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Energy  Band Structure of Graphite* 

Abstract: The energy band structure of graphite is described in the region of the  Fermi  surfaces by the 
Slonczewski-Weiss  model. The electron and hole  Fermi  surfaces  are highly elongated  and  are aligned along 

the  six Brillouin zone  edges which  are parallel to the trigonal axis of the crystal. The energy is a non- 

parabolic  function of wavenumber  and  the  Fermi surfaces are  not  ellipsoids.  Galvanomagnetic, de Haas- 

van Alphen, and other  experiments  have  established  that:  the band overlap is about 0.03 to 0.04 eV,  the 

carrier densities of electrons and holes are each about 3 X 1OI8 ~ m - ~  at low temperatures, the  effective 

masses perpendicular  to  the trigonal axis are  about 0.04 mo for electrons and 0.06 mo for holes, and the 
length-to-width ratio of the  Fermi  surfaces is about 12. The only important effect  not  included in the Slonc- 

zewski-Weiss  model is the  correlation of electron  motion  due to the  coulomb  interaction.  Though  this  effect 
is expected to be important a priori, it is not  yet  clear if  it causes important discrepancies  between  the  pre- 

dictions of the  model and the  experimental results. 

Introduction 

Graphite is similar to bismuth, which is without doubt 
the best-known semimetal, in  that  it has a small band 
overlap, a small density of electrons and holes, and small 
effective masses (in certain directions). Furthermore, the 
anisotropies of the graphite  Fermi surfaces are approxi- 
mately the same as for the electrons in bismuth, the sur- 
faces are  not exactly ellipsoids, and  the energy is not 
exactly a parabolic  function of wavenumber. 

In contrast to bismuth, all of the Fermi surfaces in 
graphite are aligned with  their long axes parallel to the 
trigonal axis (c-axis) of the crystal, which results in large 
anisotropies in the measured electronic properties. For 
example, the electrical resistivity parallel to  the c-axis is 
more than 100 times larger than  the resistivity perpen- 
dicular to the axis. In addition,  there is a degeneracy in 
energy between the valence and  conduction  bands in 
graphite, as opposed to a direct  band gap in bismuth. 
Spin-orbit effects are not  important  in graphite, except 
t o  cause a g-shift of about 0.1,  which is modest by bismuth 
standards! Two practical differences associated with the 
anisotropy of the crystal lattice are: (1) locating the  Fermi 
surfaces in  the Brillouin zone was not a difficult theoreti- 
cal problem, (2) there are many difficult experimental 
problems. 
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The many experimental and theoretical  contributions 
which have added to our knowledge of the  band  structure 
of graphite are discussed in  the review by Haering and 
Mrozowski.’  We shall take  up only a few which seem to 
give the most  direct  information about the  band structure. 

The energy band model which we shall describe was 
derived on  the assumption that each electron moves in 
the  same  static, perfectly periodic potential. It will be 
shown in a later section that  the interaction between elec- 
trons  and phonons does not produce important deviations 
from this model. However, the correlations between elec- 
trons due to their  coulomb  interaction  should be impor- 
tant. Using the experimental results for the  carrier density 
and effective masses, and  the high frequency dielectric 
constant’ em = 4, we estimate that  the plasma frequency3 
of the carriers corresponds to hhw, ‘v 0.17 eV for motion 
perpendicular to the c-axis, and to hhw, ‘u 0.01  eV for 
motion parallel to  the c-axis. The  Fermi energies for elec- 
trons  and holes are each about { = 0.015  eV, so that  the 
perpendicular plasma quantum is a  little  more than 10 
times the Fermi energy. For  an isotropic  electron gas for 
which hw,/[ = 10 the coulomb  interaction would be so 
strong  that  the ground state would be an  electron solid.4 
However the parallel plasma quantum is a little less than 
the  Fermi energy, which corresponds to the high density 
limit in which the coulomb  interaction has a small effect. 255 
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At this point the best guess  which  we can make  is that 
graphite will be an electron liquid. In this case, the band 
model  can  be  used to describe the quasiparticle energy 

plane. The Brillouin  zone  is a thin hexagonal  cylinder, 
shown in Fig. 2. 

Because  of the large anisotropy of the crystal structure, 
it is a reasonable starting approximation to ignore the 
interaction between  layers." The Brillouin  zone for a 
single  layer  is a two-dimensional  hexagon. The 2s, 2p,, 
2p, atomic wave functions  form the familiar  bonding and 
antibonding trigonal orbitals, which make  up the u 

bands. The p z  atomic wave functions give rise to two 
T bands, which are degenerate at the six Brillouin  zone 
corners, the energy  of  degeneracy  being  well  within the 
gap  between the bonding and antibonding u bands. The 
lower and upper T bands form the valence and conduction 
bands, and in the single-layer  model there is no overlap 
or band gap  between the two  bands. All calculations on 
the two-dimensional  model give the same  general result, 
so that there is  very little doubt that  the Fermi surfaces 
will  be located near the corners of the Brillouin  zone. 

The  energy of interaction between  layers  is  of the order 
of 0.5 eV,  which  causes  very little change  in the over-all 
character of the T bands, whose  width  is about 20 eV. 
However, the interaction between  layers  has a profound 
effect near the six  vertical  zone  edges, which  is  where the 
carriers are located. There are four T bands (not counting 
spin  degeneracy) in  the three dimensional  band structure, 

256 as there are twice  as  many atoms in the three dimensional 
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Figure 2 The Brillouin  zone for graphite, showing 

the positions of the Fermi surfaces. The 
Fermi surfaces are magnified in the hori- 
zontal  direction by about  a  factor four.  The 
surfaces are not drawn about all of the zone 
edges, in order to show the coordinate  sys- 
tem more clearly. 

unit cell. A general  model  for the behavior of the energy 
bands  in the neighborhood of the vertical  zone edges 
was  developed  by  Slonczewski and Weiss." The Fermi 
surfaces  have very little extent in the x or y directions, 
so the k. p method was  used in the xy plane (i.e., the ele- 
ments of the Hamiltonian matrix were  expressed  as  power 
series in the distance K from the zone  edge). In the z direc- 
tion a Fourier expansion was made, which  converges 
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HZ3 = 2-1/2(y0 + y4r)u exp(ia), 

H33 = y3ru exp(ia), 

and 

r = 2 cos (+k,c). (8) 

In the above, we have  gone to first order in IS, to second 
order in the Fourier expansion in terms which do not 
contain u, and to first order in the Fourier expansion in 
terms proportional to U.  There seems to be no need to 
include  higher order terms, and some of the terms in- 
cluded  (such as -yS) may  be  negligible. Spin-orbit effects 
have  been  estimated" to be of the order of  eV, and 
are neglected  here. 

Let us  first  inspect the variation of the energy  along the 
vertical  zone  edge (a = 0), which is plotted in Fig. 3. The 
level E3 is  doubly  degenerate  everywhere  along the zone 
edge,  while the levels El and E2 are degenerate at the zone 
corners H. The Figure  is not drawn to scale, but reflects 
current estimates that y1 is  larger than the other param- 
eters (about 0.27 eV to 0.40 eV), that A is  negative (about 
-0.02 eV to -0.1 eV), and that y2 is  positive (about 0.015 
eV to 0.02 eV). All of these  parameters  have to do with 
interaction between layer  planes. 

The Hamiltonian has  simple solutions in certain special 
cases. If we neglect y3, we find 

E = $(E1 + E3) f [;(E1 - E3)' + (YO - ~ 4 r )  u I 9 

2 2 1/2 

(9) 

(10) 
E = %(E2 + E3) =!= [;(E2 - E d 2  + (YO + ~4r)  u I 2 2 1/2 

In this approximation, the energy is independent of the 
angle a. The variation of  energy  with u is  also  indicated 
in Fig. 3. Note  that, for any  value  of k, ,  the two  highest 
bands  increase in energy  with  increasing u, and the two 
lowest  bands  decrease in energy. Note also that  the de- 
pendence of energy on u is  hyperbolic. For small u, the 
dependence  is  parabolic, and one may  define an effective 
mass  (perpendicular to the c-axis) for zero u by 

r n o / r n *  =  YO - y4F)2a2 / 2h2(E3 - E,) - - -3yia2 / 2h2y1r, (1 1) 

and the similar  expression  involving Ez. The constant 
effective  mass approximation is not adequate for an ac- 
curate determination of the band  parameters, but does 
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Figure 4 Fermi  surface cross  sections in graphite. 

For clarity, the  surfaces  have  been com- 
pressed by  about a factor  five in the z di- 
rection. The  surfaces on the  left are for 
y3 = 0, and have rotational symmetry  about 
the  zone  edge H K H. The  other  surfaces 
are for a  finite  value o f  y8, and have trigonal 
symmetry  about  the  zone  edge. 

give a qualitative picture of the band structure. Note that 
the mass  depends upon k, ,  being  greatest at the center of 
the zone. The far right of Eq. (1 1)  represents an even more 
drastic approximation, assuming lylrl >> lAl or lysl and 
yo >> Iy41. For large  values  of u the energy  becomes  almost 
the same  linear function of u as in the two-dimensional 
approximation, E = &(yo f y41’)a. The value of yo is 
about 3 eV,  while the parameter y4 depends upon inter- 
action between  layers and could  be of about  the same 
magnitude as yl. 

for pure graphite will  be  between 0 and 27,. Figure 4 
shows the cross  sections of the Fermi surfaces for a repre- 
sentative set of band parameters.  Both  electron and hole 
surfaces  have  been  drawn in  the same  zone. The two sur- 
faces touch at their ends  because of the double  degeneracy 
of the E3 level.  Also, the exploded  zone  scheme  has  been 
used to show the part of the electron Fermi surface in the 
higher conduction band.  This part, which appears as an 
overlap in Fig. 4, matches  smoothly onto  the rest of the 
surface  because of the time reversal  degeneracy on  the 
horizontal zone faces. Note that the surfaces are not quite 
ellipsoids, the electron surface  has a pear-shaped distor- 
tion and the hole  surface  has a diamond-shaped distor- 
tion. If yz were  negative, the positions of the electrons 
and holes  would  be  reversed from that shown in Fig. 4. 
The theoretical estimates of y2 are  not accurate enough 
to establish the sign,  as it is due to two  competing effects. 
The experimental  evidence  for the sign  of y2 will  be  dis- 
cussed in the next  Section. 

The inclusion of the parameter y3 in the Hamiltonian 
causes the energy to have  three-fold  symmetry about the 
zone  edge. The value of y3 is not well known, but the 
theory  indicates that it is  almost equal to y4, which can be 
of the order of yl. In the planes a = n7r/3, a simple  solu- 
tion of the Hamiltonian exists, 

E = +(E1 + E3 + ysru  COS mr) 

A [ + ( E ~  - E~ - y3ra COS n~)’ 

+ (yo - y4r)Z~~1/2, (12) 

and the similar  expression  with E, replaced by Ez and the 
sign  of I’ changed. Equation (12) has  been  used to con- 
struct the Fermi surface  cross-section in  the k,k, plane, 
shown in Fig. 4. If El and Ez are well separated from Ea, 
then a perturbation treatment yields,  for the levels near E3, 

E = E3 + Au2 

f [ B ~ ~ ~  - 2 ~ y , r ~ ~  COS 3a + y:r2u2]1/2, (13) 

A = l H 1 3 / ~ /  (E3 - El) + l H z 3 I 2  / (E3 - E z ) ,  (14) 

B = - I H 1 3 l 2  / (E3 - El) l f f ~ 3 1 ~  / (E3 - &I9 (15) 

for all values  of a. Fermi surface  cross sections in the 
k,k, plane  derived from E q .  (13) are also  shown in Fig. 4. 
Note  that  in addition to having trigonal cross  sections  in 
the k,k, plane the Fermi surfaces  have four “pips” on 
the ends  which touch, one central “pip” and three sym- 
metrically  placed  “outriggers.” 

Experimental evidence for the band model 

For the parameter  values used in Fig. 3, the top of the We shall briefly  discuss a selection of experiments which 
valence band is at point K ( E  = E3 = 27,) and the  bottom seem to give the most  unequivocal information generally 
of the conduction band  is at point H ( E  = E3 = 0). Thus available  before the present  conference. It is anticipated 
there is a band  overlap  equal to 2yz, and the Fermi level that following  papers  will contribute considerably to our 
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knowledge. First it should be pointed out  that if the 
parameter A were so large that the El and E2 band system 
never crossed the E3 bands,  then  graphite would be a 
semiconductor. However, simultaneous holes and elec- 
trons  are observed at low temperatures in  the Hall effect" 
and  in  the cyclotron ~es0nance.l~ This  also requires that 
the parameter y2 be finite, and  that  the Fermi level lie 
between 0 and 2y,. 

The best evidence for the size and shape of the Fermi 
surfaces comes from  the  de  Haas  -van Alphen14 and 
Shubnikov - de  Haad2'15 experiments. For a magnetic 
field parallel to the c-axis, two de  Haas  -van Alphen 
periods are observed. One corresponds to carriers with 
an effective mass of  0.039 m, perpendicular to the c-axis, 
and  the  other  to a mass of  0.057 m,. S o ~ l e ~ ~  has measured 
the period due to the lighter carrier for  all angles between 
the magnetic field and  the c-axis. Comparison of the 
volume of the experimentally determined Fermi surface 
with the carrier densities determined from the analysis1' 
of the nonoscillatory galvanomagnetic data (n N p N 

2.9 X 10l8 ~ m - ~ )  showed that there  must be four such 
Fermi surfaces in  the zone (not counting spin). This means 
that there are two such surfaces on a zone edge, such as 
the surfaces labeled "electrons" in Figs. 2 and 4. (There are 
effectively two complete zone edges in  the zone, one  third 
of the region around each of six zone edges.) The period 
due to  the heavier carrier was not observed at all orienta- 
tions, but  the results are consistent with its Fermi surface 
being on  the center of the zone edge, such as that labeled 
"holes" in Figs. 2 and 4. 

The identification of the signs of the carriers has been 
based on  the cyclotron resonance results. The cyclotron 
resonance experiment13  was performed in  the classical 
skin effect region, with the magnetic field perpendicular 
to the sample surface (and parallel to the c-axis), and with 
circularly polarized microwaves. Thus the majority car- 
riers do  not produce peaks, but a broad absorption. Lax 
and Zeiger17 analyzed the  broad  absorption  and con- 
cluded that  it was due to  electrons of mass about 0.05 m, 
and holes of mass about 0.07 ma. As their results indicate 
that  the holes are heavier than  the electrons, it was con- 
cluded that  the light carriers in the  de Haas - van Alphen 
effect were electrons, and  that the heavy carriers were 
holes. With  this identification, the two types of mass 
measurements differ  by about 20%. This difference could 
be due  either t o  the difficulty of analyzing the resonance 
data or to the effect  of electron correlation. The cyclotron 
resonance experiment also showed harmonic  structure, 
which was analyzed by Nozh-es.'' He concluded that  the 
harmonics were due to  an electron of mass 0.054 ma, 
whose Fermi surface has three-fold symmetry about  the 
c-axis. He  made the  same identification of electrons and 
holes as  in Figs. 2 and 4, and argued that  the region near 
the pips on  the electron Fermi surface was the source of 

the harmonics. From this identification, and using the 
approximation in Eq. (ll), he calculated that  the  de Haas- 
van Alphen masses should be 0.031 m, for electrons and 
0.066 ma for holes. However, Eq. (11) is quite inaccurate. 
For a representative set of band parameters we have 
calculated that setting the mass at  the end of the electron 
Fermi surface equal to 0.054 m, implies that  the  de Haas- 
van Alphen mass for electrons is 0.025 m, and  that  for 
holes is 0.041 m,. It may be  that adjustments of the values 
of the  band parameters could lead to better agreement, 
but we  feel that  it is best to wait and use the best values 
of the  band parameters  from other experiments. Recently 
Inoue" has  also analyzed the harmonic structure  in  the 
cyclotron resonance and claimed that  the harmonics are 
due to a hole with a mass of 0.053 m,, which he placed at 
point K (also agreeing with the assignment in Figs. 2 
and 4). He argued that  the incomplete circular polariza- 
tion of the microwaves allows each harmonic to appear 
for both signs of the magnetic field. However, his interpre- 
tation does not agree well with the relative strengths of 
the harmonics. I t  seems most likely to us that  the har- 
monics are due to  an electron of mass 0.054 m,, but we 
point out the possibility that  the electron may be at 
point K. In this case the positions of the electrons and 
holes would be interchanged and y2 would be negative. 
If this were so, the mass of 0.054 ma would be associated 
with the  de  Haas - van Alphen mass of 0.057 m,. Also, the 
trend of the Hall coefficient with  temperature and doping 
would be easier to explain" with a negative y2. As has 
been pointed out by  Soule,12 a more reliable identification 
of the carriers will come from observing the change of 
the de Haas - van Alphen periods as a function of doping. 

Information about  the values of the band  parameters 
can be gained from the de Haas - van Alphen type effects. 
The  band overlap 27, is approximately equal to  the sum 
of the partial Fermi energies of electrons and holes. If 
the energy were a parabolic  function of  wave number, 
the partial  Fermi energies could be obtained directly from 
the measured periods and masses, yielding an estimate of 
0.028  eV for  the  band overlap. Using the  band model one 
finds an overlap of 0.03 eV to 0.04 eV, depending upon  the 
values chosen for the  other band parameters. The values 
of the effective masses yield a value of about 26 eV for 
the combination  yo2/y1.  The de  Haas - van Alphen effect 
also gives some other, less definite information about the 
band parameter values, which we  will not discuss here. 

The de Haas - van Alphen results and  the carrier density 
determined from  the non-oscillatory galvanomagnetic 
properties can be used to obtain  the density of states. 
Assuming parabolic energy dependence, we find N({ )  = 
5.5 X e V 1  atom". Calculations using the  band 
model indicate that assuming parabolic dependence may 
cause the estimate to  be too high by as much as 10%. 
The linear coefficient in  the electronic heat capacity ex- 259 
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pected from this density of states is  13pJ/mole-deg2, in 
good  agreement  with the most  recent  experimental  valuez1 
of  13.8pJ/mole-deg'. It is shown in the next section that 
the contribution to the heat capacity due to the electron- 
phonon interaction is  very  small.  As  was pointed out in 
the Introduction, the agreement  between the de Haas- 
van  Alphen  effect and the heat capacity is not disturbed 
by the many-body  effects. 

None of the experiments  discussed  above can give a 
good estimate of yo, as Eq. (11) shows that the effective 
mass  is  mostly  determined  by the quantity yo2/y1. How- 
ever, the large steady  diamagnetism of graphite is  due 
to virtual transitions between  bands  caused  by the mag- 
netic field. An  analysis  of the diamagnetism"  yielded a 
value  of  2.8  eV for yo, and a value of 0.27 eV for yl. These 
results give a value of  29  eV for yoz/yl, which  is about 10% 
higher than the best  value from the de Haas - van  Alphen 
effect. It is not yet  clear if the disagreement  is  significant. 

We  will learn in one of the following papers about  the 
information which can be  gained from magneto-optical 
experiments. Optical measurements in the absence of a 
magnetic field have  been carried out by a number of 
investigators. Of particular interest is the work in the 
infrared by  Boyle and Nozikre~.~~ They  observed a mini- 
mum in the emissivity at about 4 microns, and a sharp 
increase for shorter wavelengths.  They  argued that the 
increase was due to the onset of transitions from the E2 
to the E3 bands at the point K, and deduced a value  of 
0.14  eV for yl. This  value  is  very  much  smaller than the 
one deduced  from the analysis of the diamagnetism. We 
would  like to suggest that the increase  comes when the 
frequency of the radiation exceeds the plasma  frequency 
of the carriers. At the temperature of their experiment 
(523°K) the carrier density  is about ten times that at low 
temperatures. Thus the plasma  frequency  for  oscillation 
in the layer  plane  corresponds to about 0.50 eV. The ex- 
perimental data are consistent  with a plasma  edge at about 
2.5 microns. More recently, ErgunZ4 has reported pre- 
liminary  measurements of the absorption at shorter wave- 
lengths. He found a peak which  he interprets as being  due 
to the transitions from Ez to E3, and derived a value of 
about 0.4 eV for yl. 

Electron-phonon effects 
We  will show  here that the effects of the electron-phonon 
interaction in graphite are small,  mainly  because  of the 
small  density of states. According to Engelsberg and 
Schrieffer? the effect on the quasiparticles is not much 
when the dimensionless parameter r]  = D2N([)/Mu2 is 
small. In  the expression, D is the deformation potential 
constant; N ( [ )  is the electronic density of states per atom; 
M is the atomic mass; and u is the appropriate speed  of 
sound. The deformation potential constant" in graphite 

260 is about 30  eV, and the velocity of soundz7 is  2.3 X lo6 

cm/sec for the in-plane vibrations, which are most effec- 
tive in scattering the electrons. The calculated  value of r]  

is then about 0.08. 
The same parameter appears in the expression for the 

correction to the electronic heat capacity"  due to  the 
electron-phonon interaction, 

where TD is the characteristic temperature of the phonons 
effective in the scattering process, kT, = AfkFu, in which 
kR is the Fermi wavenumber. For graphite TD N 25"K, 
and 6C/C N 5 X at 1°K. 

Another electron-phonon effect  has  been  discussed by 
Fan:' who  showed that it explained the temperature de- 
pendence of the optically  measured  energy  gap in semi- 
conductors. In a direct transition the number of phonons 
is  conserved, but the frequency of each is changed as the 
elastic constants are different  with an extra excited  elec- 
tron. Thus the energy  necessary to make the transition 
contains a term proportional to the phonon density.  This 
effect  causes  energy  shifts in semiconductors of the order 
of  eV  deg-l, and may  be important in graphite. 

Finally, the rather large thermal expansion in the 
c-direction is rather easily taken into account. 

Some of the interesting  questions  concerning the energy 
band structure of graphite which  need  clarification are: 
(1) Which Fermi surfaces  belong to the electrons and 
which to holes?  (2)  What is the extent of the trigonal 
warping and what  is the value of y3? (3) Is it possible to 
explain  all  experiments  with the present  band  model which 
ignores  many-body  effects, or must it be  generalized? 
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Discussion 
J. K .  Galt: Your Figure 4 shows the cross sections of the  Fermi J. W. McClure: Until recently the  main experimental evidence 
surface as having large trigonal distortion throughout most of for trigonal warping was the observation of harmonics in  the 
the length of the surface. The  interpretation by Nozikres of cyclotron resonance experiment. The magneto-optical experi- 
our experiments indicated that the cross sections were  signifi- ment reported in  the next paper also presents evidence for 
cantly trigonal only over a short range of k,. Is there any  other trigonal warping. 
experimental evidence for the amount of warping you show in 
this Figure? 
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