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Evaluation of Spectrochemical Data

Using Digital Techniques

Abstract: This paper describes how a digital computer was used in combination with an emission spectro-

meter to determine chemical compositions of some steels. A mathematical model describing the relations

between the composition and the intensities of the spectral lines was derived and experimentally tested.

Both overlapping and matrix effects were considered. The computer was also used to calibrate the instru-

ment.

Introduction

Quantitative chemical analysis, based on the measure-
ment of electromagnetic radiation from a sample whose
atoms have been excited, originates from experiments
performed by Kirchhoff and Bunsen in the middle of the
19th century. Optical emission spectroscopy was used.
More recently the same principles have led to x-ray
fluorescence chemical analysis. This paper deals with
optical emission spectroscopy and shows how a digital
computer was used in some experiments to establish a
relationship between composition and spectral line in-
tensity.

Chemical analysis based on emission spectroscopy has
developed into an elaborate technique. Two major diffi-
culties encountered have been the instability of the spectro-
scopic light source, which leads to a large statistical error
or poor precision, and matrix effects, which introduce
systematic errors or poor accuracy. In order to discuss
the nature of these problems and some previous work, we
will give a short introduction to fundamental concepts.

Spectrochemical analysis is based on the fact that the
light intensity of a spectral line is related to the compo-
sition of the sample. Ideally the intensity of each line de-
pends on only one particular constituent of the sample,
and as a first approximation this simplification is generally
acceptable. In addition the light intensity also depends
on the excitation conditions. Because of the inherent in-
stability of the two excitation processes most commonly
employed (arc and spark discharge), the recorded in-
tensities generally fluctuate heavily. In order to smooth out
the fluctuations, simultaneous integration of all the ob-
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served lines is applied with respect to time. Division by the
integration time will give the intensity average of each
line. If the integration time is kept constant from run
to run, this division need not be carried out explicitly.
When the integration time is kept constant, the outcomes
of repeated measurements will still differ from run to
run, primarily because of varying excitation conditions.

Whether integration is applied or not, it is often ob-
served that the fluctuations of two different line inten-
sities are close to being proportional, i.e., the two signals
recorded are strongly correlated. The two lines then
form an homologous pair. This means that in an idealized
case their intensity ratio does not vary, either with excita-
tion condition or time. When the condition of homologous
pairs is approximated, it is possible to counteract the
effects of light source instabilities by applying the method
of relative intensities (using an internal standard), which

will now be outlined.

A reference line is chosen corresponding to the internal
standard, some specific constituent of the sample. Gen-
erally the major constituent is selected as the internal
standard. First, let us assume that the concentration of]
the standard does not differ from sample to sample such
as in the case of Fe in carbon steel. The time of integration
is then determined in such a way that the integral of this
reference line reaches a preset value, the reference level.
Thus the effect of the correlated noise is eliminated and
repeated measurements will now give results having far
less spread. The remaining spread is due to uncorrelated
noise, e.g., from intensity fluctuations of scattered light
in the spectrometer and thermal noise in the multipliers.
If the concentration of the internal standard varies,




such as in the case of Fe in stainless steels, the method
has to be modified. The reference level should be such
that if the samples contain a constituent whose con-
centration (as opposed to that of the internal standard)
is constant from sample to sample, the intensity integral
corresponding to this constituent should remain the same.
If this condition is fulfilled, the integral corresponding
to the internal standard will vary with the concentration
of the standard. The graph of this relation is called the
correction curve of the internal standard. Conversely,
this curve will now give the reference level for an arbitrary
sample if it is assumed that its content of the internal
standard can be estimated. When this technique is used,
the times of integration will no longer be constant but
will instead be randomly distributed around a mean. It
should be mentioned that if the time of integration is kept
constant and equal to this mean, the correction curve of
the internal standard can be obtained through averaging
repeated measurements of each sample.

Once the intensity integrals corresponding to the con-
stituents of the sample have been determined, the con-
centrations are normally evaluated from working curves
relating the intensity to the concentration of each con-
stituent. However, this method may in some cases lead to
considerable errors. Such a working curve, for example,
might only hold true for classes of samples having a par-
ticular metallurgical structure. This effect will not be con-
sidered any further here.

Moreover, matrix effects may introduce errors. These
effects may be due to absorption and enhancement of radi-
ation among the atoms of the constituents or may be
caused by selective vaporization. Working curves (which
are obtained from standards of known compositions) may
still be drawn using a parametric presentation, as is ex-
mplified for a particular constituent of a three-compo-
nent system in Fig. 1. As the number of constituents
increases, however, the technique very rapidly yields a
problem of overwhelming complexity.

The method of relative intensities successfully eliminates
he effects of correlated noise. However, it provides no
ountermeasure against uncorrelated noise, e.g., from
ines which are not homologous or Schrot-effect noise
enerated in the detectors. Furthermore the conventional
ethods do not give a satisfactory solution to the prob-
ems generated by matrix effects. The two sets of prob-
ems thus defined have inspired the present work, which
s based on the use of a digital computer in combination
ith the spectrometer.

Previous work

The authors know of no fundamental study presenting
n explorative survey of matrix effects in emission spec-
roscopy. In x-ray fluorescence spectroscopy Sherman® has
ade a penetrating study of these effects. A quantitative
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Figure 1 Sketch of matrix effects in a three-com-
ponent alloy. Each curve is obtained by
replacing Fe with Cr, keeping the Ni-content
constant.

description leads to very complicated analytic expressions.
Both in emission- and fluorescence-spectroscopy one is
forced to introduce approximations when aiming at
practically useful expressions. In emission spectroscopy
such attempts are exemplified by Graue,® Majkowski,*
and in x-ray fluorescence by Lucas-Tooth,” Laffolie,’
and Marti.” When utilizing these and similar ideas, ana-
logue® " as well as digital techniques® *7*° have been em-
ployed.

Ovutline of the method

The present approach is characterized by the following
features. A digital computer is utilized both for the cali-
bration of the instrument and for the determination of
the compositions of unknown samples (Fig. 2). The latter
process will be called inversion.

Further, the mathematical model introduced simulates
both overlapping- and matrix-effects.* Also the infor-
mation from several lines representing the same con-
stituent is simultaneously made useful. The relative
significance of the different lines is considered.

The approach offers a countermeasure against uncor-
related noise of zero mean. Since recalibrations can be
frequently repeated it also offers a means of reducing
systematic errors due to long-term drift.

® Overlapping effects for a spectral line may be defined as inter-
ference by other spectral lines not resolved by the exit slit,
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The model

Consider the case where the spectral lines involved are
viewed by photomultipliers. The incident light will con-
tribute with a current 7,(r) through the %'® multiplier.
This current will fluctuate heavily because of the insta-
bility of the light source. The current is integrated over a
finite time determined by the internal standard method.
In spite of the noise-suppressing effect of this method,
repeated measurements of this integral will still vary from
one result to the next. When a sample of composition ¢ is
repeatedly excited, the mean value of the integral of the
total multiplier current will be denoted I.(c) and the indi-
vidual outcomes U,(c). Thus

Uk(c) = ik<c) + P, (1)

Figure 2 The two basic modes of operation of the
computer: calibration and inversion. The
dashed frames indicate the computer.
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where {P,} is a discrete stochastic process of zero mean.
In Appendix 1 this formula is considered in some detail.

Next we discuss the term I,(c) and start with the fol-
lowing physical reasoning. Consider a volume of gas,
containing atoms of different kinds, from which light is
emitted because of thermal excitation. If only the spon-
taneous emission is considered, the intensity of any line
will be proportional to the number of atoms of the corre-
sponding constituent, i.e., to its concentration. The same
holds true for the continuous intensity spectrum of that
constituent.

The primary spontaneous process thus leads to approxi-
mating the intensity 7,(c) with a sum of linear terms of
the different concentrations. Hence the overlappings of
spectral intensities are taken into account.

Suppose that the constituent / dominates the radiation
of line %, i.e., the coefficient of ¢; is of dominating magni-
tude. The radiation emitted from the atoms of constituent
I may be absorbed by the atoms of the same or other con-
stituents. Also, radiation originating from any one con-
stituent may cause induced emission in the atoms of the
I'* constituent. Quantitatively such processes depend on
the energy levels and the transition probabilities involved.

It seems reasonable to assume that the intensity losses
or gains due to these secondary processes are described
by terms proportional to the two-fold products of the
concentration of the constituent / with each one of the
other concentrations involved, possibly including /. Letting
m denote the number of constituents one is thus led to
the following formula:

ik(c) = z_: Aic; + ¢ Z Orici + 7»{:05 (2)

in which the first term describes gains and losses from the
overlapping effects, and the second term, from the matri
effects. The term I, includes background radiation due to
excitation of the atmosphere surrounding the light source
and of vaporized electrode material.

In conclusion the model is based on the assumption|
that the resulting radiation is Aomogeneously generated i
the emitting plasma. In the case of x-ray fluorescence
spectroscopy this approach is certainly not true, since
the primary emission declines exponentially with thd
depth. However, making some test runs with X-ray data
using the present model and also using one of comparable
complexity which was derived considering the nonhomo-
geneity’ mentioned above we found neither method
superior. Although this result is not a conclusive argumen
and hence deserves no further regard in this paper it
indicates that the presented approximation is justifiable
in the far more favourable case of emission spectroscopy

e The calibration

The objective of the calibration is to determine numeri




cally the coefficients of equations (2) from measurements
of samples of known compositions. For each spectral
line observed, defining a particular value of & in Eq. (2),
as many equations in the unknown coefficients are ob-
tained as there are reference samples.

In order to suppress the effects of the noise super-
imposed according to Eq. (1), it is advantageous to make
the system of equations overdetermined, i.e. N, the
number of reference samples, should if possible exceed
M = 2m -+ 1, the number of coefficients in each one
of the equations (2). The unknowns are determined apply-
ing the maximum likelihood method which, assuming
Gaussian noise, leads to the least-squares method.

A complication arises since it is desirable to take all
the constituents of the sample into account. Therefore

™, ¢; = 1 and the columns of the coefficient matrix
of the system of equations will be linearly dependent. This
dependency could easily be removed through expressing
any one of the concentrations as a function of the others.
However, it is generally difficult to choose the constituent
to be excluded on physical grounds only. Applying nu-
merical arguments, it is possible to form well-defined
rules concerning this elimination. The numerical pro-
cedure employed is described in Appendix 2. The normal
equations are never explicitly formed. Instead, the sys-
tem is solved through stepwise orthogonalization of the
coefficient matrix. Thus each step will improve the solu-
tion available from the previous step. For a survey of
similar methods, see Ref, 11.

Any one of the concentrations can be expressed as a
linear combination of the others. Thus, there will be as
many different solutions as there are constituents in the
sample. Obviously these solutions are identical in the sense
that each one of them could be transformed into any one
of the others. This lack of uniqueness makes the physical
interpretation of the individual coefficients less interesting.
In fact on numerical grounds it has been found preferable
not to explicitly calculate these coefficients, but rather to
express Eq. (2) in terms of another set of coefficients
corresponding to the use of a reference sample as de-
scribed in the next section. This will not change the struc-
ture of the model but only the values of the coefficients.

o The inversion

The inversion implies the determination of the compo-
sition of an unknown sample using the model (1)-(2),
calibrated as described in the previous section. Basically
this requires the solution of a system of nonlinear equa-
tions. Since the present approach allows the use of more
than one spectral line for each constituent, this system of
equations may contain more equations than unknowns.

Let n be the total number of spectral lines observed.
Further, let U(c) be the outcome of a specific run and
i(c) the output of the model corresponding to the com-

position ¢,
[ Ul(C)W RACK
Us(c) L(c)
Ulc) = S 1c) = .
Uk(c> ilc<c)
- Un.(c)» L L.(c)J

Since it is desired to consider the intensities of the ob-
served lines according to their significance, a weighting
matrix II is introduced:

II, 0

II,,

L0 I,

where I, should be inversely proportional to o2 = E{P}}.
We define the optimal solution c¢* as follows. Let

£* = Ulc) — I(c*).
Then c¢* minimizes the quadratic form

f = e*"Tle*. (3)
The vector ¢* has m components. Since c* defines an
extremum, it holds for each one of its components

(E)i> =0 k=1,2, - m. 4)
ack c*

The original, possibly overdetermined system of equa-
tions has thus been reduced to a system of m equations
in m unknowns. Introducing a suitable formalism, these
equations, embodying the coefficients defined in (2), may
be written in a compact form. The formalism and the
derivation are presented in Appendix 3.

The numerical solution of these equations may be
carried through by using Newton-Raphson iterations.
The favorable numerical convergence which occurs when
this method is applied is due to the fact that the intensity
of each specific spectral line is dominated by one par-
ticular constituent, and also that each constituent con-
sidered dominates the intensity of at least one spectral
line. It has been empirically verified that a simplified
version of the Newton-Raphson procedure gives quite
satisfactory results. Thus, at each iteration, the equation
that fits worst is identified and then only the constituent
dominating this equation is changed. For a detailed
presentation, see Ref. 12.
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Figure 3 Example of a case of non-uniqueness
when solving the inversion problem.

The inversion procedure does not necessarily lead to an
unique answer c¢*. This can easily be grasped from the
following geometrical picture. Let both ¢ and I(c) be
3-dimensional. The composition of any such sample will
be contained in a plane in the c-space. This plane is
mapped into a surface, generally a curved one, in the
intensity-space. Now suppose that the intensity outcome
of a particular run is represented by a point separated
from this surface. For simplicity assume that II is an
identity matrix. Then an optimal solution arrived at
through (4) is represented by the footpoint of a normal to
the intensity surface passing through this point. One may
easily visualize cases when there are several such normals
(Fig. 3). However, within local regions uniqueness can
be ascertained.” It is necessary to choose the starting
point of the iterative procedure close enough to the cor-
rect solution, a requirement which has proved to be no
serious obstacle in practice. One thus chooses a reference
sample of composition ¢,, which preferably represents an
average composition in the analysis-space considered.
The deviations of the concentrations from this reference
composition form the working variables of the numerical
procedure as described in Appendix 3.

Experimental results

The system described has been tested experimentally using
a 3-meter, concave grating Hilger-Watts 30-channel poly-
chromator, Type E-789, connected to an IBM 1620 digital
computer. Altogether, more than 600 specimens have
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been analyzed, all representing low-alloy carbon steels
and stainless chromium-nickel steels. The two types have
given rise to separate calibrations of the model.

To exemplify the results of the experiments with carbon
steels we choose a case exposing pronounced matrix effects.
Calibration data for molybdenum are shown in Fig. 4.
The matrix effects clearly prevent accurate determinations
of low Mo contents if only these data are used.

Taking into account the calibration data for the re-
maining constituents (Fe, Si, Mn, Cr, Ni) and applying
the present model, we obtained the results in Table 1
when analyzing the calibration samples. A comparison
between Fig. 4 and Table 1 shows that the matrix effects
have been taken care of.

Table I A comparison between results obtained
with the wet chemical analysis and with
the computer method. The figures repre-
sent Mo-content in a carbon steel.

Sample  Wet  Spectro- || Sample Wet  Spectro-
No. analysis analysis No.  analysis analysis
1 0.009%, 0.009, 10 0.259%, 0.26%
2 0.00 0.00 11 0.26 0.27
3 0.01 0.02 12 0.27 0.26
4 0.05 0.05 13 0.37 0.36
5 0.07 0.07 14 0.49 0.49
6 0.1 0.11 15 0.53 0.52
7 0.16 0.15 16 0.63 0.63
8 0.18 0.19 17 0.76 0.76
9 0.19 0.19

Figure 4 Example of matrix effects which have
been solved by the computer method (cf.
Table 1). The data represent Mo in a carbon
steel.
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Figure 5 Working curves representing six compo-

nents of stainless steel (18/8). Matrix ef-
fects are not apparent. The figures in the
diagram indicate the number of coinciding
points.

Simultaneous applications of the computer method and
conventional methods to a large quantity of spectro-
chemical data representing various samples of stainless
steels have not conclusively demonstrated a superior
average accuracy for the former method. However, in the
present investigation the lines used show very small ma-
trix effects, as is shown in Fig. 5. Therefore the inaccuracy
in the analysis of the available reference samples became
an obstructive factor when aiming at a conclusion regard-
ing the merits of the methods.

Table 2 exemplifies the uncertainty of wet analyses
when determining the compositions of reference samples,
in this case of one of intermediate composition. Six inde-
pendent determinations were made at two different insti-
tutions. Gravimetric, photometric, titrimetric and po-
tentiometric methods were applied. Table 2 also gives
an idea of the precision of the spectrometer. Thus the
same spectrum was spectroanalyzed by conventional
means and with the computer method a total of 30 times

each. Only one detector was used for each constituent.

Although the previous results do not justify a general
statement in favor of the precision of the computer method,
there are cases where the gain in accuracy is apparent.
Such a case is illustrated in Fig. 6.

It is likely that the improvement is due to the presence
of slight, scarcely noticeable matrix effects. The manually
drawn working curves offer no countermeasure against
such effects.

The above material also demonstrates how treacherous
systematic errors may be introduced when using such
curves. This is exemplified in Table 2 by the Ni-values
obtained from the conventional methods; these values had
to be corrected by drawing a new curve before carrying
through the comparison presented in Fig. 6.

Conclusion

The experimental results presented in this paper cover a
very narrow sector of the total field of possible appli-
cations of spectrum analysis. However, the methods em-
ployed to arrive at these results allow for great flexibility
since they are based on the use of a digital computer.
Demonstrating the usefulness of the methods in a par-
ticular application hence has a bearing also on other
problems, even though it can not be stated at present
that the very same model will be adequate throughout
the range of applications.

Figure 6 A comparison between the conventional
and the computer method. The results for
a particular constituent are illustrated.
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As for the problem studied, the analysis of some steels,
the results have proved that it is possible to resolve certain
matrix effects with the derived model. The average ac-
curacy was limited by the inaccuracy of the reference
samples and the precision of the instrument, rather than
by the model. Simultaneous determinations using the con-
ventional method and the present one indicate that sys-
tematic errors due to subjective judgments are difficult
to avoid with the former one but can essentially be elimi-
nated with the new one. Further experimental work is
being done to investigate the applications of our model.

Appendix 1

Let u(r) be the output of one of the photomultipliers.
For simplicity we assume that the photomultipliers are
of equal sensitivity. We set

u(t) = g()i + iy + n(). (A-1)

Here i = i(c) is the time average of the current caused
by the incident light from the spectral line. The function
2(#) is the outcome of a stochastic process {g(f)} of mean
1, ie., g(©) = 1 4+ m(r), where E{m(f)} = 0, i.e. of mean
zero. The approach is justified by the fact that empirically
the fluctuations are roughly proportional to the amplitude
of i, as exemplified in Fig. 7. Moreover i, denotes the
mean dark current and n(7) its stochastic component, i.e.,
E{n(n} = 0. Eq. (A-1) is integrated over the interval*
(0, 7) giving

* Generally ¢ = 0 is defined by the end of the preburn period.

U(r) = G(r)i + ior + N(7), (A-2)

where the integrals are denoted with capital letters. The

correction curve of the internal standard may, as stated in

the main text, be obtained through averaging the output

U.,.; over many runs using the same excitation time r = T.
We make the approximation

irer(€) = irer(Cror) - (A-3)
The correction curve is then given by the equation
E{ U (D)} = E{Grat(D}ires(ered) + 40T

= [irerlerer) + 0] T (A-4)

Now consider the outcomes 7 and G,,(7) of a particular
run using the method of the internal standard. Equalizing
(A-1) and (A-4) one obtains, after solving for G..:(r),

iref + IO)T - Nref(T) - iOT'

lref

Goi(1) = ( (A-5)
Assuming the lines to be homologous, we have G(r) =
G.,.:(). Thus introducing (A-5) into (A-1) gives

— N,.
i <[4, T2 Mt

lref Irof

i|i -+ N(7) + io7.

We have [io(T — 7)/i,.s] i << iyr. This follows from i << i, ¢
since the internal standard is the dominant constituent. In
addition 7 &2 T. Moreover N, .¢(7) i/i..; << N(r). We recall
that the detectors are identical and thus E{NZ (1)} =~
E{N?*@r)}. Then we obtain

Table 2 Results from repeated measurements using one particular stainless steel sample (AISI 316).

Wet chemical analysis

Constituent Fe Si
Percentage, mean 64 .53 .60
Standard deviation 22 .00

Intensity values _I(c)

Mean 81.06 35.35
Standard deviation .03 .25
Resulting analysis, computer method
Percentage, mean 64 .53 .62
Standard deviation 14 .01
Resulting analysis, conventional method

Percentage, mean 64 .34 .61
Standard deviation .15 .01
Corrected value (see text)

Mn Cr Ni Mo
1.68 17 .26 13.27 2.59
.01 22 .05 .04

45.19 30.33 45 .08 60 .86
51 14 .27 .61

1.70 17.27 13.28 2.61
.03 .09 A1 .04

1.71 17.24 13.49 2.62
.02 .09 13 .04

13.29
.14
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Figure 7 Each picture shows the simultaneous variations of the intensities of an Fe-line (above) and a Cr-
line with time when a sample is excited. The time interval shown is about one minute. The different
pictures represent different samples. The lines evidently form a homologous pair.

Uir) = Ti+ N(z) + iy 7 ‘U, (o)
= T(i + i) + N(r) + is(r — T). by = -
As may be readily shown from (A-5) E{r} = T. Defining L” U (%)
T(i + i) = I and emphasizing the dependence of the - .
composition we finally obtain U(c) = Kc) + P, where a;,
P is a stochastic variable of mean zero.
Appendix 2 Qo
Rewriting equations (2) using conventional notations we _ T
Xy = | G
have
Ax = b, (A-6)
where Gtm
1 1 b 1 1 1! - Iko J
Cc1 C2 Crml Cr* €1 Crt Cpmi1
y 1 | The superindex denotes the number of the sample.
LA | | Neglecting the uncertainty of the analysis of the refer-
NeNey oo Yo Ve ey oo Yen Yol ence samples we have 167
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ZC,L':I

i=1

for any sample. The system (A-6) is thus ill-behaved and
the orthodox procedure using normal equations is not
applicable. Instead an orthogonalization procedure is
applied.

Basically a Schmidt orthogonalization scheme is used.”
Out of the set of column-vectors defined by the matrix
A = [a,a, -+ ay], an orthonormal set of base vectors
is formed in a stepwise manner. In each step an addi-
tional vector from A is selected to generate a new base
vector. Let S, denote the subspace spanned by the set of
base vectors at a certain step «. Let b/, be the orthogonal
projection of b on S, (Fig. 8). Expressing b/, as a linear
combination of the columns of A4 selected so far, i.e. the
vectors spanning S,, gives a solution x, in the least-square
sense. Components of x, corresponding to nonselected
a-vectors equal zero. The squared length of the vector
g, =b—Db,=b— A,x, (A-7)
equals the sum of the squared errors. That column vector
among the not yet selected columns of 4 which forms the
least angle with ¢, is next chosen to increase the dimension
of S, by one giving S, ., (Fig. 9).

If any one of the remaining vectors is found to be
orthogonal to e, within a specified tolerance, that vector
is regarded as linearly dependent on the vectors span-
ning S,. Such a vector is excluded from further calcu-
lations. The calculations are terminated when the length
of the error vector is less than a preset value or if there
are no more vectors to select.

Appendix 3

Let x denote the deviations of the concentrations from
their reference values.

X =¢ — Cp. (A-8)

Introducing x into (2) gives an equation of identical
structure. Simplifying the notations by writing y, = I.(c)
this new equation may be written:

e = Yro + Z ap.x; + x Z qriXi. (A‘9)
i=1 i=1

There will be n such equations. They can be written in
a condensed form, as will now be demonstrated.

Indices may be assigned to constituents and lines in
an arbitrary way. Table 3 exemplifies a possible choice.

€a

bq

Figure 8 Geometrical picture of the least-squares
solution at step «, using the notations in
the text.

Figure 9 Selecting a new pivot-vector for the
Schmidt-orthogonalization using a least
angle criterion.

€q

Let the second line of Table 3 define a column vector xp.
This n-vector is obtained from the m-vector x through a
linear transformation: x, = Dx. The matrix D thus de-
fined is of order (n-m) and contains only oNEs and zEROs.

Table 3 Assignment of indices to the constituents and lines.

Dominating constituent 1 2
Concentration X1 X
Spectral line 1 2
Output o

X1 Xa X3 Xy Xo Xy
m+1 - n
Ym+1 tot Vn

N. R. D. ASLUND AND B. T. CRONHJORT




Its columns will be denoted d;, thatis, D = [d,d, - -+ d,.}.
Once indices have been assigned to the constituents and
to the lines, the matrix D is uniquely determined.

We will also let the components of x define a matrix,
obtained as follows: Let the elements of the vector
xp = Dx be placed along the diagonal of a matrix, the
off-diagonal elements of which equal zero. The (n-n) ma-
trix thus obtained will be denoted X. Then (A-9) becomes
y = y, + 4x -+ XOx, where 4 and Q are (r-m) matrices,
y and y, are (n#-1) matrices.

We will now substitute this expression into the equa-
tions (4). The transformation (A-8) leads to the follow-
ing equivalent set of equations:

T
ﬁl =2 de_ IIle = 0.
0x, dx,
From:
%" _ oy
Ox; Ox,, ’

it follows that

T
N nw -y =o.

X
We have:
I¢] X
T = de, + 7 0x + XQe,,
axk Bxk

where e, is a unit vector of dimension m

Writing
.7
q:
qT
o= "7
T
qQx

we also have:

qix 0

T
9% ox = 2% d,
Ax;
0 ’x
Introducing the notation
q1x 0]
q>x
? = diag;[Qx]

0 qnx
we have:
9y

—— = Ae, + XQe, + diag [Qx] d,.
(')x;,

Writing R(x) = A + XQ + diag [Qx]D and denoting the
column vectors of this matrix by r,(x) the equations (4)
may finally be written

U —y =0 k=1,2 - m,
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