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On Ordered  Retrieval  from an Associative  Memory 

In a recent issue of this Journal, Seeber and Lindquist’ 
describe an algorithm  for  ordered retrieval of the items 
stored  in an associative memory. The basic method em- 
ploys one or more memory interrogations per item re- 
trieved. In discussing the average number of interroga- 
tions per item  required  for the case of N random binary 
numbers, they employ a formulation that is  difficult to 
evaluate for large numbers and large N .  The main purpose 
of this  Communication is to extend  their analysis for the 
case when N is large; toward this  end, it is instructive 
and interesting in itself to generalize the algorithm for 
an arbitrary radix r,  where r 2 2. The presentation is in 
two parts. The first reviews the algorithm, exhibits a small 
example for  numbers in a  radix  4  representation, outlines 
the  analytical approach,  and comments on the  nature of 
the results. The second  presents  a  mathematical justifi- 
cation of the results. 

General discussion 

Let u(r, N )  denote the expected interrogations per retrieval 
in the ordered retrieval of N random numbers, where the 
numbers are represented in  radix r .  It will be assumed 
that each of the N numbers to be retrieved contains infi- 
nitely many digits. For any fixed N ,  therefore, the numbers 
may be considered distinct, i.e., as having been sampled 
without replacement. This simplifying assumption  does 
not affect the practical significance of the results. 

To illustrate the algorithm  for  radix 4, let the six num- 
bers 023,  110,  122,  131,  302 and 320 be stored, in any 
order,  as rows in a 6 X 3 matrix. During  the course of 
ordered retrieval, the matrix is interrogated on arguments 
of the general form m m m, d m m, d d m, or d d d, 
where d denotes  a  radix  4 digit and m denotes  a mask 
symbol. By convention, all rows match the argument 
m m m. For  other arguments, an interrogation leads to 
a ternary outcome, that is, we have no matching row, one 
matching row, or multiple matching rows. After each 
interrogation yielding multiple matches, the leftmost m 
symbol is replaced by a 0. After every interrogation yield- 
ing no matches or  one match, a 1 is added to the right- 
most digit of the  argument and  the radix 4 carry is propa- 

gated (if any  exists);  all 0’s generated by the carry  oper- 
ation  are replaced by m’s. At each interrogation with 
one match, the matching  number is retrieved from  the 
matrix. The algorithm starts with the argument m m m 
and terminates when carry overflow reproduces this argu- 
ment. The complete procedure  for the six  given numbers 
is shown in  Table 1. Thirteen  interrogations are  required; 
six of these result in retrievals, as may be seen in the last 
column of the table. 

It is suggestive to depict each of the thirteen  required 
interrogations by a  tree  node, as in  Figure 1. Each node 
represents the outcome of one interrogation and is identi- 
fied  by the argument employed in the interrogation. The 
leaves in the tree are associated with 0 or 1 match  con- 
ditions and  other nodes with multiple matches. The num- 
ber shown in parentheses at each leaf with match con- 
dition 1 is the number retrieved by that interrogation. 

Table 1 Procedure for ordered retrieval of  six 
numbers for example of a  radix 4 repre- 
sentation. 

Interrogation Match Number 
number Argument condition retrieaed 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

mmm 
0 mm 
1 mm 
1 0 m  
1 l m  
1 2 m  
1 3 m  
2 mm 
3 m m  
3 0 m  
3 1 m  
3 2 m  
3 3 m  
mmm 

> 1  
1 

>1 
0 
1 
1 
1 
0 

> 1  
1 
0 
1 
0 

none 
0 2 3  
none 
none 
1 1 0  
1 2 2  
1 3 1  
none 
none 
3 0 2  
none 
3 2 0  
none 
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In the radix 4 case,  each  multiple  match on level i of the 
tree implies four interrogations on the level i + 1. In a 
radix r generalization,  each  multiple  match will  likewise 
imply r more interrogations. If S denotes the number  of 
required interrogations and M the number of multiple 
matches  in a radix r example of N items, it is  clear  from 
the nature of the tree that 

s = I + ~ M = I + ~ C M , .  ( 1 )  
m 

,=0 

Thus the problem  reduces to one of estimating the num- 
ber of multiple  matches, M ; ,  at tree level i .  

Let N numbers be drawn at random and with equal 
probability from the series 0, 1, 2, . , n - 2,  n - 1. 
The probability that a given  integer  will  occur  in the 
sample  with  frequency k is  given  by the term B(k;  N,  l/n) 
of a binomial  distribution.2 By subtraction, the probability 
B(k > 1; N ,  l/n) of  event k > 1 is equal to 1 - B(0; N, 
l /n) - B ( l ;  N ,  l/n). As the given integer can be  chosen 
in n ways, multiples are expected in nB(k > 1 ; N ,  l/n) 
cases. 

At the ith level  of the retrieval tree, n takes on  the value 
ri, where i ranges from zero to infinity. Thus if m(r, N) de- 
notes the expectation of M ,  it is  seen that 

m(r,  N )  = r i (  1 - B(O; N ,  l / r t )  
00 

1 = o  

- ~ ( 1 ;  N ,  l / r i ) ) .  

In explicit computational form this becomes 

m(r,  N )  = r i {  1 - (1 - r-i)'v 
m 

z = o  

- N r - i ( ( l  - r - ~ ) . V - l  1 .  (2)  

The expected  number  of interrogations for N numbers 
being 1 + rm(r, N), it follows that 

1 r  
N N  

u(r,  N )  = - + - m(r,  N ) .  (3) 

Although Eq. (2) is  difficult to compute  for all but small 
values of N, the Poisson approximation3 was found to 
yield  very satisfactory  results.  There  is  little point in tabu- 
lating the function, however,  because an approximation 
with error term of order (log N ) / N  is  available in the limit- 
ing  values of u(r, N ) .  Let F(r, a) denote the limit  of u(r, N )  
as N goes to infinity through values r i+n for  integral j .  
Then, as  shown  in  Theorem 1 below, 

u(r,  N )  = F(r, a) + O(1og N / N ) .  (4) 

Moreover, by Theorem 2,  F(r, a)  is periodic  in a, is of 
period 1, and its  mean  over a cycle  is r/log r ;  that is, 
*1 

J F(r,  a)  da = r / l o g  r .  
0 

0 m m (0231 P 
I 0 Ill 

I I m (1101 

I 2 m (122) 

I 3 m (1311 

3 0 m (302 

31 m 

3 2 m (32C 

3 3 m  

,. A ' LEVEL 0 
\ ' LEVEL I ' ' LEVEL 2 ' 

Figure I Retrieval tree for example of Table 1. 
The  nodes  encircle  match  conditions  and are 
labelled to  show  releoant  arguments.  Re- 
trieval  numbers  are  enclosed in parentheses. 

In Lemma 6 below an explicit  form for F(r, a) is ob- 
tained, namely: 

- 
F(r, a)  = r g ( r m - 7 ) ,  

where g( 0) = (1 - e-')/  0 - e . From this, F(r, a)  was 
computed  for r = 2 , 3 , 4 , 8 , 1 0 ,  16, 32,64 and for a ranging 
from 0 to 1 in  intervals of 0.05. The  results of the compu- 
tation are displayed  in  Table 2. The column for r = 4, 
say,  approximates 4 4 ,  N) in a period  from N = r' to 

j=" 

- 0  
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0.05 
i 

0.10 
0.15 
0.20 
0.25 

0.30 
0.35 
0.40 
0.45 
0.50 

0.55 
0.60 
0.65 
0.70 
0.75 

0.80 
0.85 
0.90 
0.95 
1 .oo 

2 38539 
2 38539 
2 A8539 
2 38539 
2 38539 

2 38539 
2 38539 
2 38539 
2 38539 
2 38538 

2 38538 
2 A8538 
2.88538 
2 38538 
2 38539 

2 38539 
2 38539 
2 38539 
2 38539 
2 38539 

2 38539 

2.73141 
2.73134 
2.73121 
2.73102 
2.73081 

2.73059 
2.73038 
2.73020 
2.73008 
2.73002 

2.73002 
2.73009 
2.73022 
2.73041 
2.73062 

2.73084 
2.73105 
2.73122 
2.73135 
2.73142 

2.73071 

2.88241 
2.88117 
2.88035 
2.88002 
2 38022 

2 38092 
2 38206 
2.88353 
2 38.518 
2 38685 

2 A8837 
2 38961 
2 39043 
2 39075 
2 39055 

2 38985 
2.88871 
2 38725 
2 38560 
2 38393 

2 38539 

3 30851 
3 33588 
3 36422 
3 39082 
3.91319 

3.92922 
3.93739 
3.93687 
3.92764 
3.91049 

3 38702 
3 35949 
3.83061 
3 30329 
3.78030 

3.76398 
3.75597 
3.75703 
3.76699 
3.78475 

3 34718 

4.32698 
4.37913 
4.42774 
4.46836 
4.49716 

4.51132 
4.50928 
4.49095 
4.45786 
4.41 305 

4.36092 
4.30674 
4.25608 
4.21421 
4 .18542 

4 .17253 
4.17662 
4.19698 
4.23133 
4.27612 

4.34294 

5.95426 
6.08546 
6.18873 
6.25349 
6.27207 

6.24090 
6.16148 
6.04081 
5 39107 
5.72832 

5.57043 
5.43462 
5.33495 
5.28062 
5.27532 

5.31752 
5.40153 
5.51858 
5.65791 
5 30741 

5.77077 

10.44045 
10.78590 
10.98707 
11.01155 
10 34505 

10.49769 
10.00632 
9.43068 
8 34324 
8.31488 

7.90163 
7.63721 
7.53329 
7.58520 
7.77849 

8.09302 
8 SO419 
8.98249 
9.49267 
9.99379 

9.23324 

Table 2 Selected values  of  F(r, a), computed for r = 2, 3, 4, 8, 10, 16, 32 and 64, and for values of a rang- 
ing from 0 to 1 in intervals of 0.05. 

a 1 r = 2  3  4 8 10  16 32 64 

19.56421 
20.32025 
20.56146 
20.20603 
19.26207 

17 34543 
16.16481 
14.46993 
12.98299 
11 34801 

11.12280 
10 30629 
10 37233 
11.28894 
12.02183 

13.03050 
14.26155 
15.64191 
17.07325 
18.43003 

15.38873 

lower bound we have 

N log (1 - X) 2 - Nx - Nx2/2 - Nx3//2 - ' .  . 
! = - NX - Nx2/2( 1 -  X) 

I 
- > - Nx - 0.56Nx2, since x 5 0.1. 

Taking exponentials we have 

exp (- Nx) 2 ( I  - x)" 2 exp (- N x  - 0.56Nx2) 

2 (1 - 0.56 Nx2) exp (- Nx)  

- > exp ( - N x )  - 0.56Nx'. 

Lemmu 2 

For 0 5 x 5 1 and N 2 2, 

(i) i(1 - x)" - (1  - x)""i 5 I /N ,  

(ii) [ ( I  - x)" - (1 - x ) ~ ' " I  5 x .  191 
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N = , (from, for example, 16 to 64, 64 to 256, etc.). 

It is evident that 4 2 ,  N )  varies by a very small amount 
but that periodic variation increases with r. From  the 
standpoint of retrieval, radices 2 and 4 may be considered 
equal in efficiency but 8 is considerably less  efficient. 
Among integral radices, 3 proves the most efficient choice 
of all. 

Mathematical justification:  theorems 

Lemmu 1 

F o r N >  O a n d O 5  x 5  0.1, 

-0.56Nx' 5 (1 - x)" - e"'" 5 0. 

8 Proof 

N log (1 - X) = -Nx - Nx2/2 - Nx3/3 - . .  . . 
Hence an upper bound for N log (1 - x) is - N x ;  for  a 



Proof 

(i) Let f(x) = ( 1  - x)" - (1 - x)"-'. Then f(0) = 
f(1) = 0 and, for 0 < x < 1, ?(x) = 0 only at x = 1/N.  
Hence 

If(x>I 5 I I ( l / N ) l  

= ( 1  - I / N ) . ' - ' / N  

< 1 / N .  

(ii) The result follows  since 

( 1  - x)" - ( 1  - x)y-'  "x(l - X)'". 

Lemma 3 

Proof 

Let f(x> = ( 1  - x) '' - e , then f(0) = 0 and 
J(1) = -e- *'. At any turning point x.  of f(x), in 0 5 x 5 1, 

Hence f(xo) = ( 1  - x O ) N  - (1 - x,,) N-' and so, by 
Lemma 2(i), If(xo)l I 1/N.  Hence, for 0 5 x 5 1 ,  
If(x)l 5 max ( I / N ,  e-") 5 I/N. 

- Nm 

- N( 1 - xo) N-l + Ne- y z o  - - 0, i. e., e- N z o  = ( 1  - 

Lemma 4 

Let u(r, N) be  defined as in the general  discussion. 
Then for N 2. 10, r > 1, 

where 

3r(log, N + I )  2.12~' 
lEll < -- + N N(r - 1 )  

Proof 

N E l j r  = r i{  1 - ( 1  - l/r')" - N ( l / r " )  
m 

I = o  

+ 2 N ( ( 1  - 1/r*)N - (1 - l/ri).'-1}. 
* = 0  

192 Using the estimates of Lemma 2(i) and Lemma 3 for terms 

of these series  with ri < N, and the estimates of Lemma 1 
and Lemma  3(ii) for terms with ri 2 N ,  we obtain 

= 3 + 2.12N/ri 
nsl<log, h' r"N 

< 3(log, N -k 1) + ~. 2.12r 
r - 1  

Lemma 5 

Proof 

Let f ( 0 )  = Og(0) = 1 - e-' - Be-'. Then f ' ( 0 )  = 

Be- ' > 0. Hence, for 0 > 0, 0 = f ( 0 )  < f( 0) < f(m ) = 1. 

Lemma 6 

Let N = rk+= where k is integral, r > 1 ,  and 0 5 a 5 1. 
Then 

where 

Proof 

m m 

Hence, 

By Lemma 5, 

< r r'-e = r / N ( r  - 1 ) .  
- k -1  

i - - m  
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Theorem I 

Let N = rk+  for  integral k and 0 5 a < 1. Let F(r, a) 
: defined as in Lemma 6. Then  for N 2 10 and r > 1, 

( I ,  N )  - ~ ( r ,  a) i 

< 3r(log, N + 1) 2.12r2 + r 1 + 
N N(r - 1) 

+ X ’  

Proof 

The result follows directly from Lemmas 4 and 6. 

Theorem 2 

F(r, a) is a periodic  function of a of period 1; further 
I 

F(r,  a)  da = 
log r 

Proof 

The periodicity of F(r, a) is clear from  its expression 
r ~ ~ = “ m  g(r“ -i). The value of the integral follows 

directly from term-by-term integration of this series since 

and 

J o  x 
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