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Phonon Dispersion Curves in Bismuth®

Abstract: Dispersion curves for phonons propagating in the trigonal direction in bismuth at room tempera-
ture and at 75°K have been obtained in a neutron inelastic scattering experiment. Observed frequencies
(units 1013 rad/sec) at 75°K are as follows: at the zone center, wpo = 1.40 = 0.02, v = 1.89 = 0.02; at
the zone boundary in the trigonal direction, vy, = 0.73 £ 0.01, wyy = 1.12 % 0.02, oy = 1.91 *+ 0.02,
oo = 2.03 = 0.02. At room temperature, the observed frequencies were about 1.5 percent lower. Data
were also obtained for longitudinal phonons propagating in the binary direction at 75°K. It is interesting
fo note that the splitting between the zone boundary frequencies for the optical and acoustic branches for
each polarization is quite large. This splitting is difficult to understand if bismuth is thought of as a slightly dis-
torted simple cubic lattice. The experimental results may be qualitatively understood if bismuth is considered
to be made up of o series of double layers normal to the trigonal axis. The atoms in each double layer
form a crinkled hexagonal net with strong, probably covalent, bonds between atoms. The forces between
atoms on adjacent double layers are relatively weak. This model is consistent with the easy cleavage of bis-
muth normal to the trigonal axis. Analysis of the trigonal dispersion curves in terms of a linear chain model
indicates that there are significant forces connecting a given atom with atoms situated on the four planes on

either side of it.

Introduction

Bismuth crystallizes in the trigonal system, class R E 2/m,
with two atoms per unit cell. It has one trigonal axis,
psually termed the Z axis, with a center of inversion
located on it. Through the center of inversion, perpendic-
ular to the Z axis, are three binary axes, each with a
mirror plane normal to it. One of the binary axes is
designated the X axis, and a Y axis is chosen to complete
a right-handed orthogonal coordinate system. The Y-Z
plane is one of the three mirror planes.

For phonons which propagate in the trigonal direction,
the polarization directions are completely determined by
symmetry, there being one longitudinal and two degenerate
transverse modes. Since there are two atoms per unit cell,
there will be one acoustic branch and one optical branch
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for each mode. The equations of motion for each mode
are formally equivalent to those for a linear chain with two
identical particles per unit cell, in which the force con-
stants represent the forces between planes of atoms in the
three-dimensional crystal. For phonons that propagate
in the X and Y directions, only one of the three polarization
directions is fixed by symmetry, and no corresponding
simplification of the equations of motion occurs.

In this paper, we report measurements of the dispersion
curves for phonons propagating in the trigonal direction
in bismuth, at room temperature and at 75°K. These data
are analyzed in terms of the vibrations of a linear chain
to obtain interplanar force constants. An experimental
dispersion curve for longitudinal phonons propagating in
the binary direction at 75°K is also presented. Some
early measurements of the dispersion curves for acoustic
modes at room temperature were given in a previous
report.*




The experiment

The experimental dispersion curves were obtained by
observing the coherent inelastic scattering of monoener-
getic neutrons due to a process in which a single phonon
is created in the sample crystal. If 4 and #Q are the
energy and momentum transferred from the neutron to
the crystal, then this “one-phonon” scattering can take
place only when w and Q are equal to the frequency and
extended-zone wave vector of one of the phonons in the
vibration spectrum of the crystal. The first-zone wave
vector of the phonon is given by ¢ = Q — G, where G is
27 times a reciprocal lattice vector.

The conditions of the experiment were arranged to keep
Q fixed at a desired value in the reciprocal lattice of the
sample crystal, while scanning a preselected range of
values of w. A phonon of wave vector Q was indicated by
the detection of a neutron group centered at the phonon
frequency, and having a width determined by the instru-
mental resolution and the natural width of the phonon.
The measurements were carried out on the Los Alamos
three-axis neutron diffraction spectrometer, a diagram of
which is shown in Fig, 1.

In this experiment, the phonon polarization directions
were known from symmetry, and all that was needed was
a means of assigning one of the known polarizations to
each observed phonon. This was accomplished by means
of a factor in the cross section for the one-phonon process,
which makes the scattered neutron intensity due to a
phonon with polarization vector ¥ proportional to (Q- £)°.
For a given first-zone wave vector q, it was possible to
find an equivalent extended-zone wave vector Q such
that the factor (Q-¥)® was near zero for two polarization
directions. Any phonon observed under these conditions
could then be assigned the remaining polarization direction.
This method of assigning polarizations was satisfactory
except for the longitudinal acoustic branch in the trigonal
direction, and for both longitudinal branches in the binary
direction. In these cases, in addition to the expected
longitudinal phonons, neutron groups were observed which
apparently correspond to transverse phonons of the same g.
Such anomalous neutron groups have been observed in
lead by Brockhouse et al.,” who ascribe them to a double
scattering process, in which a one-phonon scattering is
preceded or followed by Bragg scattering. In the cases in
which anomalous neutron groups were observed, those
corresponding to the desired polarization were identified
by the use of secondary information, such as initial slopes
of the acoustic branches calculated from elastic constants,
independent measurements of the dispersion curves for
the transverse branches, and a general knowledge of the
trend of the dispersion curve in question. However, the
identification of the polarization must remain less certain
for these cases than for the others, in which only the
expected neutron groups were observed.

An additional difficulty caused by the anomalous neu-
tron groups in the case of the trigonal longitudinal acoustic
branch was that for some values of q the two neutron
groups were not well resolved, particularly in the room
temperature data. This made the location of the centers
of the desired groups more difficult, and consequently the
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Figure I Schematic diagram of the three-axis
spectrometer used to defermine disper-
sion curves in bismuth,

Thermal neutrons from the Los Alamos Omega West

Reactor fall on the monochromator crystal, which se-

lects those having the desired incident energy by Bragg

reflection, and directs them through the incident neu-
tron collimator and monitor counter onto the sample
crystal. Similarly, the scattered neutron collimator and
analyzer crystal direct neutrons having the desired final
energy into the B"F, counter. The neutron momentum
change is determined by the initial and final energies,
and the scattering angle B. Orieniation of the sample
crystal with respect to the neutron momentum-change
vector is accomplished by adjustment of angle C. The
sample crystal is initially aligned so that a selected
crystallographic plane is parallel to the plane of the
spectrometer, and the orientation of some axis in that
plane is known in terms of the spectrometer settings.

In any given measurement, the incident neutron energy

is held constant, while angles A, B, and C are varied

automatically according to a precomputed program to
produce the desired scan.
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data for this branch are more subject to a systematic error
than are those for the other branches.

A final experimental difficulty was caused by a large
background, apparently due to multiphonon processes and
to the tails of the intense Bragg peaks which occur when-
ever Q approaches one of the G’s. In most cases, the
background varied slowly over the width of a one-phonon
group, and the center of the group could be located
without difficulty. However, for low frequencies at small
values of |q| (corresponding to acoustic modes near the
zone center) the rapidly varying background, combined
with the poor resolution in |q| which occurs when |q] is
small and |Q| is large, made accurate determination of
the phonon frequencies impossible. In this region, we feel
that more accurate dispersion curves are obtained by
setting the initial slope equal to that calculated from the
elastic constants. In all cases, the background was larger
at room temperature than at 75°K, and in many cases
the room temperature one-phonon peaks seemed to be
slightly broader than those observed at the lower tem-
perature. However, the apparent broadening was small
compared to the instrumental resolution, and depended
strongly on the details of the form assumed for the back-
ground, so that it was not possible to make any reliable
estimate of the natural width of the phonons at room
temperature.

The bismuth lattice parameters reported by Cucka and
Barrett® were used in this work. For directions of propa-
gation which pass through reciprocal lattice points G, the
dispersion curves are symmetric about a point halfway
between the origin and the first reciprocal lattice point in
the direction of propagation. We denote this midpoint by
Qmax and define a reduced wave vector z by the equation
q = ZQu.. The reduced wave vector z is dimensionless
and varies between 0 and 1. The boundary of the first
Brillouin zone occurs at some value of z < 1, depending
on the structure of the reciprocal lattice.

The experimental dispersion curves are given in Table 1,
and in Figs. 2 and 3. The random errors in the observed
frequencies for the trigonal direction are of the order of
1 percent, as estimated from the deviations of the individ-
ual points from the best fitted curves. Possible systematic
errors are more difficult to estimate; however, it seems
unlikely that they are greater than 2 or 3 percent. The
75°K measurements are considered to be more accurate
than those made at room temperature, and the data for
the trigonal direction are more reliable than those for the
binary direction, both in accuracy of the frequency
determinations and in the certainty of the polarization
identifications.

Linear chain model

Since bismuth contains two atoms per unit cell, we may
think of it as being composed of two interpenetrating
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sublattices. The atoms are arranged on planes perpendic-
ular to the trigonal axis. Alternate planes are made up of
atoms from one sublattice, while the intermediate planes
contain only atoms from the other. The distances between
the planes also alternate, the larger spacing being approxi-
mately 1.5 times the smaller. Phonons which propagate in
the trigonal direction represent lattice vibrations in which
each plane of atoms moves as a rigid body. The equations
of motion are formally equivalent to those for a linear
chain of identical particles, with two particles per unit
cell. Each particle represents an entire plane of atoms in
the three-dimensional crystal, and the force constants
represent the force on a given atom due to the displace-
ment of an entire plane of neighboring atoms. Interactions
may be assumed between any desired number of neigh-
bors. The transverse and longitudinal modes are inde-
pendent, and are both described by the same equation,
with different numerical values for the force constants. A
linear chain of the type under discussion is shown in
Fig. 4.

The parameters K,, K,, P, R, S, and T in the expression
for Mw” as a function of z were determined by the method
of least squares, using the experimental dispersion curves,
with the initial slopes of the acoustic branches set equal
to the values calculated from the elastic constants of
Eckstein, Lawson, and Reneker.* The mass of a bismuth
atom was taken to be 3.470 X 107% g, Fig. 5 shows the
best fit obtained if K,, K,, S, and T are set equal to zero.
This corresponds to interaction with the nearest plane on
each side. It will be noted that this model fails to give
even qualitative agreement for the optical branches. Fig. 6
shows the result of considering interactions with two
planes on each side. In this case, K,, S, and T are set
equal to zero. With this range of interaction, the general
trend of the optical branches is given correctly, although
quantitative agreement is still lacking. No great improve-
ment is obtained by considering three planes on each side,
and it is only by letting all parameters vary, correspond-
ing to interactions with four planes on each side, that a
good fit is obtained. The results are shown in Fig. 7. Here,
the standard deviation in the experimental frequencies,
estimated from the goodness of fit assuming that the
fitted function was of the correct form and that the percent
error in w was constant, was 0.69. This value is in good
agreement with our estimate of the point-to-point fluctu-
ations of the data. (It does not, of course, include any
possible systematic errors, which might be somewhat
larger.) Fitting the room temperature trigonal dispersion
curves gave results very similar to those obtained at 75°K.
The standard deviation in w, estimated as above from the
fit using four planes on each side, was 1.09],.

The least-squares analysis yields directly the symmetric
force constants K, and K,, and the parameters P, R, S,
and 7, which are nonlinear combinations of the asym-




Table I Observed frequencies (units 10'® radians/second) vs reduced wave vector z (dimensionless) for
phonons in bismuth. Column headings give the branch, direction of propagation (in orthogonal axes XYZ
where Z is the trigonal axis, X is one of the binary axes, and YZ is one of the mirror planes), and sam-

ple temperature.

z TA(001) TA(001) TO(001) TO(001) LA(001) LA(001) LO(001) LO(001) LA(00) LO(100)
75°K 300°K 75°K 300°K 75°K 300°K 75°K 300°K 75°K 75°K
0.0 1.40 1.36 1.90 1.88 1.40
0.1 1.42 1.41 1.89 1.89
0.2 1.51 1.51 1.92 1.87 1.61
0.3 1.61 1.61 1.97 1.93 1.74
0.4 0.354 0.36 1.71 1.71 0.622 0.62 2.01 1.97 0.95 1.83
0.5 0.435 0.44 1.79 1.78 0.765 0.77 2.04 2.00 0.98 1.85
0.6 0.523 0.52 1.88 1.84 0.883 0.88 2.05 2.05 0.92 1.86
0.7 0.603 0.60 1.88 1.86 0.984 0.97 2.06 2.02 0.75 1.84
0.8 0.665 0.66 1.91 1.87 1.04 1.04 2.05 2.01 0.61 1.80
0.9 0.706 0.69 1.92 1.91 1.11 1.10 2.03 1.99 0.54 1.73
1.0 0.730 0.70 191 1.89 1.13 1.13 2.04 2.02 0.50 1.68

Figure 2 Dispersion curves for phonons propagat-
ing in the trigonal direction in bismuth
at 75°K.

The solid lines through the origin indicate the initial
slopes calculated from the elastic constants. The dashed
lines suggest the trend of the curves but have no theo-
retical significance. The room temperature data appear
almost identical to those shown here, with the frequen-
cies lowered by about 1.4 percent.
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Figure 3 Dispersion curves for longitudinal pho-
nons propagating in the binary direction
in bismuth at 75°K.

The solid line through the origin indicates the initial

slope calculated from the elastic constants. The dashed

lines suggest the trend of the curves but have no theo-
retical significance.
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metric force constants. The inverse relations are algebraic
equations of fourth degree, and there will in general be
four sets of asymmetric force constants equivalent to each
set of values for P, R, S, and 7. We have carried out the

least-squares analysis for the longitudinal and transverse
modes, each at two temperatures. The results in the four
cases have much in common. In each case, there were
four sets of asymmetric force constants which give identi-

LINEAR CHAIN WITH TWO IDENTICAL ATOMS PER UNIT CELL

2d 2d 2d

2d 2d 2d

+0000 0000 —4
Kui Kg
K2 Kz
0000/ 0000~
Kia Kgs
Q000 — 0000 —
Ka Kq

Mw2= 2K, [I-COSTZ]+ 2Ky [1-COS2TEZ] +P 2 VPZ-aR [1-cosz]-2s [1-cos 2w 2] -2T [I-COS3mZ]

P = Ky + Kpy * Kt Kpg

Figure 4 Linear chain model for phonons propa-
gating in the trigonal direction in bis-
muth,

The two sublattices are labeled 0 and 1. The forces
assumed to act on a particle of sublattice 0 are indi-
cated by the springs. Note that the forces between
particles on the same sublattice are symmetrical to the
left and right, while those between particles on different
sublattices are not. The forces acting on a particle of
sublattice 1 are the same as those shown for sublat-
tice 0, with the left and right asymmetric force con-
stants interchanged. The relative spacing of the particles
is the same as that of the planes perpendicular to the
trigonal axis of bismuth. The equations give the disper-
sion curve in terms of the force constants. The fre-
quency is given by o, and the wave vector by q = =«
z/2d. M is the mass of an atom.

Figure 5 Best fit of the trigonal dispersion curves
in bismuth if forces from one plane on
each side are considered.
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cal fits to the experimental dispersion curves. In each case including the three acceptable sets of asymmetric force
one set may be eliminated immediately, since it assigns constants for each case, are given in Table 2.

the largest force constant to the most distant plane and
a very small one to the closest. The numerical results,

Table 2 Interplanar force constants for vibrations propagating in the trigonal direction in bismuth. Owing
to the structure of the equations, there are in each case three acceptable sets of asymmetric force con-
stants which give identical fits to the experimental data. Values of each set are listed on the same hori-
zontal row, and must be used together. SD(K) is the standard deviation of the force constants, calculated
from the point-to-point fluctuations in the data. The actual uncertainties also depend on possible system-
atic errors in the data, and are perhaps two or three times the quoted errors. Force constants are in units
of 10° dynes/cm.

Mode Temp. K., Ky K, K, Kgs K, SD(K)
T(001) 75°K —+41.28 —23.09 +9.68 +12.95 +2.89 +1.48 0.14
446 .84 +3.87 —14.01 —2.67
+47 .97 —0.28 —9.86 —3.80
T(001) 300°K +40.56 —22.60 +9.35 —+12.60 +2.52 +1.72 0.22
+-45.10 +5.79 —15.78 —2.01
+-47.34 —2.51 —7.49 —4.25
L(001) 75°K —+55.51 —+17.11 +7.99 —11.20 —+0.33 +1.09 0.24
456 .08 —10.04 +15.95 —0.23
58 .88 +4 .69 +1.22 —3.04
L(001) 300°K +53.08 —+17.61 +-7.80 —11.65 -+1.10 +0.97 0.40
—+55.17 —7.07 +13.03 —0.99
—+56.86 +1.16 ~+4.81 —2.68
Figure 6 Best fit of the trigonal dispersion curves Figure 7 Best fit of the trigonal dispersion curves
in bismuth if forces from two pianes on in bismuth if forces from four planes on
each side are considered. each side are considered.

This corresponds to the situation shown in Fig. 4, and
represents the data within the experimental error. Very
similar results were obtained in fitting the room tem-
perature data.
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Discussion

We may first note that the zone boundary difference in
M* for the optical and acoustic branches, which we de-
note by 4, is

A= 2(Km - KRI) - 2(KL3 - Km)-

At 75°K, Ap = 127 — 18 = 109 and A;, = 144 — 44 =
100, in units of 10* dynes/cm. Since the expression for A
involves only the differences between the force constants
for corresponding asymmetric planes to the left and right,
it is clear that these forces must be very different. The
geometric arrangement of the atoms in the two planes
connected by K, the largest of the asymmetric force
constants, is that of a crinkled hexagonal net. This ar-
rangement is the one that would result if covalent bonds
were assumed to connect each atom with three neighbors,
assuming a bond angle consistent with that found in sub-
stances containing an atom with an electron configuration
equivalent to that of bismuth.® It therefore seems reason-
able to think of the bonding between atoms in nearest
neighbor planes as being predominantly covalent. This
picture is quite different dynamically from that of a slightly
distorted primitive cubic lattice, which bismuth resembles

geometrically, The cubic model would predict that the
differences in the asymmetric force constants, and conse-
quently the zone boundary splitting, should be small.

From the number of terms required to fit the trigonal
dispersion curves, it appears that we need to consider
forces between atoms in a given plane and those in two
planes on each side to get even a qualitative picture of
the lattice vibrations. For a quantitative description, it is
necessary to include forces from atoms located as far as
the fourth plane on each side.

The question of which set of asymmetric force con-
stants is the correct one probably cannot be resolved until
we have a more detailed model, one that is based on inter-
atomic rather than interplanar forces.
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Discussion

Unidentified questioner: How important to the fit was the
assumption that Ki,; is different from Ky; and Kj,; is different
from Kgs?

J. L. Yarnell: Exceedingly important. If you assume that they
are equal, then the optical and acoustic branches are not split
at the zone boundary.

R. A. Smith: The fit using force constants between 3 neighboring
planes is almost the same as that using 2, but on using 4 quite
a significant change is obtained. The question arises as to
whether the fitting procedure is converging, i.e., whether taking
5 or 6 planes would have a material effect. One test is whether
taking in more planes significantly changes the values of the
constants found using a smaller number of planes. Does taking
in 4 planes change much the constants over those found using
2 or 3?

Yarnell: It doesn’t change the largest nearest-planes force
constants nor the symmetric force constants (those not under
the square root), which come out uniquely. The smaller ones
are changed somewhat.

M., H. Cohen: The displacement pattern of the optical modes
at k = 0 is exactly that of the static internal displacement
carrying the simple cubic to the arsenic structure. We note
that on Dr. Yarnell et al.’s data these optical mode frequencies
are anomalously low. From the dielectric constants one can
infer that the situation is even more extreme in the IV-VD’s,
where in Pb Te, if I remember correctly, the frequencies are
an order of magnitude lower than for bismuth. Thus in the
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dynamical behavior of these crystals as well one sees evidence
for the static instability of the simple cubic structure. This
suggests a very interesting experiment. In the (SnGe)Te system,
above the temperature range of stability of the arsenic structure,
where the NaCl structure is stable, the transition frequency
between “static” and high frequency behavior should occur at
very low frequencies as one approaches the transition tempera-
ture. Indeed, in principle it would go through zero if the transi-
tion were second order. One should look for this experimentally.

G. A. Baraff (addressed to M. H. Cohen): 1) Can the large
asymmetry between the left-hand and right-hand force constants
be understood in terms of the incipient instability you men-
tioned? 2) Do your band structure calculations, when rein-
terpreted in terms of orbitals, show the large asymmetry between
bonds binding nearest planes and bonds binding next nearest
planes, implied by Yarnell’s explanation of the left-right force
constant asymmetry?

Cohen : The answer to both questions is yes. Indeed, the extreme
case of tightly bound, loosely bound alternate layers would
give a very much larger ratio of force constants than that
reported by Dr. Yarnell. The sort of factor of 2 ratio is what
one might expect on a distorted simple cubic picture, although
I don’t think any calculations have been done which would
substantiate my conclusion. In other words, the theory of
force constants is in such a primitive state at the present time
that one can only argue on the basis of prejudices rather than
sound theory.




