J. W. McClure

Energy Band Structure of Graphite®

Abstract: The energy band struciure of graphite is described in the region of the Fermi surfaces by the
Slonczewski-Weiss model. The electron and hole Fermi surfaces are highly elongated and are aligned along
the six Brillouin zone edges which are parallel to the trigonal axis of the crystal. The energy is a non-
parabolic function of wavenumber and the Fermi surfaces are not ellipsoids. Galvanomagnetic, de Haas-
van Alphen, and other experiments have established that: the band overlap is about 0.03 to 0.04 eV, the
carrier densities of electrons and holes are each about 3 X 108 em—2 at low temperatures, the effective
masses perpendicular to the trigonal axis are about 0.04 m, for electrons and 0.06 m, for holes, and the
length-to-width ratio of the Fermi surfaces is about 12. The only important effect not included in the Slonc-
zewski-Weiss model is the correlation of eleciron motion due to the coulomb interaction. Though this effect
is expected to be important a priori, it is not yet clear if it causes important discrepancies between the pre-

dictions of the model and the experimental results.

Introduction

Graphite is similar to bismuth, which is without doubt
the best-known semimetal, in that it has a small band
overlap, a small density of electrons and holes, and small
effective masses (in certain directions). Furthermore, the
anisotropies of the graphite Fermi surfaces are approxi-
mately the same as for the electrons in bismuth, the sur-
faces are not exactly ellipsoids, and the energy is not
exactly a parabolic function of wavenumber.

In contrast to bismuth, all of the Fermi surfaces in
graphite are aligned with their long axes parallel to the
trigonal axis (c-axis) of the crystal, which results in large
anisotropies in the measured electronic properties. For
example, the electrical resistivity parallel to the c-axis is
more than 100 times larger than the resistivity perpen-
dicular to the axis. In addition, there is a degeneracy in
energy between the valence and conduction bands in
graphite, as opposed to a direct band gap in bismuth.
Spin-orbit effects are not important in graphite, except
to cause a g-shift of about 0.1, which is modest by bismuth
standards! Two practical differences associated with the
anisotropy of the crystal lattice are: (1) locating the Fermi
surfaces in the Brillouin zone was not a difficult theoreti-
cal problem, (2) there are many difficult experimental
problems.
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The many experimental and theoretical contributions
which have added to our knowledge of the band structure
of graphite are discussed in the review by Haering and
Mrozowski.' We shall take up only a few which seem to
give the most direct information about the band structure.

The energy band model which we shall describe was
derived on the assumption that each electron moves in
the same static, perfectly periodic potential. It will be
shown in a later section that the interaction between elec-
trons and phonons does not produce important deviations
from this model. However, the correlations between elec-
trons due to their coulomb interaction should be impor-
tant. Using the experimental results for the carrier density
and effective masses, and the high frequency dielectric
constant’ e, = 4, we estimate that the plasma frequency®
of the carriers corresponds to #iw, =~ 0.17 eV for motion
perpendicular to the c-axis, and to 4w, ~ 0.01 eV for
motion parallel to the c-axis. The Fermi energies for elec-
trons and holes are each about { = 0.015 eV, so that the
perpendicular plasma quantum is a little more than 10
times the Fermi energy. For an isotropic electron gas for
which #w,/{ = 10 the coulomb interaction would be so
strong that the ground state would be an electron solid.*
However the parallel plasma quantum is a little less than
the Fermi energy, which corresponds to the high density
limit in which the coulomb interaction has a small effect.
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At this point the best guess which we can make is that
graphite will be an electron liquid. In this case, the band
model can be used to describe the quasiparticle energy
spectrum, and should give a consistent account of those
properties which depend only upon the quasiparticle spec-
trum, such as the electronic heat capacity’ and the de Haas-
van Alphen effect.” However, other properties such as the
cyclotron resonance’ and steady diamagnetic suscepti-
bility* do not depend directly upon the quasiparticle
spectrum (if the periodic potential were not present, they
would depend upon the “bare” particle spectrum), and
may not agree directly with the energy band model deter-
mined from the quasiparticle properties. Certain of these
properties can be treated by combining Landau’s theory
of a Fermi liquid® with the present band model. At present
it is not clear if the experimental results demand such a
generalization.

Energy band model

The graphite crystal lattice is shown in Fig. 1. Note that
the distance between layer planes is much larger than the
distance between atoms in a layer, and that each atom has
three near neighbors in the same layer. The planes are
stacked in abab order and there are two kinds of atomic
sites: type A which has neighbors directly opposite in
adjacent planes, and type B which does not. There are
four atoms in a unit cell, an 4 and B atom from each
plane. The Brillouin zone is a thin hexagonal cylinder,
shown in Fig. 2.

Because of the large anisotropy of the crystal structure,
it is a reasonable starting approximation to ignore the
interaction between layers.'® The Brillouin zone for a
single layer is a two-dimensional hexagon. The 2s, 2p,,
2p, atomic wave functions form the familiar bonding and
antibonding trigonal orbitals, which make up the o
bands. The p, atomic wave functions give rise to two
7 bands, which are degenerate at the six Brillouin zone
corners, the energy of degeneracy being well within the
gap between the bonding and antibonding ¢ bands. The
lower and upper = bands form the valence and conduction
bands, and in the single-layer model there is no overlap
or band gap between the two bands. All calculations on
the two-dimensional model give the same general result,
so that there is very little doubt that the Fermi surfaces
will be located near the corners of the Brillouin zone.

The energy of interaction between layers is of the order
of 0.5 eV, which causes very little change in the over-all
character of the 7= bands, whose width is about 20 eV.
Howeyver, the interaction between layers has a profound
effect near the six vertical zone edges, which is where the
carriers are located. There are four = bands (not counting
spin degeneracy) in the three dimensional band structure,
as there are twice as many atoms in the three dimensional
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Figure 1 The graphite crystal lattice. The distances
between atoms are shown to scale. The dis-
tance a is 2.46 A (the distance between near-
est neighbors in a plane is 1.42 A), and the ¢
spacing is 6.74 A (the distance between
planes is 3.37A).

Figure 2 The Brillouin zone for graphite, showing
the positions of the Fermi surfaces. The
Fermi surfaces are magnified in the hori-
zontal direction by about a factor four. The
surfaces are not drawn about all of the zone
edges, in order to show the coordinate sys-
tem more clearly.

unit cell. A general model for the behavior of the energy
bands in the neighborhood of the vertical zone edges
was developed by Slonczewski and Weiss." The Fermi
surfaces have very little extent in the x or y directions,
so the k- p method was used in the xy plane (i.e., the ele-
ments of the Hamiltonian matrix were expressed as power
series in the distance « from the zone edge). In the z direc-
tion a Fourier expansion was made, which converges




Figure 3 Energy versus wavenumber for graphite.
The energy is plotted vertically, and the
k. k, plane is horizontal. The points H, K, H
correspond to the same letters in Fig. 2.
Doubly degenerate levels are indicated by
the symbol 2. The dashed line indicates the
Fermi level for pure graphite. The curves
are constructed for vy, = 0.

rapidly as the layer planes are widely separated (ideal
tight binding). Group theory was used to find the most
general form of the Hamiltonian, which should give a
complete description of the energy spectrum, subject to
the reservations discussed in the last Section.

In presenting the band model, we use the cylindrical
coordinates indicated in Fig. 2, and the notation ¢ =
2/ 3 ax. In pure graphite the maximum o value on the
Fermi surface is about 0.03. The distance from the zone
corner to the zone center is 3.6 in ¢ units, and the height
of the zone is 1.99 in the same units. For a particular
choice of the zero of energy, the Hamiltonian is

E, 0  Hig HY
H — 0 E2 H23 _H2§ , (1)
Hf Hf; E Hy,

H13 _‘st H§k3 E3

where

E = A+ T 4 717, )
Ey = A — i 4 37,17, 3)
E; = 3v.I", ©)
Hyy = 27%(—o + v.T)o exp(ia), (s)
Hys = 27%(yo + 7uT)o exp(ia), (6)
Hjy; = v;T0 exp(io), (7N
and
I' = 2 cos (3k.0). (8

In the above, we have gone to first order in o, to second
order in the Fourier expansion in terms which do not
contain o, and to first order in the Fourier expansion in
terms proportional to ¢. There seems to be no need to
include higher order terms, and some of the terms in-
cluded (such as ;) may be negligible. Spin-orbit effects
have been estimated" to be of the order of 107™* eV, and
are neglected here.

Let us first inspect the variation of the energy along the
vertical zone edge (¢ = 0), which is plotted in Fig. 3. The
level E; is doubly degenerate everywhere along the zone
edge, while the levels E; and E, are degenerate at the zone
corners H. The Figure is not drawn to scale, but reflects
current estimates that -, is larger than the other param-
eters (about 0.27 €V to 0.40 eV), that A is negative (about
—0.02 eV to —0.1 eV), and that v, is positive (about 0.015
eV to 0.02 eV). All of these parameters have to do with
interaction between layer planes.

The Hamiltonian has simple solutions in certain special
cases. If we neglect v;, we find

B = 3B+ B [E — B+ (ro — )01,
)

E=3E, 4 Ey) + [1(E, — E3)2 + (vo + 74P)262 vz
(10)

In this approximation, the energy is independent of the
angle «. The variation of energy with ¢ is also indicated
in Fig. 3. Note that, for any value of %k, the two highest
bands increase in energy with increasing o, and the two
lowest bands decrease in energy. Note also that the de-
pendence of energy on ¢ is hyperbolic. For small o, the
dependence is parabolic, and one may define an effective
mass (perpendicular to the c-axis) for zero o by

mo/ m* = 3(yo — vV’ / 2H(E; — E))
~ —3yia’ / 2Hy,T, (11)

and the similar expression involving E,. The constant
effective mass approximation is not adequate for an ac-
curate determination of the band parameters, but does
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Figure 4 Fermi surface cross sections in graphite.
For clarity, the surfaces have been com-
pressed by about a factor five in the z di-
rection. The surfaces on the left are for
vs = 0, and have rotational symmetry about
the zone edge H K H. The other surfaces
are for a finite value of v,, and have trigonal
symmetry about the zone edge.

give a qualitative picture of the band structure. Note that
the mass depends upon k,, being greatest at the center of
the zone. The far right of Eq. (11) represents an even more
drastic approximation, assuming |y,T'| 3> |A| or |vs| and
0> |v4|. For large values of ¢ the energy becomes almost
the same linear function of ¢ as in the two-dimensional
approximation, E = 4=(y, &= v[)o. The value of v, is
about 3 eV, while the parameter v, depends upon inter-
action between layers and could be of about the same
magnitude as 7.

For the parameter values used in Fig. 3, the top of the
valence band is at point K (E = E; = 2v,) and the bottom
of the conduction band is at point H (E = E, = 0). Thus
there is a band overlap equal to 2y,, and the Fermi level
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for pure graphite will be between 0 and 2v,. Figure 4
shows the cross sections of the Fermi surfaces for a repre-
sentative set of band parameters. Both electron and hole
surfaces have been drawn in the same zone. The two sur-
faces touch at their ends because of the double degeneracy
of the E, level. Also, the exploded zone scheme has been
used to show the part of the electron Fermi surface in the
higher conduction band. This part, which appears as an
overlap in Fig. 4, matches smoothly onto the rest of the
surface because of the time reversal degeneracy on the
horizontal zone faces. Note that the surfaces are not quite
ellipsoids, the electron surface has a pear-shaped distor-
tion and the hole surface has a diamond-shaped distor-
tion. If v, were negative, the positions of the electrons
and holes would be reversed from that shown in Fig. 4.
The theoretical estimates of v, are not accurate enough
to establish the sign, as it is due to two competing effects.
The experimental evidence for the sign of v, will be dis-
cussed in the next Section.

The inclusion of the parameter v; in the Hamiltonian
causes the energy to have three-fold symmetry about the
zone edge. The value of v; is not well known, but the
theory indicates that it is almost equal to -y, which can be
of the order of ;. In the planes a = nw/3, a simple solu-
tion of the Hamiltonian exists,

E = HE, + E; 4+ vsT'o cos nrm)
=+ [Y(E, — E; — vsTo cos nr)’
+ (o — v.I)’0]'”, (12)

and the similar expression with E; replaced by E, and the
sign of I' changed. Equation (12) has been used to con-
struct the Fermi surface cross-section in the k k. plane,
shown in Fig. 4. If E, and E, are well separated from E,,
then a perturbation treatment yields, for the levels near E;,

E = E; + Ao’

=+ [B’"* — 2By;T'd® cos 3a + 73I%60")V%,  (13)
A= |Hs|" ) (Bs — E) + |Hal" / (BE: — E), (14)
B = —|Hu|*/ (B — E) + |Hul* / (Es — Es), (15)

for all values of «. Fermi surface cross sections in the
k.k, plane derived from Eq. (13) are also shown in Fig. 4.
Note that in addition to having trigonal cross sections in
the k. k, plane the Fermi surfaces have four “pips” on
the ends which touch, one central “pip” and three sym-
metrically placed “outriggers.”

Experimental evidence for the band model

We shall briefly discuss a selection of experiments which
seem to give the most unequivocal information generally
available before the present conference. It is anticipated
that following papers will contribute considerably to our




knowledge. First it should be pointed out that if the
parameter A were so large that the E; and E, band system
never crossed the E; bands, then graphite would be a
semiconductor. However, simultaneous holes and elec-
trons are observed at low temperatures in the Hall effect'®
and in the cyclotron resonance.”® This also requires that
the parameter v, be finite, and that the Fermi level lie
between 0 and 2v,.

The best evidence for the size and shape of the Fermi
surfaces comes from the de Haas-van Alphen™ and
Shubnikov - de Haas'>""® experiments. For a magnetic
field parallel to the c-axis, two de Haas - van Alphen
periods are observed. One corresponds to carriers with
an effective mass of 0.039 m, perpendicular to the c-axis,
and the other to a mass of 0.057 m,. Soule'® has measured
the period due to the lighter carrier for all angles between
the magnetic field and the c-axis. Comparison of the
volume of the experimentally determined Fermi surface
with the carrier densities determined from the analysis'
of the nonoscillatory galvanomagnetic data (n ~ p ~
2.9 X 10" cm™®) showed that there must be four such
Fermi surfaces in the zone (not counting spin). This means
that there are two such surfaces on a zone edge, such as
the surfaces labeled “electrons” in Figs. 2 and 4. (There are
effectively two complete zone edges in the zone, one third
of the region around each of six zone edges.) The period
due to the heavier carrier was not observed at all orienta-
tions, but the results are consistent with its Fermi surface
being on the center of the zone edge, such as that labeled
“holes” in Figs. 2 and 4.

The identification of the signs of the carriers has been
based on the cyclotron resonance results. The cyclotron
resonance experiment'® was performed in the classical
skin effect region, with the magnetic field perpendicular
to the sample surface (and parallel to the c-axis), and with
circularly polarized microwaves. Thus the majority car-
riers do not produce peaks, but a broad absorption. Lax
and Zeiger'’ analyzed the broad absorption and con-
cluded that it was due to electrons of mass about 0.05 m,
and holes of mass about 0.07 m,. As their results indicate
that the holes are heavier than the electrons, it was con-
cluded that the light carriers in the de Haas - van Alphen
effect were electrons, and that the heavy carriers were
holes. With this identification, the two types of mass
measurements differ by about 209%,. This difference could
be due either to the difficulty of analyzing the resonance
data or to the effect of electron correlation. The cyclotron
resonance experiment also showed harmonic structure,
which was analyzed by Nozitres.'® He concluded that the
harmonics were due to an electron of mass 0.054 my,,
whose Fermi surface has three-fold symmetry about the
c-axis. He made the same identification of electrons and
holes as in Figs. 2 and 4, and argued that the region near
the pips on the electron Fermi surface was the source of

the harmonics. From this identification, and using the
approximation in Eq. (11), he calculated that the de Haas-
van Alphen masses should be 0.031 m, for electrons and
0.066 m, for holes. However, Eq. (11) is quite inaccurate.
For a representative set of band parameters we have
calculated that setting the mass at the end of the electron
Fermi surface equal to 0.054 m, implies that the de Haas-
van Alphen mass for electrons is 0.025 m, and that for
holes is 0.041 m,. It may be that adjustments of the values
of the band parameters could lead to better agreement,
but we feel that it is best to wait and use the best values
of the band parameters from other experiments. Recently
Tnoue'® has also analyzed the harmonic structure in the
cyclotron resonance and claimed that the harmonics are
due to a hole with a mass of 0.053 m,, which he placed at
point K (also agreeing with the assignment in Figs. 2
and 4). He argued that the incomplete circular polariza-
tion of the microwaves allows each harmonic to appear
for both signs of the magnetic field. However, his interpre-
tation does not agree well with the relative strengths of
the harmonics. It seems most likely to us that the har-
monics are due to an electron of mass 0.054 m,, but we
point out the possibility that the electron may be at
point K. In this case the positions of the electrons and
holes would be interchanged and -, would be negative.
If this were so, the mass of 0.054 m, would be associated
with the de Haas - van Alphen mass of 0.057 m,. Also, the
trend of the Hall coefficient with temperature and doping
would be easier to explain® with a negative v,. As has
been pointed out by Soule,'? a more reliable identification
of the carriers will come from observing the change of
the de Haas - van Alphen periods as a function of doping.

Information about the values of the band parameters
can be gained from the de Haas - van Alphen type effects.
The band overlap 2y, is approximately equal to the sum
of the partial Fermi energies of electrons and holes. If
the energy were a parabolic function of wave number,
the partial Fermi energies could be obtained directly from
the measured periods and masses, yielding an estimate of
0.028 eV for the band overlap. Using the band model one
finds an overlap of 0.03 eV to 0.04 eV, depending upon the
values chosen for the other band parameters. The values
of the effective masses yield a value of about 26 eV for
the combination 702/71. The de Haas - van Alphen effect
also gives some other, less definite information about the
band parameter values, which we will not discuss here.

The de Haas - van Alphen results and the carrier density
determined from the non-oscillatory galvanomagnetic
properties can be used to obtain the density of states.
Assuming parabolic energy dependence, we find N({) =
5.5 X 107® eV atom . Calculations using the band
model indicate that assuming parabolic dependence may
cause the estimate to be too high by as much as 109.
The linear coefficient in the electronic heat capacity ex-
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pected from this density of states is 13uJ/mole-deg’, in
good agreement with the most recent experimental value®
of 13.8uJ/mole-deg®. It is shown in the next section that
the contribution to the heat capacity due to the electron-
phonon interaction is very small. As was pointed out in
the Introduction, the agreement between the de Haas-
van Alphen effect and the heat capacity is not disturbed
by the many-body effects.

None of the experiments discussed above can give a
good estimate of v,, as Eq. (11) shows that the effective
mass is mostly determined by the quantity v’ /v,. How-
ever, the large steady diamagnetism of graphite is due
to virtual transitions between bands caused by the mag-
netic field. An analysis of the diamagnetism® yielded a
value of 2.8 eV for v,, and a value of 0.27 eV for v,. These
results give a value of 29 eV for v,” /v, which is about 109
higher than the best value from the de Haas - van Alphen
effect. It is not yet clear if the disagreement is significant.

We will learn in one of the following papers about the
information which can be gained from magneto-optical
experiments. Optical measurements in the absence of a
magnetic field have been carried out by a number of
investigators. Of particular interest is the work in the
infrared by Boyle and Nozidres.”® They observed a mini-
mum in the emissivity at about 4 microns, and a sharp
increase for shorter wavelengths. They argued that the
increase was due to the onset of transitions from the E,
to the E; bands at the point K, and deduced a value of
0.14 eV for +,. This value is very much smaller than the
one deduced from the analysis of the diamagnetism. We
would like to suggest that the increase comes when the
frequency of the radiation exceeds the plasma frequency
of the carriers. At the temperature of their experiment
(523°K) the carrier density is about ten times that at low
temperatures. Thus the plasma frequency for oscillation
in the layer plane corresponds to about 0.50 eV. The ex-
perimental data are consistent with a plasma edge at about
2.5 microns. More recently, Ergun®™ has reported pre-
liminary measurements of the absorption at shorter wave-
lengths. He found a peak which he interprets as being due
to the transitions from E, to E,, and derived a value of
about 0.4 eV for v;.

Electron-phonon effects

We will show here that the effects of the electron-phonon
interaction in graphite are small, mainly because of the
small density of states. According to Engelsberg and
Schrieffer,” the effect on the quasiparticles is not much
when the dimensionless parameter 5 = D’N({)/Mu’ is
small. In the expression, D is the deformation potential
constant; N({) is the electronic density of states per atom;
M is the atomic mass; and u is the appropriate speed of
sound. The deformation potential constant® in graphite
is about 30 eV, and the velocity of sound” is 2.3 X 10°
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cm/sec for the in-plane vibrations, which are most effec-
tive in scattering the electrons. The calculated value of %
is then about 0.08.

The same parameter appears in the expression for the
correction to the electronic heat capacity’® due to the
electron-phonon interaction,

8C/C = [n/(1 — 2T/ Tp)’ In (Tp/T),

where T7, is the characteristic temperature of the phonons
effective in the scattering process, kTp = #kyu, in which
kg is the Fermi wavenumber. For graphite Tp, ~ 25°K,
and 8C/C ~ 5 X 107% at 1°K.

Another electron-phonon effect has been discussed by
Fan,?® who showed that it explained the temperature de-
pendence of the optically measured energy gap in semi-
conductors. In a direct transition the number of phonons
is conserved, but the frequency of each is changed as the
elastic constants are different with an extra excited elec-
tron. Thus the energy necessary to make the transition
contains a term proportional to the phonon density. This
effect causes energy shifts in semiconductors of the order
of 107* eV deg™, and may be important in graphite.

Finally, the rather large thermal expansion in the
c-direction is rather easily taken into account.

Some of the interesting questions concerning the energy
band structure of graphite which need clarification are:
(1) Which Fermi surfaces belong to the electrons and
which to holes? (2) What is the extent of the trigonal
warping and what is the value of v,? (3) Is it possible to
explain all experiments with the present band model which
ignores many-body effects, or must it be generalized?
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Discussion

J. K. Galt: Your Figure 4 shows the cross sections of the Fermi
surface as having large trigonal distortion throughout most of
the length of the surface. The interpretation by Nozieres of
our experiments indicated that the cross sections were signifi-
cantly trigonal only over a short range of k.. Is there any other
experimental evidence for the amount of warping you show in
this Figure?

J. W. McClure: Until recently the main experimental evidence
for trigonal warping was the observation of harmonics in the
cyclotron resonance experiment. The magneto-optical experi-
ment reported in the next paper also presents evidence for
trigonal warping.
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