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Phonon Dispersion Curves in Bismuth* 

Abstract:  Dispersion  curves for phonons propagating in the trigonal direction in bismuth at room  tempera- 

ture and at 75'K have been obtained in a neutron  inelastic  scattering  experiment.  Observed  frequencies 
(units 1013 rad/sec) at 75'K are as follows: at the zone  center, wT0 = 1.40 0.02, oL0 = 1.89 +- 0.02; at 

the zone boundary in the trigonal direction, UTA = 0.73 k 0.01, wLA = 1.12 f 0.02, wo = 1.91 f 0.02, 

wL0 = 2.03 +- 0.02. At room  temperature, the observed  frequencies  were about 1.5 percent lower.  Data 

were also obtained for longitudinal phonons propagating in the binary direction at 75OK. It is interesting 

to note that the splitting between  the zone boundary frequencies for the optical and acoustic  branches for 
each polarization is quite  large. This splitting is difficult to  understand if bismuth is thought of as a slightly dis- 
torted simple  cubic  lattice. The experimental results may be qualitatively understood if bismuth is considered 

to be  made up of a series of double  layers normal to the trigonal axis.  The  atoms in each double  layer 
form a crinkled  hexagonal net with strong, probably covalent,  bonds  between  atoms. The forces  between 

atoms  on  adjacent  double  layers  are relatively weak.  This model is consistent with the easy cleavage of bis- 
muth normal to the trigonal axis.  Analysis of the trigonal dispersion  curves in terms of a linear chain  model 

indicates that there  are  significant forces  connecting a given  atom with atoms  situated  on  the four planes  on 

either  side of it. 

Introduction 

Bismuth  crystallizes in the trigonal system,  class R 2/m,  
with  two atoms per unit cell. It has one trigonal axis, 
usually  termed the Z axis,  with a center of  inversion 
located on it. Through the center of inversion,  perpendic- 
ular to the Z axis, are three binary  axes,  each  with a 
mirror plane normal to it. One of the binary  axes  is 
designated the X axis, and a Y axis  is  chosen to complete 
a right-handed orthogonal coordinate system.  The Y-2 
plane is one of the three mirror planes. 

For phonons which propagate in the trigonal direction, 
the polarization  directions are completely  determined by 
symmetry, there being  one longitudinal and two  degenerate 
transverse  modes.  Since there are two atoms per unit cell, 
there will  be one acoustic branch and one optical branch 
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for each  mode. The equations of motion for each  mode 
are formally  equivalent to those for a linear chain  with  two 
identical particles  per unit cell, in which the force con- 
stants represent the forces  between  planes  of atoms in the 
three-dimensional  crystal. For phonons that propagate 
in the X and Y directions,  only  one of the three polarization 
directions  is fixed  by  symmetry, and no corresponding 
simplification of the equations of motion occurs. 

In this paper, we report measurements of the dispersion 
curves for phonons  propagating in the trigonal direction 
in bismuth, at room temperature and at 75°K. These data 
are analyzed in terms of the vibrations of a linear  chain 
to obtain interplanar force  constants. An experimental 
dispersion  curve for longitudinal phonons  propagating in 
the binary  direction at 75OK is  also  presented.  Some 
early  measurements  of the dispersion  curves for acoustic 
modes at room temperature were  given in a previous 
report.' 
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I ne experiment 

The  experimental  dispersion  curves were obtained by 
observing the coherent inelastic scattering of monoener- 
getic neutrons due to a process in which a single phonon 
is created in the sample  crystal. If Am and AQ are the 
energy and momentum transferred from the neutron to 
the crystal, then this  “one-phonon’’  scattering can take 
place  only  when w and Q are equal to the frequency and 
extended-zone wave  vector  of one of the phonons in the 
vibration  spectrum of the crystal. The first-zone wave 
vector of the phonon is  given  by g = Q - G, where G is 
27r times a reciprocal lattice vector. 

The conditions of the experiment were arranged to keep 
Q fixed at a desired  value in the reciprocal lattice of the 
sample  crystal, while scanning a preselected range of 
values of o. A phonon of  wave vector Q was indicated by 
the detection of a neutron group centered at the phonon 
frequency, and having a width  determined by the instru- 
mental resolution and the natural width of the phonon. 
The measurements were carried out on the Los Alamos 
three-axis neutron diffraction  spectrometer, a diagram of 
which  is  shown in Fig. 1. 

In this experiment, the phonon polarization  directions 
were  known from symmetry, and all that was  needed  was 
a means of assigning one of the known polarizations to 
each  observed  phonon. This was  accomplished  by  means 
of a factor in the cross  section  for the one-phonon  process, 
which  makes the scattered neutron intensity due to a 
phonon with polarization vector proportional to ( Q .  oa. 
For a given first-zone wave vector q, it was  possible to 
find an equivalent  extended-zone wave vector Q such 
that the factor (Q.n2 was near zero  for  two  polarization 
directions. Any phonon  observed  under  these  conditions 
could  then  be  assigned the remaining  polarization  direction. 
This  method of assigning polarizations was satisfactory 
except for the longitudinal acoustic branch in the trigonal 
direction, and for both longitudinal branches in the binary 
direction. In these  cases, in addition to the expected 
longitudinal phonons, neutron groups were  observed  which 
apparently correspond to transverse  phonons of the same q. 
Such  anomalous neutron groups have  been  observed in 
lead by Brockhouse et al.: who  ascribe  them to a double 
scattering process, in which a one-phonon scattering is 
preceded or followed by Bragg  scattering. In the cases in 
which anomalous neutron groups were  observed,  those 
corresponding to the desired  polarization were  identified 
by the use  of secondary information, such as initial slopes 
of the acoustic  branches  calculated  from  elastic constants, 
independent  measurements of the dispersion  curves for 
the  transverse  branches, and a general  knowledge of the 
trend of the dispersion  curve in question.  However, the 
identification of the polarization  must  remain  less certain 
for  these  cases than for the others, in which  only the 
expected neutron groups  were  observed. 

An additional difficulty  caused  by the anomalous  neu- 
tron groups in the case of the trigonal longitudinal acoustic 
branch was that for some  values  of q the two neutron 
groups  were not well  resolved,  particularly in the room 
temperature data. This  made the location of the centers 
of the desired  groups more difficult, and consequently the 
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Figure I Schematic diagram of the three-axis 
spectrometer  used  to determine disper- 
sion  curves in bismuth. 

Thermal neutrons from the Los Alamos  Omega  West 
Reactor fall on the monochromator  crystal,  which se- 
lects  those having the  desired  incident energy by Bragg 
reflection, and directs them through the incident neu- 
tron collimator  and monitor counter onto the sample 
crystal. Similarly, the scattered  neutron  collimator and 
analyzer  crystal direct neutrons having the desired final 
energy into the B”Fs counter.  The neutron momentum 
change is determined by the initial and final energies, 
and the  scattering angle B. Orientation of the sample 
crystal with respect to the neutron  momentum-change 
vector is  accomplished by adjustment of angle C. The 
sample  crystal is initially aligned so that a  selected 
crystallographic plane is parallel to the plane of  the 
spectrometer, and the orientation o f  some axis in that 
plane is known in terms of the spectrometer settings. 
In  any given measurement, the incident  neutron  energy 
is held constant,  while angles A ,  B, and C are varied 
automatically  according to a precomputed program to 
produce the desired scan. 235 
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data for this  branch are more  subject to a systematic error 
than are those for the other branches. 

A final  experimental  difficulty was  caused  by a large 
background, apparently due to multiphonon processes and 
to the tails of the intense Bragg  peaks  which occur when- 
ever Q approaches one of the G’s. In most  cases, the 
background  varied slowly  over the width of a one-phonon 
group, and the center of the group could  be  located 
without difficulty.  However, for low  frequencies at small 
values of Iq( (corresponding to acoustic  modes  near the 
zone  center) the rapidly  varying  background,  combined 
with the poor resolution in IqI which occurs when IqI is 
small and IQI is  large,  made accurate determination of 
the phonon  frequencies  impossible. In this  region, we feel 
that more accurate dispersion  curves are obtained by 
setting the initial slope  equal to that calculated from the 
elastic constants. In all cases, the background was larger 
at room temperature than at 75’K, and in many  cases 
the room temperature one-phonon  peaks  seemed to be 
slightly broader than those  observed at the lower  tem- 
perature.  However, the apparent broadening was  small 
compared to the instrumental resolution, and depended 
strongly on the details of the form assumed for the back- 
ground, so that it was not possible to make  any  reliable 
estimate of the natural width  of the phonons at room 
temperature. 

The bismuth lattice parameters reported by Cucka and 
Barrett3 were  used in this  work. For directions of propa- 
gation which pass through reciprocal lattice points G ,  the 
dispersion  curves are symmetric about a point halfway 
between the origin and the first  reciprocal lattice point in 
the direction of propagation. We denote this midpoint by 
qmSx and define a reduced wave vector z by the equation 
q = zq,,. The reduced wave vector z is dimensionless 
and varies  between 0 and 1. The boundary of the first 
Brillouin  zone  occurs at some  value  of z 5 1, depending 
on the structure of the reciprocal lattice. 

The experimental  dispersion  curves are given in Table 1, 
and in Figs. 2 and 3. The random errors in the observed 
frequencies for the trigonal  direction are of the order of 
1 percent, as estimated from the deviations of the individ- 
ual points from the best  fitted  curves.  Possible  systematic 
errors are more  difficult to estimate; however, it seems 
unlikely that they are greater than 2 or 3 percent. The 
75’K measurements are considered to be more accurate 
than those  made at room temperature, and the data for 
the trigonal direction are more  reliable than those for the 
binary  direction, both in accuracy of the frequency 
determinations and in the certainty of the polarization 
identifications. 

linear chain model 

Since  bismuth contains two atoms per unit cell, we may 
236 think of it as being  composed of two interpenetrating 

sublattices. The atoms are arranged on planes  perpendic- 
ular to the trigonal  axis. Alternate planes are made up of 
atoms from  one sublattice, while the intermediate planes 
contain only atoms from the other. The distances between 
the planes  also alternate, the larger  spacing  being approxi- 
mately 1.5 times the smaller. Phonons which propagate in 
the trigonal direction  represent lattice vibrations in which 
each  plane of atoms moves as a rigid  body. The equations 
of motion are formally  equivalent to those for a linear 
chain of identical  particles,  with  two  particles  per unit 
cell. Each  particle  represents an entire plane of atoms in 
the three-dimensional  crystal, and the force constants 
represent the force on a given atom due to the displace- 
ment of an entire plane of neighboring  atoms. Interactions 
may  be  assumed  between  any  desired  number  of  neigh- 
bors.  The  transverse and longitudinal modes are inde- 
pendent, and  are both described by the same equation, 
with  different  numerical  values for the force  constants. A 
linear  chain of the type  under  discussion  is  shown in 
Fig. 4. 

The  parameters K,, K4, P, R, S, and Tin the expression 
for Mu2 as a function of z were determined by the method 
of least  squares,  using the experimental  dispersion  curves, 
with the initial slopes of the acoustic  branches set equal 
to the values  calculated  from the elastic constants of 
Eckstein,  Lawson, and Reneke~.~ The mass of a bismuth 
atom was taken to be 3.470 X lo-” g. Fig. 5 shows the 
best  fit obtained if K,, K4, S, and Tare set  equal to zero. 
This  corresponds to interaction with the nearest  plane on 
each  side. It will  be noted that this model fails to give 
even qualitative agreement for the optical  branches.  Fig. 6 
shows the result of considering interactions with  two 
planes on each  side. In this case, K4, S, and T are  set 
equal to zero.  With this range of interaction, the general 
trend of the optical branches  is given correctly, although 
quantitative agreement  is stiU  lacking. No great  improve- 
ment is obtained by considering three planes on each  side, 
and it is only by letting all parameters  vary,  correspond- 
ing to interactions with four planes on each  side, that a 
good  fit  is obtained. The results are shown in Fig. 7. Here, 
the standard deviation in the experimental  frequencies, 
estimated from the goodness of fit assuming that  the 
fitted function was  of the correct  form and that the percent 
error in w was constant, was 0.6%. This  value  is in good 
agreement  with our estimate of the point-to-point fluctu- 
ations of the data. (It does not, of course,  include  any 
possible  systematic errors, which  might  be  somewhat 
larger.) Fitting the room temperature trigonal dispersion 
curves  gave  results  very  similar to those obtained at 75’K. 
The standard deviation in o, estimated as above from the 
fit  using four planes on each  side, was 1.0%. 

The least-squares  analysis yields directly the symmetric 
force constants K2 and K4, and the parameters P, R, S,  
and T, which are nonlinear  combinations of the asym- 
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Table I Observed  frequencies  (units  radians/second) vs reduced wave vector z (dimensionless) for 
phonons in bismuth. Column headings give the branch,  direction of propagation (in orthogonal  axes X Y Z  
where Z is the trigonal axis,  X is one of the binary axes, and Y Z  is one of the mirror planes), and sam- 
ple temperature. 

z TA(OO1) TA(001)  TO(001)  TO(001)  LA(001)  LA(001) LO(OO1) LO(OO1) LA(100)  LO(100) 
75°K  300°K 75°K 300°K 75'K 300°K 75°K 300°K 75'K 75°K 

0 .o 1 .40 1 .36 
0.1 1 .42 1 .41 
0.2 1 .51 1 .51 
0.3 1 .61 1 .61 
0.4  0.354  0.36 1 .71 1.71  0.622 
0.5 0.435 0.44 1 .79 1.78  0.765 
0.6 0.523 0.52 1 .88 1.84  0.883 
0.7  0.603  0.60 1 .88 1.86 0.984 
0.8 0.665 0.66 1 .91 1 .87 1 .04 
0.9  0.706  0.69 1 .92 1 .91 1 .ll 
1 .o 0.730  0.70 1 .91 1 .89 1 .13 

1 .90 1 .88 1 .40 
1 .89 1 .89 
1 .92 1 .87 1 .61 
1 .97 1 .93 1 .74 

0.62 2.01 1 .97 0.95 1 .83 
0.77 2.04 2 .oo 0.98 1 3 5  
0.88 2.05 2.05 0.92 1 .86 
0.97 2.06 2.02 0.75 1 .84 
1 .04 2.05 2.01 0.61 1 .80 
1 .10 2.03 1 .99 0.54 1 .73 
1 .13 2.04 2.02 0 S O  1 .68 

Figure 2 Dispersion  curves for phonons propagat- 
ing  in the trigonal direction in bismuth 
at 75°K. 

The solid lines  through the origin indicate the initial 
slopes calculated f rom the elastic constants. The dashed 
lines suggest the trend of the curves  but  have no theo- 
retical significance. The  room temperature data appear 
almost identical to those shown here, with  the  frequen- 
cies lowered by about 1.4 percent. 
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Figure 3 Dispersion  curves for longitudinal pho- 
nons propagating in the binary direction 
in bismuth at 75°K. 

The solid line  through the origin indicates the initial 
slope calculated jrom  the elastic constants. The dashed 
lines suggest the trend of the curves but have no theo- 
retical significance. 
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1 
metric  force  constants. The inverse relations are algebraic least-squares  analysis for the longitudinal and transverse 
equations of fourth degree, and there will in general  be modes,  each at two  temperatures. The results in the four 
four sets of asymmetric  force constants equivalent to each cases  have  much in common. In each  case, there were 
set of  values for P, R, S, and T. We have  carried out the four sets of asymmetric  force constants which  give identi- 

L I N E A R   C H A I N  WITH  TWO I D E N T I C A L   A T O M S   P E R   U N I T   C E L L  

- 
2 d   + 2 d  - 

UOOCY/ 
KR3 t 

- 2 d  - 

M w ~ = ~ K ~ [ I - C O S T Z Z ] + ~ K ~ [ I - C O S ~ ~ Z ] + P + ~ ( P ~ - ~ R  [ I - C O S T Z ] - ~ S [ I - C O S ~ T Z ] - ~ T [ I - C O S ~ T Z ]  

= KLl + K R l  + KL3+ KR3 R = KLl * KRl + KLl  *KLs  + KRl.KR, S = KLl.KL3 t K R I . K R ~  T K L ~ . K R ~  

Figure 4 linear chain  model for phonons propa- 
gating in the trigonal direction in bis- 
muth. 

The  two sublattices are labeled 0 and I .  The forces 
assumed to act on a particle of sublattice 0 are indi- 
cated by the springs. Note that the  forces between 
particles on the same sublattice are symmetrical to  the 
left and right, while those  between particles on different 
sublattices are not.  The  forces acting. on a particle of 
sublattice 1 are the  same as those shown for sublat- 
tice 0, with  the  left and right asymmetric force con- 
stants interchanged. The relative spacing of  the particles 
is the same as that of  the planes perpendicular to  the 
trigonal axis of bismuth.  The equations give the disper- 
sion  curve in  terms o f  the  force constants. The  fre- 
quency is given  by O, and the wave vector by q = T 

z/2d. M is the mass o f  an  atom. 

Figure 5 Best fit  of  the trigonal dispersion  curves 
in bismuth if forces from one plane on 

238 each  side are considered. 
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cal fits to the experimental  dispersion curves. In each  case  including the three acceptable  sets of asymmetric  force 
one set may  be eliminated  immediately,  since it assigns constants for each  case, are given in Table 2. 
the largest  force constant to the most distant plane and 
a very  small  one to the closest. The numerical  results, 

Tab2e 2 lnterplanar force constants for vibrations propagating in the trigonal direction in bismuth. Owing 
to  the structure of the equations,  there are in each case three acceptable  sets of asymmetric  force  con- 
stants which give  identical  fits to  the  experimental data. Values of each  set are listed on the  same hori- 
zontal  row, and must be used together. S D ( K )  is the standard deviation of the  force constants, calculated 
from the  point-to-point  fluctuations  in  the data. The actual  uncertainties  also depend on possible system- 
atic errors in  the  data, and are perhaps two or  three times  the  quoted errors. Force constants are in  units 
of I O 3  dynesjcm. 

~~ ~ ~ ~ 

T(OO1) 75'K +41 .28 
+46.84 + 47.97 

+45.10 
f47.34 

L(OO1)  75'K 4-5.5.51 
+56 .OS 
f58.88 

L(OO1)  300'K +53 .OS 

T(OO1)  300'K +40.56 

- 23.09 
f 3   3 7  
-0.28 
- 22.60 
f5.79 

+17 .ll 
-2.51 

- 10.04 
+4.69 
+ 17.61 

t 5 5 . 1 7  -7.07 
t 5 6 . 8 6  +1.16 

+9.68 f12.95 
- 14.01 
- 9.86 

$9.35  4-12.60 
- 15.78 
-7.49 

4-7.99 -11.20 + 15.95 
+1.22 

f7.80 -11.65 

~~ ~ 

f2 .89   f l . 48  0.14 
-2.67 
-3 .SO 
f2 .52 fl .72 0.22 
-2.01 
-4.25 
+O .33 f1.09 0.24 
-0.23 
- 3.04 
f 1  .10 "0.97 0.40 

Figure 6 Best fit of the trigonal dispersion  curves 
in bismuth if forces from two planes on 
each  side are considered. 
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Figure 7 Best fit of the trigonal dispersion  curves 
in bismuth if forces from four planes on 
each  side are considered. 

This corresponds to  the situation shown  in Fig. 4, and 
represents the data within  the  experimental error. Very 
similar results were  obtained in fitting the  room  tem- 
perature  data. 
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Discussion 

We  may first note  that the zone boundary  difference  in 
Mu2 for  the  optical  and  acoustic  branches,  which we de- 
note  by A, is 

A = ~ ( K L I  - KRI) - ~ ( K L z  - K R ~ ) .  

At 75’K, AT = 127 - 18 = 109 and AI, = 144 - 44 = 
100, in  units  of lo3 dynes/cm.  Since  the  expression  for A 
involves  only  the differences between  the  force  constants 
for  corresponding  asymmetric  planes to the  left  and  right, 
it  is clear that  these  forces  must  be  very  different.  The 
geometric  arrangement  of  the  atoms in the two planes 
connected  by KL1, the largest  of the asymmetric  force 
constants, is that  of a crinkled  hexagonal  net.  This ar- 
rangement is the  one that would  result if covalent  bonds 
were  assumed to connect  each  atom  with  three  neighbors, 
assuming a bond angle consistent  with  that  found in sub- 
stances  containing an atom  with an electron  configuration 
equivalent to that  of b i ~ m u t h . ~   I t  therefore  seems  reason- 
able  to  think  of  the  bonding  between  atoms  in  nearest 
neighbor  planes  as  being  predominantly  covalent.  This 
picture is quite  different  dynamically  from  that of a slightly 
distorted  primitive  cubic  lattice,  which  bismuth  resembles 

geometrically. The  cubic  model  would  predict  that  the 
differences in  the  asymmetric  force  constants,  and conse- 
quently  the  zone  boundary  splitting,  should  be  small. 

From  the  number  of  terms  required  to fit the  trigonal 
dispersion  curves,  it  appears  that we need to consider 
forces  between  atoms in a given plane  and  those in two 
planes on  each  side to get  even a qualitative  picture  of 
the  lattice  vibrations. For a quantitative  description, it is 
necessary to include  forces  from  atoms  located as far as 
the  fourth  plane on each side. 

The  question  of  which  set  of  asymmetric  force  con- 
stants  is  the  correct one probably  cannot  be  resolved  until 
we  have a more  detailed  model, one that is  based  on  inter- 
atomic  rather  than  interplanar  forces. 
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Discussion 

Unidentified questioner: How  important to  the fit  was the 
assumption that KL1 is different from KR1 and KL3 is different 
from KRa? 

J. L. Yarnell: Exceedingly important. If  you assume that they 
are equal, then the optical and acoustic branches are  not split 
at  the zone boundary. 

R.   A.  Smith: The fit  using force constants between 3 neighboring 
planes is almost the same as that using 2, but on using 4 quite 
a significant change is obtained. The question arises as to 
whether the fitting procedure is converging, i.e., whether taking 
5 or 6 planes would have a material effect. One test is whether 
taking in  more planes significantly changes the values of the 
constants  found using a smaller number of planes. Does taking 
in 4 planes change much the  constants over those found using 
2 or 3? 

Yarnell: It doesn’t change the largest nearest-planes force 
constants nor the symmetric force  constants (those not under 
the square  root), which come out uniquely. The smaller ones 
are changed somewhat. 

M. H. Cohen: The displacement pattern of the optical modes 
at k = 0 is exactly that of the static internal displacement 
carrying the simple cubic to the arsenic structure. We note 
that  on Dr. Yarnell et al.3  data these optical mode frequencies 
are anomalously low. From  the dielectric constants  one  can 
infer that the situation is even more extreme in  the IV-VI’S, 
where in Pb Te, if I remember correctly, the frequencies are 
an order of magnitude lower than for bismuth. Thus in the 
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dynamical behavior of these crystals as well one sees evidence 
for the static instability of the simple cubic structure. This 
suggests a very interesting experiment. In  the (SnGe)Te system, 
above the  temperature  range of stability of the arsenic structure, 
where the NaCl structure  is stable, the transition frequency 
between “static” and high frequency behavior should occur at 
very low frequencies as  one approaches the transition tempera- 
ture. Indeed, in principle it would go through zero if the transi- 
tion were second order. One should  look for this experimentally. 

G. A.  Baraf  (addressed to M. H. Cohen): 1) Can the large 
asymmetry between the left-hand and right-hand force constants 
be understood in terms of the incipient instability you men- 
tioned? 2) Do your band  structure calculations, when rein- 
terpreted in terms of orbitals, show the large asymmetry between 
bonds binding nearest planes and bonds binding next nearest 
planes, implied by  Yarnell’s explanation of the left-right force 
constant asymmetry? 

Cohen: The answer to both questions is yes. Indeed, the extreme 
case of tightly bound, loosely bound  alternate layers would 
give a very much larger ratio of force constants than  that 
reported by Dr. Yarnell. The  sort of factor of 2 ratio is what 
one might expect on a distorted simple cubic picture, although 
I don’t think  any calculations have been done which would 
substantiate my conclusion. In other words, the  theory of 
force constants is in such a primitive state at  the present time 
that one  can only argue on the basis  of prejudices rather than 
sound theory. 


