An Existence Theorem for

BCS Integral Equation

An important consequence of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity is the exist-
ence of a gap in the energy spectrum. In the original BCS
paper' the gap function was found by solving a homo-
geneous nonlinear integral equation in which the phonon
interaction energy was taken to be a constant in some
appropriate region and to be zero everywhere else. In
that case the gap function is a constant which is deter-
mined by a simple algebraic relation. If one considers
more general interactions, the existence of a nonzero
energy-gap function is then by no means obvious. We
must mention, however, that certain numerical calcula-
tions employing linearization procedures do produce
nontrivial solutions for the cases they consider. (See Ref.
2, where other references are cited).

The purpose of this Communication is to discuss the
special case of negative phonon interactions and to show
how the questions of existence and uniqueness may be
decided by means of descriptive geometrical arguments.
Some of the results below overlap with results announced
without proofs by Huber,’® who has employed iteration
techniques. The work in Ref. 3 appears to be mainly con-
cerned with the actual calculation of the gap function,
under additional restrictions on the interaction, while this
Communication is concerned only with qualitative aspects.

The BCS equation for spherically symmetric gaps at
zero temperature has, in appropriate units,” the form

L (1)
£+ 1®
where the real function f is proportional to the energy

gap, and V is the negative of the phonon-interaction
energy. We assume the following:

fx) = 7 = f Vix, ©

(i) There are positive numbers m, M such that

inf V(x,8) > m>0 (2a)

supf Vix, £ df < M; (2b)

(i) 1im ff | V(ix + a,£) — V(x, §)| dx dt = 0. (2c)

a—0
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These conditions will be sufficient for the existence theorem
below. In discussing uniqueness we assume the stronger
condition

lim | |V(x 4+ o, &) — Vix, )| dt = 0,

a—0
uniformly in x. (2d)

At this point we introduce some new notation. Let
L,(0, 1) be the Banach space of integrable functions on
(0, 1) with the usual norm which is denoted by |{-|]. Let
S be the intersection of the sphere consisting of all func-
tions in L, such that ||f|| < M with the cone defined by
f > 0. Let S, be the part of S for which f > ¢ > .0. Then
under the hypotheses expressed by Egs. (2a, 2b) one has
the following:

o Lemma

If ¢ is small enough, then TS, C S..

e Proof

It is clear that the whole L,(0, 1) space is contracted by T
into the M-sphere. Let f(x) belong to S, ie., f(x) =
e+ n(x), n > 0; then

e+ n(®)

J VE 4 e+ o)

1
> me [ —1— dE > e,
2 me ) e
if e is small enough.

It should be noted here that ¢, M may be chosen so as
to have TS. properly included in S.. This fact is useful in
the uniqueness question.

We state now a special version of Schauder’s fixed point
theorem: A continuous map in a Banach space which maps
a complete set S into a relatively compact set S’ C S has
a fixed point. This version may be proved by applying
the familiar form of Schauder’s theorem® to the closed
convex hull of T(S"). Now we have the following:
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o Theorem

The spectrum of the operator T includes the whole posi-
tive real axis. In particular, the equation 7/ = f has non-
trivial solutions in S..

o Proof

The set S, is a convex complete set in L,. [Notice that
it will still be convex if one uses a Hilbert space norm.]
Since the map T is completely continuous by the as-
sumption expressed by Eq. (2¢),’ it has a fixed point by
Schauder’s theorem. Hence, A = 1 is in the spectrum of 7.
Replacing ¥ by A" ¥, A > 0, does not change the validity
of Egs. (2a, b, and c). Therefore, the equation 7f = \f
has a nontrivial solution for all A > 0, which proves the
theorem.

References

1. As seen from the proof, the existence of a fixed point
of T is due, geometrically speaking, to the fact that T
contracts a large enough sphere but expands a neighbor-
hood of the origin. This latter property of 7 is seen clearly
by calculating its functional derivative at zero, which is
logarithmically divergent. If the power of £ in the quasi-
particle energy (£ + fz)% were reduced— which is physi-
cally unacceptable—then the derivative at zero would be
finite and there may exist no solutions. For example, the
equation

f= f Ve DFOE™ + /77 d

has no nontrivial solutions if |V]| < 1.

2. The temperature-dependent BCS equation has the form

s= 1= [ Ve onE +

& + "
i (EE27)
tan . ) dt (3)

where 6 is some reduced temperature. If 6 is small enough,
then the proofs of the lemma and the theorem still hold.
In fact, a very crude estimate will be to take ¢ = 6, and
the existence of an energy gap for small 6 is assured. If,
however, 8 is large enough, there will be no solution. To
see this, assume Eq. (2d) to be true; then the gap will be
continuous and has a maximum N. Equation (3) then
implies that
2

N < MNE-

Hence, N will be zero if 2M/6 < 1.

3. The anisotropic gap equation has the form f(x) = Pf
where x denotes a three-dimensional vector and P is a
nonlinear integral operator. Although P and T have
different forms they share the properties stated in Re-
mark 1, namely they expand a neighborhood near zero
but contract large enough spheres. Hence an existence
theorem for an anisotropic energy gap would follow from
reasoning similar to that followed in the theorem proof.

4. To prove the uniqueness of the solution to f = Tf by
topological methods is more subtle. One may, however,
exploit the classical degree theory of continuous maps as
used, for example, by Rothe.® It is more convenient now
to consider the set .S, of continuous functions f such that
f> eand max f < M, that is, to consider S in the Banach
space C(0, 1) under the maximum norm. We state now
sufficient conditions to ensure uniqueness:

Let the interaction V satisfy Egs. (2a, b, and d). Sup-
pose, for all f in S, the linear integral equation

) = [ L (Ve 00 + A7

has no nontrivial solutions, i.e., that the functional deriva-
tive of I — T has a bounded inverse in S.. Then, the solu-
tion of Tf = {, which exists by the above theorem, is also
unique.

The proof becomes exactly the same as that of Theorem
3 in Ref. 6 when one takes into account the following:
(1) the solution of Tf = { is continuous by the assumption
expressed in (2d); and (2) the image of the boundary of
S. lies properly in the interior of S., as remarked in the
proof of the lemma.

5. If the interaction changes its sign, then the existence of
a nontrivial solution may, in general, be asserted only
under additional conditions which restrict the detailed
properties of such an interaction. This topic is to be the
subject of a future communication.
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