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On Ordered Retrieval from an Associative Memory

In a recent issue of this Journal, Seeber and Lindquist’
describe an algorithm for ordered retrieval of the items
stored in an associative memory. The basic method em-
ploys one or more memory interrogations per item re-
trieved. In discussing the average number of interroga-
tions per item required for the case of N random binary
numbers, they employ a formulation that is difficult to
evaluate for large numbers and large N. The main purpose
of this Communication is to extend their analysis for the
case when N is large; toward this end, it is instructive
and interesting in itself to generalize the algorithm for
an arbitrary radix r, where r > 2. The presentation is in
two parts. The first reviews the algorithm, exhibits a small
example for numbers in a radix 4 representation, outlines
the analytical approach, and comments on the nature of
the results. The second presents a mathematical justifi-
cation of the results.

General discussion

Let u(r, N) denote the expected interrogations per retrieval
in the ordered retrieval of N random numbers, where the
numbers are represented in radix r. It will be assumed
that each of the N numbers to be retrieved contains infi-
nitely many digits. For any fixed N, therefore, the numbers
may be considered distinct, i.e., as having been sampled
without replacement. This simplifying assumption does
not affect the practical significance of the results.

To illustrate the algorithm for radix 4, let the six num-
bers 023, 110, 122, 131, 302 and 320 be stored, in any
order, as rows in a 6 X 3 matrix. During the course of
ordered retrieval, the matrix is interrogated on arguments
of the general form m m m, d m m, dd m, or ddd,
where d denotes a radix 4 digit and m denotes a mask
symbol. By convention, all rows match the argument
m m m. For other arguments, an interrogation leads to
a ternary outcome, that is, we have no matching row, one
matching row, or mulriple matching rows. After each
interrogation yielding multiple matches, the leftmost m
symbol is replaced by a 0. After every interrogation yield-
ing no matches or one match, a 1 is added to the right-
most digit of the argument and the radix 4 carry is propa-

gated (if any exists); all 0’s generated by the carry oper-
ation are replaced by m’s. At each interrogation with
one match, the matching number is retrieved from the
matrix. The algorithm starts with the argument m m m
and terminates when carry overflow reproduces this argu-
ment. The complete procedure for the six given numbers
is shown in Table 1. Thirteen interrogations are required;
six of these result in retrievals, as may be seen in the last
column of the table.

It is suggestive to depict each of the thirteen required
interrogations by a tree node, as in Figure 1. Each node
represents the outcome of one interrogation and is identi-
fied by the argument employed in the interrogation. The
leaves in the tree are associated with 0 or 1 match con-
ditions and other nodes with multiple matches. The num-
ber shown in parentheses at each leaf with match con-
dition 1 is the number retrieved by that interrogation.

Table 1 Procedure for ordered retrieval of six
numbers for example of a radix 4 repre-

sentation,
Interrogation Match Number
number Argument condition retrieved
1 mmm >1 none
2 0 mm 1 023
3 1 mm >1 none
4 10m 0 none
5 11m 1 110
6 12m 1 122
7 13m 1 131
8 2 mm 0 none
9 3 mm >1 none
10 30m 1 302
11 31m 0 none
12 32m 1 320
13 33m 0 none
mmm
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In the radix 4 case, each multiple match on level i of the
tree implies four interrogations on the level i 4- 1. In a
radix r generalization, each multiple match will likewise
imply r more interrogations. If S denotes the number of
required interrogations and M the number of multiple
matches in a radix r example of N items, it is clear from
the nature of the tree that

S=1-|—rM=1-|—er:M,-. (1)

Thus the problem reduces to one of estimating the num-
ber of multiple matches, M;, at tree level ;.

Let N numbers be drawn at random and with equal
probability from the series 0, 1, 2, -+ , n — 2, n — 1.
The probability that a given integer will occur in the
sample with frequency & is given by the term B(k; N, 1/n)
of a binomial distribution.” By subtraction, the probability
Bk > 1; N, 1/n) of event k > 1 is equal to 1 — B(0; N,
1/n) — B(1; N, 1/n). As the given integer can be chosen
in n ways, multiples are expected in nB(k > 1; N, 1/n)
cases.

At the ith level of the retrieval tree, n takes on the value
r', where i ranges from zero to infinity. Thus if m(r, N) de-
notes the expectation of M, it is seen that

o0

m(r, N) = ZO #{1 — B(0; N, 1/#)

— B(1; N, 1/r)}.

In explicit computational form this becomes

©

m(r, N) = Z AR B S b

— Nrﬂ'(l — r"i)‘v_l}. (2)

The expected number of interrogations for N numbers
being 1 -+ rm(r, N), it follows that

ulr, N) = % + L, N). 3)

Although Eq. (2) is difficult to compute for all but small
values of N, the Poisson approximation® was found to
yield very satisfactory results. There is little point in tabu-
lating the function, however, because an approximation
with error term of order (log N)/N is available in the limit-
ing values of u(r, N). Let F(r, a) denote the limit of u(r, N)
as N goes to infinity through values r'** for integral j.
Then, as shown in Theorem 1 below,

u(r, N) = F(r,«) + O(log N/N). (4)

Moreover, by Theorem 2, F(r, o) is periodic in «, is of
period 1, and its mean over a cycle is r/log r; that is,

j: F(r,a) da = r/log r. (5)
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Figure 1 Retrieval tree for example of Table 1.
The nodes encircle match conditions and are
labelled to show relevant arguments. Re-
trieval numbers are enclosed in parentheses.

In Lemma 6 below an explicit form for F(r, «) is ob-
tained, namely:

0

Fir,a) = r 3 g7,

i=—w
where g(6) = (1 — ¢ *)/6 — e”’. From this, F(r, o) was
computed for r = 2, 3, 4, 8, 10, 16, 32, 64 and for « ranging
from 0 to 1 in intervals of 0.05. The results of the compu-
tation are displayed in Table 2. The column for r = 4,
say, approximates u(4, N) in a period from N = r’ to




Table 2 Selected values of F(r, ), computed for r = 2, 3, 4, 8, 10, 16, 32 and 64, and for values of « rang-
ing from 0 to 1 in intervals of 0.05.

a r=2 3 4 8 10 16 32 64
0.05 | 2.88539 2.73141 2.88241 3.80851 4.32698 5.95426 10.44045 19.56421
0.10 2.88539 2.73134 2.88117 3.83588 4.37913 6.08546 10.78590 20.32025
0.15 2 .88539 2.73121 2.88035 3.86422 4.42774 6.18873 10.98707 20 .56146
0.20 2.88539 2.73102 2.88002 3.89082 4.46836 6.25349 11.01155 20 .20603
0.25 2.88539 2.73081 2.88022 3.91319 4 .49716 6.27207 10 .84505 19.26207
0.30 2.88539 2.73059 2.88092 3.92922 4.51132 6.24090 10.49769 17 .84543
0.35 2.88539 2.73038 2 .88206 3.93739 4.50928 6.16148 10.00632 16 .16481
0.40 2.88539 2.73020 2.88353 3.93687 4.49095 6.04081 9.43068 14 .46993
0.45 2 .88539 2.73008 2.88518 3.92764 4 .45786 5.89107 8.84324 12 .98299
0.50 2.88538 2.73002 2.88685 3.91049 4.41305 5.72832 8.31488 11.84801
0.55 2.88538 2.73002 2.88837 3.88702 4.36092 5.57043 7.90163 11.12280
0.60 2.88538 2.73009 2 .88961 3.85949 4.30674 5.43462 7.63721 10.80629
0.65 2.88538 2.73022 2.89043 3.83061 4.25608 5.33495 7.53329 10.87233
0.70 2.88538 2.73041 2.89075 3.80329 4.21421 5.28062 7.58520 11.28894
0.75 2.88539 2.73062 2.89055 3.78030 4.18542 5.27532 7.77849 12.02183
0.80 2.88539 2.73084 2.88985 3.76398 4.17253 5.31752 8.09302 13.03050
0.85 2.88539 2.73105 2.88871 3.75597 4.17662 5.40153 8.50419 14 .26155
0.90 2.88539 2.73122 2.88725 3.75703 4.19698 5.51858 8.98249 15.64191
0.95 2.88539 2.73135 2 .88560 3.76699 4.23133 5.65791 9.49267 17.07325
1.00 2.88539 2.73142 2.88393 3.78475 4.27612 5.80741 9.99379 18.43003

average 2.88539 2.73071 2.88539 3.84718 4.34294 5.77077 9.23324 15.38873

N = r'*', (from, for example, 16 to 64, 64 to 256, etc.). lower bound we have
It is evident that w(2, N) varies by a very small amount
but that periodic variation increases with r. From the
standpoint of retrieval, radices 2 and 4 may be considered = —Nx — Nx*/2(1 — x)
equal in efficiency but 8 is considerably less efficient.
Among integral radices, 3 proves the most efficient choice
of all. Taking exponentials we have

Nlog(l —x) > —Nx — Nx*/2 — N&*/2 — -+~

> — Nx — 0.56Nx’, since x < 0.1.

exp (—Nx) > (1 — x)¥ > exp (— Nx — 0.56 Nx”
Mathematical justification: theorems P ) 2 ( )" = exp ( )

> (1 — 0.56Nx°) exp (— Nx)

> exp (— Nx) — 0.56 Nx".

o Lemma 1

For N> 0and 0 < x < 0.1,

—0.56Nx* < (1 — x)V —e™ < 0. e Lemma 2
Foro< x<1land N > 2,
* Proof
. N N—-1
Nlog (1 — x) = —Nx — Nx’/2 — N&*/3 — --- . @ =7 = = S N,
Hence an upper bound for N log (1 — x) is —Nx; for a (ii) (1 — Y -1 —0"" <« 191
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e Proof
OLletix)=(0— " — A — x)"" Then §(0) =
j(1) = Oand, for 0 < x < 1, f(x) = O only at x = 1/N.
Hence
/)| < A1/ N)|
=(1—1/N)"/N
< 1/N.
(ii) The result follows since

Q-0 -0 —x""= —x(1 — 0"

o Lemma 3
For0< x<1l,and N > 2,
1 — 0% —e™| < 1/N.

o Proof

Let f(x) = (I — )V — ¢ *%, then f(0) = 0 and
)= —e ¥_ At any turning point x, of f(x),in0< x<1,
—N(1—x)¥ "+ Ne ¥ =0,ie,e” ¥ =1 —x,)" "
Hence f(xo) = (I — x)" — (1 — x,)" " and so, by
Lemma 2(i), |f(x)] < 1/N. Hence, for 0 < x < 1,
[f(x)| < max (1/N, e ™) < 1/N.

o Lemma 4
Let u(r, N) be defined as in the general discussion.
Then for N > 10, r > 1,

1 < N
ulr, N) = TV-i—]LV Zr1(1 — N

=0

N _ni
_iex\/r>+El’

P

where

3r(log, N 277
| < r(log +1) 2.12r°
N Nir—1)
o Proof

©

NE,/r = Z r{l — (1 — 1/, — N1/F)

i=0

TERVORIESD e (P
i=0

i

r

= —g(ri + N){(l . l/ri)N _e,N/“-}

+ 2 N{(1 — 1//)Y — (1 — 1//F)" 1.

Using the estimates of Lemma 2(i) and Lemma 3 for terms
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of these series with r' < N, and the estimates of Lemma 1
and Lemma 3(ii) for terms with r* > N, we obtain

INE,/r| < { D 2N(1/N) + gvzr"(o.ssN/rz")

ri<N

+ 2 N(/N)+ 2 N(1/r))

riKN ri>N
= > 34 > 212N//
0Li<logy N ri>N

2.12r

4

< 3(log, N+ 1) +

o Lemma 5

Let g(6) = (1 — ¢ %)/6 — e °. Then for 6 > 0,
0 < g(d < 1/6.

e Proof

Let f(6) = 6g(8) = 1 — ¢ ° — B¢ ". Then f(8) =
ge”* > 0. Hence, for 8> 0,0 = (0) < {(8) < f) = 1.

o Lemma 6

Let N = r*** where k is integral, » > 1,and 0 < « < 1.
Then

flry N) = F(r,®) + E,

where

0

Firoa) = r _E g(r* ™),

i=—

1 e—e —9
g(0) = — ¢ ', and
r
B < ——.
(r— )N
e Proof

= i N
f(r,N)=LZr'<1—e‘\/ — =V )
N = r

o«

= s = 2 e = 3 e,

iz0 i=—k

Hence,

—k—1

E, = fr, N) — F(r,a) = —r 2, g("7").

By Lemma 5,

—k—1

|Eo| <r D, /7 = ¢/N>r — 1).

i=-o




e Theorem 1

Let N = r**? for integral k and 0 < o < 1. Let F(r, a)
be defined as in Lemma 6. Then for N > 10 and r > 1,

lu(r, N) — F(r, )]
3rlog, N+ 1) | 2.12° +r | 1
< _ = 4 —_— —
N Nir — 1) T
* Proof

The result follows directly from Lemmas 4 and 6.

e Theorem 2

F(r, ) is a periodic function of « of period 1; further

1
f Flr, o) da =
4]

log r

* Proof

The periodicity of F(r, «) is clear from its expression
s 7 E‘;":_m g(** ™). The value of the integral follows

directly from term-by-term integration of this series since

i

1 . ri— g(x)
f gr* ™) da = [ —== dx
0 Jr-i x logr
and
f @ dx = 1.
o X
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