since your experiments do not provide a value
of ~,, I am wondering how you arrived at the value v, = 0.016
eV listed in your table.

Dresselhaus: v, is the one parameter that our experiment has
not yielded. In principle, our experiment should also determine
vs, if we went to sufficiently low photon energies and looked
at the optical analog of the de Haas - van Alphen effect. We
have not done this. I forgot to mention in the talk that the
value given in the Table was obtained by borrowing either an
electron or a hole period from de Haas - van Alphen measure-
ments of either the diamagnetic susceptibility or the magneto-
resistance.

G. Wagoner: The nose of your Fermi-surface rocket (Fig. 5)
shows a small overlap in the next zone. You also indicate that
you have minority carriers. Would these act like ordinary
minority carriers and show a de Haas - van Alphen period?
Dresselhaus: We call these carriers “minority carriers” only
because of the notation we have used. These pockets of electrons
are formed not by one of the E; bands but by the E; band and
the Fermi energy. In the extended zone scheme, these carriers
are outside the first Brillouin zone. There is no energy dis-
continuity at the zone face, and no de Haas - van Alphen period
would be observed for these carriers.
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