
An Existence  Theorem  for 
BCS Integral Equation 

An important consequence of the Bardeen-Cooper- 
Schrieffer (BCS) theory of superconductivity is the exist- 
ence of a gap  in the energy spectrum. In  the original BCS 
paper' the  gap function was found by solving a homo- 
geneous nonlinear  integral equation in which the  phonon 
interaction energy was taken to be a constant in  some 
appropriate region and to be  zero everywhere else. In 
that case the gap  function is a constant which is deter- 
mined by a simple algebraic relation. If one considers 
more general interactions, the existence of a nonzero 
energy-gap function is then by no means obvious. We 
must mention, however, that certain numerical calcula- 
tions employing linearization procedures do produce 
nontrivial  solutions for  the cases they consider. (See Ref. 
2, where other references are cited). 

The purpose of this  Communication is to discuss the 
special case of negative phonon interactions and to show 
how the questions of existence and uniqueness may be 
decided by means of descriptive geometrical arguments. 
Some of the results below overlap  with  results  announced 
without  proofs by Huber;"'* who has employed iteration 
techniques. The work  in Ref. 3 appears to be mainly con- 
cerned with the  actual calculation of the  gap function, 
under additional  restrictions on  the interaction, while this 
Communication is concerned only  with  qualitative aspects. 

The BCS equation for spherically symmetric gaps at  
zero temperature  has,  in appropriate units? the form 

/-(x) = Tf = s,' V ( x ,  0 *(') 
d l ,  (1) 

dl2 + **(E)  
where the real function f is proportional  to  the energy 
gap, and V is the negative of the phonon-interaction 
energy. We assume the following: 

(i) There are positive numbers m, M such that 

inf V ( x ,  () 2 m > O ( 2 4  
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These conditions will be sufficient for the existence theorem 
below. In discussing uniqueness we assume the stronger 
condition 

lim / I V(x + a ,  l )  - V(x ,  8 1  d l  = 0, 

uniformly in x .  (2d) 

At  this point we introduce some new notation. Let 
Ll(O, 1) be the Banach space of integrable  functions on 
(0, 1) with the usual norm which is denoted by I 1 .  I I. Let 
S be the intersection of the sphere consisting of all func- 
tions  in L1 such that I I f \  [ 5 M with the  cone defined by 
f 2 0. Let S ,  be the  part of S for which f 2 E > .O. Then 
under the hypotheses expressed by Eqs. (2a, 2b) one has 
the following: 

a-0 

Lemma 

If e is small  enough,  then TS,  C S , .  

Proof 

It is clear that  the whole Ll(O, 1) space is contracted by T 
into  the "sphere. Let f(x) belong to S. ,  i.e., f(x) = 

e + d x ) ,  9 2 0; then 

if e is small  enough. 
It should  be  noted here that e, M may be chosen so as 

to have TS,  properly included in S , .  This  fact is useful in 
the uniqueness question. 

We state now a special version of Schauder's fixed point 
theorem: A continuous map in a Banach  space  which maps 
a complete set S into a relatively compact set S' C S has 
a jixed point. This version may be proved by applying 
the familiar form of Schauder's theorem4 to  the closed 
convex hull of T(S'). Now we have the following: 187 
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Theorem 

The spectrum of the  operator T includes the whole posi- 
tive real axis. In particular, the  equation Tf = f has non- 
trivial  solutions  in s,. 

Proof 

The set S ,  is a convex complete set  in L1. [Notice that 
it will still be convex if one uses a Hilbert space norm.] 
Since the  map T is completely continuous by the as- 
sumption expressed by Eq. ( 2 ~ ) , ~  it has a fixed point by 
Schauder’s theorem. Hence, X = 1 is in  the spectrum of T. 
Replacing V by X” V,  X > 0, does not change the validity 
of Eqs. (2a, b,  and c). Therefore, the  equation Tf = Xf 
has a nontrivial  solution for all X > 0, which proves the 
theorem. 

References 

1. As seen from  the proof, the existence of a fixed point 
of T is due, geometrically speaking, to the fact that T 
contracts a large  enough  sphere but expands a neighbor- 
hood of the origin. This latter property of T i s  seen clearly 
by calculating its functional derivative at zero, which is 
logarithmically divergent. If the power of E in  the quasi- 
particle energy ( E 2  + f’))” were reduced- which is physi- 
cally unacceptable-then the derivative at zero would be 
finite and there may exist no solutions. For example, the 
equation 

f = 1’ v(x, o f ( o [ E z - z c  + f21-1/2 4 

has  no nontrivial  solutions if I VI < 1.  

2. The temperature-dependent BCS equation has  the form 

f = T , f  = s,’ v ( x ,  @(E2 -k f2)-’/* 

where 0 is some reduced temperature. If 0 is small enough, 
then  the proofs of the lemma and  the theorem still hold. 
In fact, a very crude  estimate will be to take E = 0, and 
the existence of an energy gap for small 0 is assured. If, 
however, 0 is large enough, there will be no solution. To 
see this,  assume Eq. (2d) to be true; then the  gap will be 
continuous and has a maximum N.  Equation (3) then 
implies that 

N 5 M N - -  
2 
0 

Hence, N will be zero if 2M/O < 1. 
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3. The anisotropic  gap equation  has  the  form f(x) = Pf 
where x denotes a three-dimensional vector and P is a 
nonlinear integral operator. Although P and T have 
different forms  they share  the properties stated in  Re- 
mark 1, namely they  expand a neighborhood  near  zero 
but  contract large  enough spheres. Hence an existence 
theorem for  an anisotropic energy gap would follow from 
reasoning similar to that followed in  the theorem  proof. 

4. To prove the uniqueness of the solution to f = Tf by 
topological methods is more  subtle.  One may, however, 
exploit the classical degree theory of continuous  maps as 
used, for example, by Rothe.‘ It is more convenient now 
to consider the set S, of continuous  functions f such  that 
f 2 E and max f 5 M ,  that is, to consider S ,  in the Banach 
space C(0, 1) under the maximum norm. We state now 
sufficient conditions to ensure uniqueness : 

Let  the interaction V satisfy Eqs. (2a, b,  and d). Sup- 
pose, for all f in s,, the linear integral equation 

has no nontrivial  solutions, i.e., that  the functional deriva- 
tive of Z - T has a bounded inverse in S , .  Then, the solu- 
tion of Tf = f ,  which exists by the above  theorem, is also 
unique. 

The proof becomes exactly the same as  that of Theorem 
3 in  Ref. 6 when one takes into account the following: 
(1) the  solution of  Tf = f is continuous by the assumption 
expressed in (2d); and (2) the image of the boundary of 
S ,  lies properly  in the interior of S , ,  as remarked in  the 
proof of the lemma. 

5. If the interaction changes its sign, then the existence of 
a nontrivial  solution  may,  in general, be asserted only 
under  additional  conditions which restrict the detailed 
properties of such an interaction.  This  topic is to be the 
subject of a future communication. 
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