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Abstract: This paper describes how a digital computer was used in combination with an emission  spectro- 

meter to determine chemical compositions of some  steels. A mathematical model describing  the relations 

between the  composition and the intensities of the spectral  lines was derived and experimentally tested. 

Both overlapping and  matrix effects were considered.  The  computer was also  used  to calibrate the instru- 

ment. 

Introduction 

Quantitative chemical analysis, based on  the measure- 
ment of electromagnetic radiation  from a  sample whose 
atoms have been excited, originates from experiments 
performed by Kirchhoff and Bunsen in the middle of the 
19th  century.  Optical emission spectroscopy was used. 
More recently the same principles have led to x-ray 
fluorescence chemical analysis. This  paper deals with 
optical emission spectroscopy and shows how a digital 
computer was used in  some experiments to establish a 
relationship between composition and spectral line in- 
tensity. 

Chemical analysis based on emission spectroscopy has 
developed into  an elaborate technique. Two  major diffi- 
culties encountered have been the instability of the spectro- 
scopic light  source, which leads to a  large  statistical error 
or poor precision, and matrix effects, which introduce 
systematic errors  or poor accuracy. In  order to discuss 
the  nature of these problems and some previous work, we 
will  give a short introduction to fundamental concepts. 

Spectrochemical analysis is based on  the fact that  the 
light intensity of a spectral line is related to  the compo- 
sition of the sample. Ideally the intensity of each line de- 
pends on only one particular  constituent of the sample, 
and  as a first approximation  this simplification is generally 
acceptable. In addition the light intensity also depends 
on  the excitation conditions. Because of the inherent in- 
stability of the two  excitation processes most commonly 
employed (arc and  spark discharge), the recorded  in- 
tensities generally fluctuate heavily. In  order  to  smooth  out 
the fluctuations,  simultaneous  integration of all the  ob- 
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served lines is applied  with respect to time. Division by the 
integration  time will  give the intensity average of each 
line. If the integration  time is kept  constant from run 
to  run, this division need not be  carried out explicitly. 
When the integration  time is kept constant,  the outcomes 
of repeated measurements will still differ from  run  to 
run, primarily because of varying excitation  conditions. 

Whether integration is applied or  not,  it is often  ob- 
served that  the fluctuations of two different line  inten- 
sities are close to being proportional, i.e., the two signals 
recorded are strongly correlated. The two lines then 
form  an homologous pair.' This  means that  in  an idealized 
case their intensity ratio does not vary, either with excita- 
tion  condition or time. When the condition of homologous 
pairs is approximated, it is possible to counteract the 
effects of light source instabilities by applying the method 
of relative intensities (using an internal standard), which 
will now be outlined. 

A reference line is chosen corresponding to  the  internal 
standard, some specific constituent of the sample. Gen- 
erally the major  constituent is selected as the  internal 
standard. First, let us assume that  the concentration of 
the  standard does not differ from  sample to sample such 
as in  the case of Fe in carbon steel. The time of integration 
is then determined in such  a way that  the integral of this 
reference line reaches a preset value, the reference level. 
Thus the effect of the correlated noise is eliminated and 
repeated measurements will now give results having far 
less spread. The remaining  spread is due to uncorrelated 
noise, e.g., from intensity  fluctuations of scattered light 
in  the spectrometer and  thermal noise in  the multipliers. 

If the  concentration of the internal standard varies, 



uch as  in  the case of Fe  in stainless steels, the method 
kas to be modified. The reference level should be such 
hat if the samples contain a constituent whose con- 
entration (as  opposed to  that of the internal standard) 
5 constant from sample to sample, the intensity integral 
.orresponding to this  constituent  should  remain the same. 
f this  condition is fulfilled, the integral corresponding 
o the internal standard will vary with the concentration 
,f the standard. The graph of this  relation is called the 
:orrection  curve of the internal  standard. Conversely, 
his curve will now give the reference level for an  arbitrary 
ample if it is assumed that its  content of the internal 
tandard can be estimated. When this technique is used, 
he times of integration will no longer be constant  but 
vill instead  be  randomly distributed  around a mean. It 
hould be mentioned that if the  time of integration is kept 
onstant  and  equal to this  mean, the correction  curve of 
he internal  standard  can be obtained  through averaging 
epeated  measurements of each sample. 

Once the intensity integrals corresponding to the con- 
tituents of the sample have been determined, the con- 
:entrations are normally  evaluated from working curves 
elating the intensity to the concentration of each con- 
tituent. However, this  method may in some cases lead to 
Lonsiderable errors. Such a working curve, for example, 
night only  hold true  for classes of samples having a par- 
icular metallurgical structure.  This effect will not be  con- 
idered any further here. 

Moreover, matrix effects may introduce  errors. These 
:ffects may be due to absorption  and enhancement of radi- 
Ition among  the  atoms of the constituents or may be 
:awed by selective vaporization.  Working curves (which 
tre obtained from  standards of known  compositions) may 
till be drawn using a parametric  presentation, as is  ex- 
:mplified for a particular constituent of a three-compo- 
lent system in Fig. 1. As the number of constituents 
ncreases, however, the technique very rapidly yields a 
xoblem of overwhelming complexity. 

The method of relative intensities successfully eliminates 
he effects  of correlated noise. However, it provides no 
:ountermeasure  against  uncorrelated noise, e&,  from 
ines which are  not homologous or Schrot-effect noise 
:enerated in the detectors. Furthermore  the conventional 
nethods do  not give a satisfactory  solution to the prob- 
ems generated by matrix effects. The two sets of prob- 
ems thus defined have inspired the present work, which 
s based on  the use of a digital computer  in  combination 
vith the spectrometer. 

1 Previous work 

The authors know of no fundamental  study presenting 
in explorative survey of matrix effects in emission spec- 
roscopy. In x-ray fluorescence spectroscopy Sherman2 has 
nade a penetrating  study of these effects. A quantitative 

I. - 
Figure I Sketch of matrix effects in a three-com- 

ponent alloy. Each  curve is obtained  by 
replacing  Fe with  Cr,  keeping  the  Ni-content 
constant. 

description leads to very complicated analytic expressions. 
Both in emission- and fluorescence-spectroscopy one is 
forced to introduce  approximations when aiming at 
practically useful expressions. In emission spectroscopy 
such attempts  are exemplified by Graue; Majkowski: 
and in x-ray fluorescence by  Lucas-Tooth:  Laffolie; 
and Marti.' When utilizing these and similar ideas, ana- 
logue3 .' as well as digital techniques5 v8"10 have been em- 
ployed. 

Outline of the  method 

The present approach is characterized by the following 
features. A digital computer is utilized both  for  the cali- 
bration of the instrument and for the determination of 
the compositions of unknown samples (Fig. 2). The  latter 
process will be called inversion. 

Further,  the mathematical  model  introduced simulates 
both overlapping- and matrix-effects.* Also the infor- 
mation from several lines representing the same con- 
stituent is simultaneously made useful. The relative 
significance of the different lines is considered. 

The  approach offers a countermeasure  against  uncor- 
related noise of zero mean. Since recalibrations  can  be 
frequently repeated it also offers a means of reducing 
systematic errors due to long-term drift. 

ference by other spectral lines not  resolved by the exit  slit. 
Overlapping  effects for a spectral  line may be defined as inter- 
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The model 

Consider the case where the spectral lines involved are 
viewed  by photomultipliers. The incident light will con- 
tribute with a  current ik(r) through  the kth multiplier. 
This  current will fluctuate heavily because of the insta- 
bility of the light source. The current is integrated over a 
finite time determined by the internal standard method. 
In spite of the noise-suppressing effect of this  method, 
repeated measurements of this integral will still vary from 
one result to  the next. When a  sample of composition  c is 
repeatedly excited, the mean value of the integral of the 
total multiplier current will be denoted 16(c) and  the indi- 
vidual  outcomes Uk(c). Thus 

Uk(C) = L(c)  + Pk, ( 1 )  

Figure 2 The two basic  modes of operation of the 
computer: calibration and inversion. The 
dashed frames indicate the computer. 
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where {PA} is a discrete stochastic process of zero  mean. 
In Appendix 1 this  formula is considered in  some detail. 

Next we discuss the  term  lk(c)  and  start with the fol- 
lowing physical reasoning. Consider a volume of gas, 
containing atoms of different kinds, from which light is 
emitted because of thermal excitation. If only the spon- 
taneous emission is considered, the intensity of any line 
will be proportional to the number of atoms  of  the corre- 
sponding  constituent, i.e., to its  concentration. The same 
holds true for the continuous intensity spectrum of that 
constituent. 

The primary  spontaneous process thus leads to approxi- 
mating the intensity fk(c)  with a sum of linear terms of 
the different concentrations.  Hence the overlappings of 
spectral intensities are taken into account. 

Suppose that  the constituent I dominates the radiation 
of line k ,  i.e., the coefficient of c1 is of dominating magni- 
tude. The radiation  emitted from  the  atoms of constituent 
I may be absorbed by the  atoms of the same or  other con- 
stituents. Also, radiation  originating from  any  one con- 
stituent may cause induced emission in the  atoms of the 
Ith constituent.  Quantitatively  such processes depend on 
the energy levels and  the transition  probabilities involved. 

It seems reasonable to assume that  the intensity losses 
or gains due to these secondary processes are described 
by terms proportional to the two-fold products of the 
concentration of the constituent I with each one of the 
other concentrations involved, possibly including I .  Letting 
m denote  the number of constituents  one is thus led to 
the folIowing formula: 

~ A ( c )  = 2 Aklci + cz Qk,c; + fko, 
in which the first term describes gains and losses from  the 
overlapping effects, and  the second term,  from  the  mat 
effects. The  term Tho includes  background  radiation due 
excitation of the atmosphere  surrounding the light sourc 
and of vaporized electrode material. 

In conclusion the model is based on  the assumptio 
that  the resulting radiation is homogeneously generated 
the  emitting plasma. In  the case of x-ray fluorescen 
spectroscopy this approach is certainly not  true, sinc 
the primary emission declines exponentially with th 
depth. However, making  some  test  runs  with X-ray dat 
using the present  model and also using one of comparabl 
complexity which was derived considering the  nonhomo 
geneity5 mentioned  above we found neither metho 
superior. Although this result is not a conclusive argumen 
and hence deserves no further  regard in this  paper i 
indicates that  the presented approximation is justifiabl 
in the far more favourable case of emission spectroscopy 

The calibration 

The objective of the calibration is to determine  numeri 

m m 

t = 1  2 = 1  



cally the coefficients of equations (2) from measurements 
of samples of known compositions. For each  spectral 
line observed, defining a particular value of k in Eq. (2), 
as many  equations  in the unknown coefficients are  ob- 
tained  as  there are reference samples. 

In  order to suppress the effects of the noise super- 
imposed according to Eiq. (l), it is advantageous to make 
the system of equations  overdetermined, i.e. N ,  the 
number of reference samples, should if possible exceed 
M = 2rn + 1 ,  the number of coefficients in  each one 
of the equations (2) .  The unknowns are determined apply- 
ing the maximum likelihood method which, assuming 
Gaussian noise, leads to the least-squares method. 

A complication arises since it is desirable to  take all 
the constituents of the sample into account. Therefore 
cy=l ci = 1 and  the columns of the coefficient matrix 
of the system of equations will be linearly dependent.  This 
dependency could easily be removed through expressing 
any one of the concentrations  as a function of the others. 
However, it is generally difficult to choose the constituent 
to be excluded on physical grounds only. Applying nu- 
merical arguments, it is possible to form well-defined 
rules concerning this elimination. The numerical pro- 
cedure employed is described in Appendix 2. The normal 
equations are never explicitly formed. Instead, the sys- 
tem is solved through stepwise orthogonalization of the 
coefficient matrix. Thus each step will improve the solu- 
tion available from the previous step. For a survey of 
similar methods, see Ref. 11. 

Any one of the concentrations  can be expressed as a 
linear  combination of the others.  Thus,  there will be as 
many different solutions  as  there are constituents in  the 
sample. Obviously these solutions are identical in  the sense 
that each one of them  could  be  transformed into any one 
of the others. This  lack of uniqueness makes the physical 
interpretation of the individual coefficients  less interesting. 
In fact on numerical  grounds it has been found preferable 
not to explicitly calculate these coefficients, but rather to 
express Eq. (2) in  terms of another set of coefficients 
corresponding to  the use of a reference sample as de- 
scribed in the next section. This will not change the struc- 
ture of the model but  only the values of the coefficients. 

The inuersion 

The inversion implies the determination of the compo- 
sition of an unknown  sample using the model (1)-(2), 
calibrated  as described in the previous section. Basically 
this requires the solution of a system of nonlinear  equa- 
tions. Since the present approach allows the use of more 
than  one spectral line for  each  constituent,  this system of 
equations may contain  more  equations than unknowns. 

Let n be the  total number of spectral lines observed. 
Further, let U(c) be the outcome of a specific run  and 
I(c) the  output of the model corresponding to  the com- 
- 

I(c) = 

Since it is desired to consider tl 

1 
J 
mities of the  ob- 

served lines according to their significance, a weighting 
matrix I1 is introduced: 

- 
n, 0- 

I 1 2  

Ir= 

n k  

-0 

where I I k  should be inversely proportional to 02 = E(  Pi 1. 
We define the  optimal solution c* as follows. Let 

&* = U(c) - I(c*). 

Then c* minimizes the  quadratic  form 

f = s*TIr&*. (3) 

The vector c* has rn components. Since c*  defines an 
L 

extremum, it holds for  each one of its  components 

The original, possibly overdetermined system of equa- 
tions  has thus been reduced to a system of rn equations 
in rn unknowns. Introducing a suitable  formalism, these 
equations, embodying the coefficients defined in (2), may 
be written in a compact form. The formalism and  the 
derivation are presented in Appendix 3. 

The numerical solution of these equations may be 
carried through by using Newton-Raphson  iterations. 
The favorable numerical convergence which occurs when 
this  method is applied is due to the fact that  the intensity 
of each specific spectral  line is dominated by one par- 
ticular constituent, and also that each  constituent  con- 
sidered dominates the intensity of at least one spectral 
line. It has been empirically verified that a simplified 
version of the Newton-Raphson  procedure gives quite 
satisfactory results. Thus, at  each iteration,  the  equation 
that fits worst is identified and then  only the constituent 
dominating  this  equation is changed. For a detailed 
presentation, see Ref. 12. 163 
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Figure 3 Example of a case of non-uniqueness 
when solving  the  inversion  problem. 

The inversion  procedure  does not necessarily  lead to an 
unique  answer  c*.  This  can  easily  be  grasped  from the 
following  geometrical  picture. Let both c and i(c) be 
3-dimensional. The composition of any  such  sample will 
be  contained  in a plane in the c-space.  This  plane  is 
mapped into a surface,  generally a curved  one, in the 
intensity-space.  Now  suppose that the intensity  outcome 
of a particular run is represented by a point separated 
from  this  surface. For simplicity  assume that II is  an 
identity  matrix.  Then an optimal solution arrived at 
through (4)  is  represented by the footpoint of a normal to 
the intensity  surface  passing through this  point.  One may 
easily  visualize  cases  when there are several  such  normals 
(Fig. 3). However,  within  local  regions  uniqueness  can 
be ascertained." It is  necessary to choose the starting 
point of the iterative  procedure  close  enough to the cor- 
rect solution, a requirement which has  proved to be no 
serious  obstacle in practice.  One thus chooses a reference 
sample of composition c,,, which  preferably  represents an 
average  composition  in the analysis-space  considered. 
The deviations of the concentrations from  this  reference 
composition  form the working  variables of the numerical 
procedure as described  in  Appendix 3. 

Experimental results 

The system  described  has  been  tested  experimentally  using 
a 3-meter,  concave  grating  Hilger-Watts  30-channel  poly- 
chromator, Type  E-789,  connected to an IBM 1620 digital 

164 computer.  Altogether,  more than 600 specimens  have 

been analyzed, all representing  low-alloy carbon stee 
and stainless  chromium-nickel  steels. The two  types hay 
given  rise to separate calibrations of the model. 

To exemplify the results of the experiments  with  carbc 
steels we choose a case  exposing  pronounced  matrix effect 
Calibration data for molybdenum are shown in Fig. 
The matrix effects  clearly  prevent accurate determinatio~ 
of  low  Mo contents if only  these data are used. 

Taking into account the calibration data for the r 
maining  constituents (Fe, Si,  Mn, Cr, Ni) and applyir 
the present  model, we obtained the results  in  Table 
when analyzing the calibration samples. A comparisc 
between  Fig. 4 and Table 1 shows that  the matrix effec 
have  been taken care of. 

Table I A comparison between results  obtaine 
with the wet chemical  analysis and wii 
the  computer  method.  The  figures  repri 
sent Mo-content in a  carbon steel. 

Sample Wet Spectro- 
No. analysis anaIysis 

Sample Wet Spectrc. 
No. analysis anaIysl 

1 0.00% 0.00% 

9 0.19  0.19 
17  0.76  0.76 8 0.18  0.19 
16  0.63  0.63 7 0.16  0.15 
15  0.53  0.52 6 0.11  0.11 
14  0.49  0.49 5 0.07  0.07 
13  0.37  0.36 4 0.05 0.05 
12  0.27 0.26 3 0.01  0.02 
11  0.26  0.27 2 0.00 0.00 
10  0.25% 0.26% 

Figure 4 Example of matrix effects which ha1 
been  solved by the  computer  method ( c  
Table 1) .  The data represent Mo  in a carbc 
steel. 
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Figure 5 Working curves representing six compo- 
nents of stainless  steel (18/81. Matrix ef- 
fects are not apparent. The figures in the 
diagram  indicate the  number of coinciding 
points. 

Simultaneous  applications of the computer  method and 
:onventional methods to a large  quantity of spectro- 
:hemica1 data representing various samples of stainless 
iteels have not conclusively demonstrated  a  superior 
werage accuracy for the former method. However, in the 
xesent investigation the lines used show very small ma- 
rix effects, as is shown  in Fig. 5. Therefore the inaccuracy 
n the analysis of the available reference samples became 
Ln obstructive  factor when aiming at a conclusion regard- 
ng the merits of the methods. 

Table 2 exemplifies the uncertainty of wet analyses 
vhen determining the compositions of reference samples, 
n  this case of one of intermediate composition. Six inde- 
)endent determinations were made at two different insti- 
utions.  Gravimetric,  photometric,  titrimetric and po- 
entiometric  methods were applied. Table 2 also gives 
Ln idea of the precision of the spectrometer.  Thus the 
ame spectrum was spectroanalyzed by conventional 
neans and with the computer  method  a total of 30 times 

each. Only one detector was used for each  constituent. 
Although the previous results do  not justify a general 

statement in favor of the precision of the computer  method, 
there are cases where the gain in accuracy is apparent. 
Such a case is illustrated  in Fig. 6. 

It is likely that  the improvement is due to the presence 
of slight, scarcely noticeable matrix effects. The manually 
drawn  working curves offer no countermeasure  against 
such effects. 

The above  material  also  demonstrates how treacherous 
systematic errors may be  introduced when using such 
curves. This is  exemplified in  Table 2 by the Ni-values 
obtained from  the conventional methods; these values had 
to be corrected by drawing a new curve before carrying 
through the comparison presented in Fig. 6. 

Conclusion 

The experimental results presented in this paper cover a 
very narrow sector of the  total field of possible appli- 
cations of spectrum analysis. However, the methods em- 
ployed to arrive at these results allow for great flexibility 
since they are based on  the use of a digital computer. 
Demonstrating the usefulness of the methods  in a par- 
ticular application hence has a bearing also on  other 
problems, even though it can not be stated at  present 
that  the very same model will  be adequate throughout 
the range of applications. 

Figure 6 A comparison between the conventional 
and the  computer  method. The results f o r  
a particular constituent are illustrated. 
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As for the problem  studied, the analysis of some steels, 
the results have proved that  it is possible to resolve certain 
matrix effects with the derived model. The average ac- 
curacy was limited by the inaccuracy of the reference 
samples and  the precision of the instrument, rather  than 
by the model. Simultaneous  determinations using the con- 
ventional  method and  the present one indicate that sys- 
tematic errors due to subjective judgments are difficult 
to avoid with the former one  but  can essentially be elimi- 
nated with the new one. Further experimental work is 
being done to investigate the applications of our model. 

Appendix 1 

Let u(t) be the  output of one of the photomultipliers. 
For simplicity we assume that  the photomultipliers are 
of equal sensitivity. We set 

u( t )  = g(t) i  + io + n( t ) .  (A- 1)  

Here i = i(c) is the time average of the current caused 
by the incident light from the spectral line. The function 
g(t) is the outcome of a  stochastic process ( g ( t ) }  of mean 
1 ,  i.e., g(t) = 1 + m(t), where E ( m ( t ) }  = 0, i.e. of mean 
zero. The  approach is justified by the  fact  that empirically 
the fluctuations are roughly proportional  to  the amplitude 
of i, as exemplified in Fig. 7. Moreover io denotes the 
mean dark current and n(t) its stochastic  component, i.e., 
E{n(t)}  = 0. Eq. (A-1) is integrated over the interval* 
(0, T) giving 

* Generally t = 0 is defined hy the end of the preburn period. 

U ( T )  = G ( T ) ~  + io?- + N ( T ) ,  ( A 4  

where the integrals are denoted with capital letters. The 
correction curve of the internal standard may, as stated in 
the main  text,  be  obtained  through averaging the  output 
Uref over many runs using the same excitation time T = T. 

We make the approximation 

iref(C) = iref(Cref). (A-3) 

The correction  curve is then given  by the equation 

Et Uref(T)} = EiGref(T)}iref(cref) + ioT 

= [iref(Cref) + i0lT. (A-4) 

Now consider the outcomes T and G,,f(T) of a particular 
run using the method of the internal standard. Equalizing 
(A-1) and (A-4) one obtains,  after solving for Gref(T), 

G,,f(T) = 
( k e f  + io)T - Nrer(T) -  io^. (A-5: 

l r e f  

Assuming the lines to be homologous, we have G(T) = 
G r e f ( ~ ) .  Thus introducing (A-5) into (A-1) gives 

U(T) = [ T + io -__ T - 7 - ~ N r e f ( 7 ) ]  i + N(T) + ior, 
iref irpf 

We have [i,,(T - T)/iref] i<< i07. This follows from i<< i r e ,  
since the internal standard is the dominant  constituent. In 
addition T T. Moreover Nref(T) i / i r e f  << N(T). We recal' 
that  the detectors are identical and  thus ElN:&)) k 
E( N'(T) 1. Then we obtain 

Table 2 Results from repeated measurements  using  one particular stainless  steel sample (AIS1 316). 

Wet chemical analysis 

Constituent Fe Si Mn Cr Ni M O  

Percentage, mean 64.53 .60 1.68 17.26 13.27 2 .59  
Standard deviation .22 . 00 .01 .22 .05 .04 

Intensity values I(c> 

Mean 81.06  35.35  45.19  30.33  45.08  60.86 
Standard deviation .03 .25 .51 .14 .27  .61 

Resulting analysis, computer method 

Percentage, mean 64 .53 .62 1 .70 17.27  13.28  2.61 
Standard deviation .14 .01 .03 .09 .11 .04 

Resulting analysis, concentional method 

Percentage, mean 64.34 .61 1 .71 17.24  13.49  2.62 
Standard deviation .15 .01 .02 .09 .13 .04 
Corrected value (see text) 13.29 
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Figure 7 Each picture shows the  simultaneous variations of the  intensities of an Fe-line (above) and a Cr- 
line with time when a sample is excited. The  time interval shown  is  about  one  minute.  The  different 
pictures  represent different  samples.  The lines evidently  form a homologous pair. 

U(T) = T i  + N ( T )  + io 7 

= T(i + io) + N ( 7 )  + i O ( T  - T ) .  

4s may be readily shown  from (A-5) E{  7 ] = T. Defining 
i-(i + io) = I and emphasizing the dependence of the 
:omposition we finally obtain U(c) = I(c) + P, where 
P is a stochastic variable of mean zero. 

ippendix 2 

Rewriting equations (2) using conventional notations we 
lave 

A x  + b, 

where 

u, (IC). 

.v U,("C)~ 

I 
The superindex denotes the number of the sample. 
Neglecting the uncertainty of the analysis of the refer- 
ence samples we have 167 
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m 

x c i  = 1 
i = l  

for  any  sample.  The  system (A-6) is thus ill-behaved and 
the orthodox procedure  using normal equations is not 
applicable. Instead an orthogonalization procedure is 
applied. 

Basically a Schmidt orthogonalization scheme  is  used.13 
Out of the set of column-vectors defined  by the matrix 
A = [ala, . 1 aM],  an orthonormal set of base  vectors 
is  formed in a stepwise  manner. In each step an addi- 
tional vector  from A is  selected to generate a new base 
vector.  Let S, denote the subspace  spanned by the set of 
base  vectors at a certain step a. Let b', be the orthogonal 
projection of b on S, (Fig. 8). Expressing b', as a linear 
combination of the columns of A selected so far, i.e. the a 
vectors  spanning S,, gives a solution x ,  in the least-square 
sense. Components of x ,  corresponding to nonselected 
a-vectors equal zero. The squared length of the vector 

e, = b - bh b - A , x ,  (A-7) 

equals the sum of the squared errors. That column  vector 
among the not yet  selected  columns of A which forms the 
least  angle  with E, is  next  chosen to increase the dimension 
of S, by one giving S,,, (Fig. 9). 

If any  one of the remaining  vectors is found to be 
orthogonal to E, within a specified tolerance, that vector 
is  regarded as linearly  dependent on the vectors span- 
ning s,. Such a vector  is  excluded from further calcu- 
lations. The calculations are terminated when the length 
of the error vector  is  less than a preset  value or if there 
are no more  vectors to select. 

Appendix 3 

Let x denote the deviations of the concentrations  from 
their  reference  values. 

x = c - co. (A-8) 

Introducing x into (2) gives an equation of identical 
structure. Simplifying the notations by writing y ,  = I,(c) 
this new equation may  be written: 

Y ,  = Y, ,  + a k z X i  + x1 C a+,. (A-9) 

There will  be n such  equations. They can be  written  in 
a condensed form, as  will  now  be demonstrated. 

Indices  may  be  assigned to constituents and lines  in 
an arbitrary way. Table 3 exemplifies a possible  choice. 

m m 

i= l  i = l  

Figure 8 Geometrical picture of the  least-square! 
solution at step a, using the notations il 
the text. 

Figure 9 Selecting  a new pivot-vector for thc 
Schmidt-orthogonalization  using a leas 
angle criterion. 

Table 3 Assignment of indices  to the constituents and lines. 

Let the second  line  of  Table 3 define a column  vector xL 
This n-vector  is obtained from the m-vector x through 
linear transformation: x D  = D X .  The matrix D thus de 
fined  is  of order (n.  m) and contains only ONES and ZEROS 

Dominating constituent 1 2 . . .  m 1 2 3 1   2 1  
Concentration x1 x, . . . x, x1 x, x3 x1 x2 x1 

Spectral  line 1 2 * ' .  m m + l  . . .  n 
output Yl Y2 . . . Ym Y m + l  - . *  Y n  
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s columns will be denoted di,  that is, D = [d,d, . . * dm]. 
lnce indices have been assigned to the constituents and 
) the lines, the matrix  D is uniquely determined. 
We will also let the components of x define a matrix, 

btained as follows: Let the elements of the vector 
= DX be placed along the diagonal of a matrix, the 

ff-diagonal elements of which equal zero. The (n-n) ma- 
.ix thus obtained will be  denoted X .  Then (A-9) becomes 
= yo + Ax + XQx, where A and Q are (n.rn) matrices, 
and yo are (n. 1) matrices. 
We will now substitute  this expression into  the equa- 

ons (4). The transformation (A-8) leads to the follow- 
lg equivalent set of equations: 

de it 2 - &  = 0. 
x k  

+-om : 

eT ayT  
” - ” 
xk 8 X k  

follows that 
T 

y II(U - y) = 0.  
xk 

Ve have: 

- Aek + - Qx + XQe,, 
d X  

” 

xk axk 

rhere e, is a  unit vector of dimension rn 
Vriting 

‘ T  

P = I:;] 
q n  

/e also have: 

rs;x 0 

Introducing the  notation 

IO 
we have: 

1 s 5  = diag:[Qx] 

” - Ae, + XQe, + diag  [ex] d,. 
a x k  

Writing R(x) = A + XQ + diag [Qx]D and denoting the 
column vectors of this  matrix by  r,(x) the equations (4) 
may finally be written 

riII(U - y) = 0 k = 1 ,  2 . . .  m. 
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