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Solid Logic  Design  Automation 

Abstract: This paper describes  the unique features 

of a set  of IBM 7090 programs which provide 

design  assistance  to engineers who use  Solid logic 

Technology.  These programs were  applied  in the 

design of the IBM System/360. 

Introduction 

Automatic design aids have become necessary for  the effi- 
cient use of engineering manpower in developing modern 
digital systems. The design of such systems involves the 
handling and documentation of vast amounts of informa- 
tion. Without design aids, the engineer is required not 
only to perform his vital task of specifying the system’s 
internal logical structure, but also to perform manually 
all the tedious chores of detailing, recording and checking 
his  design. 

The concept of design automation  for digital systems 
has been previously discussed.’ Operating within this 
concept, an engineer must state  in rough-draft form  the 
arrangement of logical elements for  the system he is de- 
signing. Once he has  done this, computer processing can 
assist with each  further  stage of design detailing, and 
furnish up-to-date  documentation of the  state of the de- 
sign. The basis for this process is a central file kept  on 
magnetic tape, which serves as  the prime definition of the 
design in much the same way that master drawings for- 
merly served. Automatic  printout of logic diagrams by 
the computer replaces the  outmoded process of obtaining 
blueprints. 

Design automation for the System/360 

Logic design 

The design of the IBM System/360 required that new de- 
sign automation techniques be provided. Since the system 
philosophy’ demanded high performance objectives and 
strict compatibility, with a consequent increase ih the 
volume and complexity of logical design, a need for more 

efficient design-information handling and documentation 
became evident. 

Thus, previous concepts  for  retaining  accumulated de- 
signs and producing  computer-printed logic pages were 
included in the design procedures, but novel features 
were added to reduce the burden on  the engineer. These 
features increase the computer’s ability to use data  on  the 
central design tape to produce a variety of documents. 
This increased ability eliminates many of the  errors which 
formerly were caused by manual  generation of data. 

A set of simulation  programs was developed so that 
System/360 designers might  evaluate  their logic designs 
before they construct  hardware models. Several features 
of these programs  provide greater flexibility of  operation 
than previous simulation  programs  have been able  to 
attain. 

Packaging 

An early systems planning decision was that  the Sys- 
tem/360 would use a new circuit-packaging technique 
called Solid Logic Technology (SLT). This decision pro- 
vided the primary  motivation for developing the design 
automation techniques described in  this  paper. 

As described by Davis, et a1.: SLT microelectronic 
circuits are encapsulated into modules. From 6 to 24 of 
these modules are mounted on “small cards” of various 
standard sizes. Etched wiring on  both sides of a small 
card interconnects  module terminals with female connec- 
tors  at  the base of the card. The small cards,  in turn,  are 
mounted on larger wiring boards whose various  terminal 
pins make pluggable contact with the small card con- 127 
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nectors. The "large  boards"  also have etched  wiring  signal 
paths on both sides. 

Interconnection between  large boards is  accomplished 
by flat, flexible  cable^.^ Figure 1 shows  small cards 
mounted on a large  board.  Predesigned  small cards with 
circuit  modules attached are the smallest  units of hard- 
ware  with  which a System/360  designer  works. 

New programs were  developed (1) to assign  each  block 
appearing on  the logic  diagrams to appropriate small- 
card units, (2) to assign  labels to small-card  connection 
points associated  with  each input and output line from 
the blocks on logic  diagrams, (3) to assign each small 
card to a position on a large board, and (4) to compute 
the routing, sequencing,  folds, and lengths of the flat 
cables that interconnect  large  boards. 

Other new programs were created to automatically 
determine the layout of etched  wiring patterns on the 
large boards. 

logic Design  Accumulation Process 

The Logic  Design  Accumulation  Process  provides an up- 
to-date record of the machine design status at every stage 
of development. The primary  document of this record 
is a computer-printed  logic  diagram  like that shown in 
Fig. 2. 

The  process  begins  when an engineer  draws a diagram 

Figure I Small cards  mounted  on large etched- 
wiring board. 

Figure 2 Sample  computer-printed  logic page. 
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showing  how a group of logical  elements  (e.g., AND or 
OR blocks) should be  connected to perform a desired 
machine  function. The engineer  makes this drawing on 
a special  form which enables a keypunch operator to 
transcribe his  design onto punched  cards. The punched- 
card data are then  processed through an IBM 7090 com- 
puter and stored on magnetic tape in the Design Auto- 
mation  Logic  Master  File. The computer  also  produces 
at this  time a printed  diagram of the logic specified  by 
the  engineer.  Whenever the engineer  makes a change  in 
his  design, the Logic  Master  File  is  revised, and an up- 
dated logic  page is printed. As Fig. 3 shows, other pro- 
grams will subsequently obtain data directly  from the 
Logic  Master  File. 

Throughout the design  process, the engineer is provided 
with a complete set of the most  recent  computer-printed 
logic  pages  specifying the system  design.  These  pages are 
numbered and titled to identify the logic  function that is 
depicted. The names and numbers of all  signal  lines enter- 
ing and leaving the page are shown.  Each  logic  block on 
the page  has  space  provided for printing (1) the type of 
logical function performed by the block (AND, OR, 
INVERT, TRIGGER, etc.), (2) the identification  number 
of the microelectronic  circuit  represented by the block, (3) 
a number  specifying the type of small card on which the 
circuit appears, (4) a designation  representing the portion 
of the small card on which the circuit appears, (5) a num- 
ber stating where the small card will  be located on the 
large board, and (6) identification of the small card termi- 
nals which make contact with  pins on the large board. 
Figure 4 shows the information  associated  with a sample 
block  from a logic  diagram. 

Although  all the information just stated must  eventually 
appear on  the logic  page, the engineer  does not have to 
specify it all in his initial input to the Logic  Master  File. 
He is  encouraged  only to specify  initially the signal-line 
names and call out the logic function and microelectronic 
circuit  numbers  associated  with  each  block on the dia- 
gram; subsequent  programs will  assist  him  with further 
detailing.  Logic at this  early  stage is said to be  “imple- 
mented”  because its operation is  completely  specified  even 
though it is not yet  packaged or converted to hardware. 
Checking  programs are used after the logic  is  implemented 
to test the design on the Logic  Master  File  against a set of 
circuit  interconnection  rules.  These  programs will  discover, 
for example,  whether  there are any  overloaded  circuits. 

The purpose of the logic  diagrams, as already stated, is 
to provide  designers  with an up-to-date picture of the sys- 
tem’s  design status. This  statement  implies that design 
changes are expected, and can be  automatically  recorded on 
the logic  sheets. The new programs  developed for the Sys- 
tem/360 simplify the problem of recording  changes.  One 
of these  programs  provides automatic cross-referencing 
of changes.  Figure 5 gives an example of this.  Figure 5a 
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Figure 5 Example illustrating automatic cross referencing of design  changes. 
a )  Pages prior to change; 
b )  Changed page  submitted by engineer; 
c )  Pages produced by programs. 

shows portions of two  logic  pages  (pages AB101 and 
AB405) before  changes.  Suppose the engineer  wishes to 
use a  signal  generated on page AB101 as input to a  block 
on page AB405. He then  marks up page AB405 as shown 
in  Fig. 5b: he  specifies the incoming  signal  line by writing 
the page (AB101) and location within that page  (block CD, 
line 4) where the signal  was  generated. 

Using the signal  line  code (ABlOICD4), the computer 
can  search the Logic  Master  File to get the name of the 
signal (+READY) and print it on page AB405. It will also 
automatically revise and print the new usage  of the signal 
on page AB101. Figure 5c shows the appearance of the 

130 pages after they  have  been  revised.  This  unique  program 

allows automatic cross-referencing  of  signal  usage and 
immediate updating of all pages  affected  by an engineer- 
ing  change. It reduces the amount of information to be 
supplied  manually, and helps to avoid redundant and 
ambiguous  entries of signal  lines into the design. 

Permanent  assignment  of  eight-character  signal-line 
codes  (called  "net  numbers")  has  a further benefit  in the 
latter stages  of  design. That is,  checking  of  wiring and 
cabling  lists will  be facilitated  since all net  numbers in the 
lists  refer  directly to logic  pages on which  they  originate. 

Another  novelty of the Solid  Logic  Design Automation 
programs  is  called  Version  Design  Processing.  Once the 
basic  design  of  a  system  has  been  completed, the design 
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versions  resulting from the addition of various optional 
features are recorded  as  modifications to the basic  system. 
Because the unaltered part of the basic  design  does not 
need to be  duplicated,  redundancies and ambiguities are 
avoided.  Composite  logic pages are automatically pro- 
duced  for  each  version  which  show the appropriate feature 
superimposed on  the basic  logic.  One of the most signifi- 
cant advantages of  Version  Design  Processing  is that the 
programs  automatically  produce  altered feature pages 
when the basic  design  is  changed. 

logic simulation 

The logic  design  of the System/360  was  made  more  effi- 
cient through the use  of  logic  simulation  programs.  These 
programs were  devised to enable  engineers to predict 
the performance of their proposed designs before  they 
build  hardware  models of them.  Several new features were 
incorporated into the operation of this simulator: (1) the 
logic to be tested is obtained directly from the Logic 
Master  File by the simulation program, (2) the simulator 
can account for  nominal transit and switching  delays, (3) 
it can handle  logic  feedback loops, (4) it examines the 
simulated  logic  only at the times  when  some  element  has 
changed state, and ( 5 )  at examining  time it checks  only 
those  elements  which  could  possibly  change state in the 
future as a result of the present  change of state. 

To use the simulator an engineer  specifies  what portion 
of logic  he  wishes to test.  Since the logic  is  already on the 
Master  File, the tape serves  as the input to the simulator; 
this  eliminates the need for an engineer to manually  gen- 
erate the logic for  use  in the simulator.  Other data that 
the engineer  must  supply are a time  scale for the simula- 
tion run, and the specific  times  along this scale at which 
he  wants input nets to switch  logical  states. 

When the coded  logic  from the Master  File  enters the 

simulator it is  combined  with data from another mag- 
netic tape which  specify the delays of each  logic  block. 
This  combination of data is translated into a set of coded 
equations that defines the logical state of each  net as a 
function of the delays and the logical states of other nets. 
The functional equations are then  entered into a section 
of the simulator’s  core storage called the Functional 
Table. 

Another  section of core storage contains a Forward- 
Referencing  Table. For each net in the logic, a list  is stored 
to identify all the other nets  whose  logical state depends 
on  the  state of the given net. Whenever a net  changes 
state, the simulator  refers to its entry in the table. It de- 
termines  which  nets  may  subsequently  be  affected by that 
action. By doing so, it eliminates the need to interrogate 
every net in the logic  under  test, thus reducing running 
time.  Also,  this feature makes it possible for the simulator 
to consider  feedback loops in the logic  circuits. 

A third section of storage is  occupied by a Switching 
Events  Table.  The  switching  of a signal at a designated 
time  is  called an “event.”  Events are listed  chronologically 
in the table along the time  scale  specified  by the engineer. 
Initially, the events  associated  with the input nets are 
entered at the appropriate times  in the table. For example, 
the engineer  may  have  specified that input net x switches 
“on” at time-unit 1 and switches “off’ at time-unit 12. 
Thus, events are entered in the table at times 1 and 12. 

However, the Forward-Referencing  Table  might indi- 
cate that  an event on net x could  affect the logical state 
of net y .  The entry in the Equation Table  for  net y may 
then state that net y turns “off” 4 time units after net x 
turns “on.”  Therefore, when the event  of x switching “on” 
is  executed at time 1, it will generate a new entry in the 
Events  Table.  This new entry will state that net y switches 
off at time 5. 

Figure 6 Sample sequence chart obtained from logic  simulator. 
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Since time-unit 5 is the next  event in the table, the simu- 
lator next  determines  what effect this event will  have in 
producing future events, and enters  any future events at 
the appropriate place in the table. In this way the Events 
Table  is  continually revised throughout the simulation run. 

The use  of the Forward-Referencing and Events  Tables 
is a valuable  utilization of storage space  since,  normally, 
only about 1% of the logic  elements  under test are active 
at any  time.  Thus, total running  time is  conserved  by the 
simulator’s  ability (1) to examine  logic  only at those 
points on the time  scale  where it encounters an event, 
and (2)  to examine  only those logic  elements  affected by 
an event. 

The results of the simulation run are provided to the 
engineer in the form of either a timing chart or a sequence 
chart. To produce a timing chart the simulator samples 
and prints the status of  every net in the logic at equal 
time  intervals. To produce a sequence chart, it prints only 
at the times corresponding to  an event. 

Figure 6 shows a sequence chart for the logic  page  given 
in  Fig. 2. The  left part of the chart is a list of all the nets 
on this logic  page for which charting was requested. Three 
identical  columns are printed after one or more of the 
charted nets  has  changed state. There will  be an entry in 
a given row of a column if the corresponding net is “on” 
at time  of  printing. The time  scale  along the base of the 
chart designates the simulated  times at which the event 
occurred. 

Simulator  timing charts, which can show the activity 
of up to 100 nets, may  be  compared to the output that 
would  be  observed on a multitrace oscilloscope if a probe 
were attached to each  net. By studying  such charts, engi- 
neers are often  able to spot undesirable  timing situations 
and correct their design  before  any  hardware  models are 
built. 

The simulator just described  is able to approximate the 
performance of 3000 to 4000 logical  elements through 
10 to 20 clock cycles in less than 30 minutes  of  IBM 7090 
computer  time. 

Packaging and cabling  programs 
Once the design  of the logic  is  satisfactory, the next  prob- 
lem  is to specify the physical layout of logic as it will ap- 
pear in the machine. As discussed  earlier, the System/360 
logic  is  packaged  using SLT modular  circuitry. New  de- 
sign automation programs  have been  developed to assign 
logic  elements to standard small  cards, to assign  small- 
card pin  labels to appropriate logic  block  terminals, to 
assign the small cards to positions on large wiring boards, 
and to determine  cabling  requirements. 

Assignment of logic to cards and boards 

1. Formation of logic groups 
132 The Partitioning Program examines a section of  logic  con- 

tained on the Master  File and divides it into groups of 
blocks for assignment to small  cards.  Each  logical  element 
on the tape is  represented by a number (e.g., Z03BB) 
which  specifies a standard IBM  circuit.  This  number  im- 
plies the logical function performed by the element and 
the electrical  characteristics of the circuit. 

The total library of small-card  packaging units consists 
of many  cards. For purposes of example  suppose, how- 
ever, that the library contains only the three cards shown 
in  Fig. 7. This  figure  indicates that card 1234 has  two 
Z03BB circuits  contained in the modules mounted on it. 
One  circuit  is  in portion A of the card and the other is 
in portion B. All input and output terminals of the circuits 
are connected  via  pins to the large-board  signal  paths. 
Card 6189 has four  circuits contained in its modules. 
Circuits Z03AC are connected by wiring paths on the 
small card to circuit Z03CC. These three circuits are in 
portion A of the small card and are in subportions 1, 2, 
and 3, respectively. The circuit  terminals that are con- 
nected  internally on the card are not available to the signal 
paths on  the large  board.  Circuit Z03BB is connected on 
the card independent of the other circuits. 

Figure 7 library of  small cards. 
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The  circuit  configurations  encountered on the previous 
wo cards are designated as “non-functional” portions. 
*his is because  they are either unit groups or are clusters 
vhich always appear  together on a single  small  card. 

The third card illustrated  (card 4567) has three Z03BB 
ircuits  interconnected into portion A, subportions 1, 2, 
md 3. Since Z03BB can also appear as a unit circuit as 
;hewn on the previous  cards, the collection  labeled  por- 
.ion A is called a “functional” portion. Portion B of 
:ard 4567 is  again an independent  circuit. 

It is important to remember that  the small cards with 
nounted  modules are available as prepackaged units; 
he computer’s function is to assign the blocks on logic 
liagrams to appropriate portions and subportions of 
rppropriate standard card units. 

Now,  suppose that an engineer  wishes to have the logic 
hown  in  Fig. 8 assigned to small  cards.  At the stage of 
lesign represented by this figure, the engineer  has  manu- 
lly  assigned  block AK to card 1234, portion A, subpor- 
ion 1 ; he  has  manually  assigned  blocks AC, AE, and AF 
3 card 4567, portion A, subportions 1, 2, and 3;  all  other 
‘locks are to be automatically assigned.  (Refer to Fig. 4 

for a review  of the information  contained on a logic  dia- 
gram.) The engineer’s  manual  assignment of block AK 

L 

:@re 8 Appearance of logic diagram before partitioning. 

was prompted by  his  knowledge of conditions such as 
heating or electrical  interference which  caused  him to 
have a preference for the particular assignment  chosen. 

The engineer’s  manual  assignment of blocks AC, AE, 
and AF was prompted by  his preference for the use of a 
functional portion in the packaging. The partitioning 
programs  would  otherwise  choose  nonfunctional portions 
for the packaging of  these  circuits. 

The Partitioning Program extracts the logic from the 
Master  File and checks  each  logic  block  against a set of 
partitioning criteria obtained from another tape. The 
criteria are used to determine  groups. The groups of blocks 
formed by the program for this example and the reasons 
for each group formation are listed in Table 1 (page 134). 

2. Assignment of groups to  cards 

The next step of partitioning is to assign  each  previously 
unassigned  group to a small  card  using a process  described 
by  Haspel.‘ First, the computer  program  chooses from 
the card library a minimum set of cards which  is capable 
of packaging  all the groups. 

Then the computer goes through a routine which  as- 
signs to the same  card  groups that are “close”  together. 
To do this, the program arbitrarily selects  one  of the 133 
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Table I Formation of logic groups. 

Logic 
blocks 

Group comprising Group Reasons for the 
number the group name group formation 

2 

3 
4 

5 

6 

1 AG Z03BB This  block  is  not yet assigned 
to a card.  Partitioning  criteria 
require ZO3BB to  be a unit 
group  which  exists  as a sepa- 
rate  portion  on a small  card. 

AJ Z03BB Same as Group 1. 

AL Z03BB Same  as  Group 1. 

AD,AA,AB Z03CZ The  criteria  require  these  three 
blocks to always be  together 
on a small  card.  They  are 
therefore  treated  as a group. 

AK blank This  block  is  not a candidate 
for  partitioning,  since  it has 
been  preassigned  by  the en- 
gineer. 

AF, AE, AC blank  These  blocks  are  not  candi- 
dates  for  partitioning;  they 
have been preassigned by the 
engineer  into a functional  por- 
tion. If  called  upon,  partition- 
ing  would  have  treated  these 
blocks  as  three  distinct  groups, 
each similar  to  Group 1.  

cards. A “portion” of this card is selected for consider- 
ation and a group is assigned to it. (Assume for simplicity 
that  no groups  have been  preassigned.)  Next, another 
portion is selected and the “best candidate group”  is 
chosen for assignment. A “candidate group” is one whose 
configuration will fit the configuration of the portion. 
The “best candidate group” will be the candidate group 
that is “closest” to the already  assigned  group. The 
“closest” group is that one which shares the most  nets 
with the assigned  group(s) and has the least  number of 
nets not shared  with the assigned  group(s). If more than 
one of the candidates  meet  this criterion, an arbitrary 
choice is  made. 

Now,  with  two  groups  assigned to portions, the com- 
puter  selects another portion and finds the candidate 
group that is closest to the two  assigned  groups. In this 
manner, each card in the set selected from the library is 
examined portion by portion until all  groups  have been 
assigned. Of course,  in  some  cases,  there will  be more 
portions available than there are groups to fill them, and 
the program  must  decide which portions will not receive 

134 an assignment. 

For the example  logic  shown in Fig. 8 the groups  could 
be  assigned as follows by the process just described: 

Group 1 : Card type 4567, portion B, subportion 1 
Group 2: Card type 6789, portion By subportion 1 
Group 3: Card type 1234, portion B, subportion 1 
Group 4: Card type 6789, portion A, subportions 1, 2, 3 
Group 5 :  Preassigned 
Group 6 :  Preassigned 

3. Assignment of cards to boarak 

After  groups  have  been  assigned to cards the next step of 
the partitioning process  is to assign the cards to appropri- 
ate large  boards.  This  process  is  much the same as the 
group assignment  process in that cards which are close to 
each other are assigned to the same board. Here,  closeness 
of cards has  exactly the same  meaning as closeness  of 
groups; the closest candidate card is that one which shares 
the most nets with the already  assigned  cards, and has 
the  least  number  of  nets not shared with  assigned  cards. 

4. Assignment of pin labels 

When the partitioning process  has  been  completed,  enough 
data are available on the Master  File so that labels  associ- 
ating small-card  connection pins  with the signal  lines for 
all  blocks on the logic  diagrams can be  assigned. Pin 
label  assignments are also  entered into  the Master  File. 

The  diagram of Fig. 9 shows  how the logic  of  Fig. 8 
will appear after all assignments  have  been  made.  This 
diagram  indicates that each  logic  block  has  been  assigned 
to a portion and subportion of a  small card, that terminal- 
pin labels  have been  assigned, that small cards have  been 
assigned to large boards, and that cards have  been as- 
signed to socket  positions on  the large  boards. This last 
problem of assignment  has  yet to be  discussed. 

Assignment of small cards to large-board  socket  positions 

Interconnections  between  small cards are accomplished 
by the etched wiring paths on a  large  board.  Because 
wiring the board involves  problems of signal-path routing 
and requires that intercard signal  connections  be as short 
as possible for good  circuit  performance, it is  desirable to 
make the best  possible  use of the flexibility that is  available 
for positioning the small cards on a  board.  The  Placement 
Programs  compute  positions  for  a  set of cards. 

Two  basic  placement  programs are provided for the 
engineer, an Algorithmic  Program and an Interchange 
Program.  They may be used  individually or successively. 
Since the engineer  himself will sometimes  wish to specify 
the exact  placement of some  of the small  cards on the 
large  assembly, both programs  make  provision for this 
situation. The programs give priority to the predesig- 
nations and will  assign the remaining  small cards to the 
positions  available. 
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1. Algorithmic Program 

To make assignments using the algorithmic method, the 
program first selects a board  from the already chosen 
set of boards. It then compiles a list of all  cards to be 
positioned on  that board and another list of all available 
socket positions on  that board. (A socket is available if 
it has received no prior assignment, or has not been ex- 
cluded as available by the engineer.) 

Assume, for example, that one  card  has been assigned 
to a socket by the engineer. This  card and socket do  not 
appear in the tables. The program now picks card C ,  from 
the  table  and tries it, in turn,  in each socket S i .  Each  time 
the computer tries a card-to-socket combination C i s i ,  it 
notes the location of all pins which must be interconnected 
between the already assigned socket@) and  the trial socket. 
It then computes the half-perimeter of the smallest rec- 
tangle which can enclose the interconnecting pins of a 
net that is common to both sockets. If there are more 
than  one common nets  (and  there usually are), the com- 
puter calculates the half-perimeters of the rectangles en- 
closing each net, and adds  them together. 

This sum N i j  is determined for all possible card-to- 
socket combinations Cisj. From all N i j ,  a particular N,, 

is found such that 

N,, = max  [min ( N i l ) ] .  

Using this criterion,  card C, is assigned to socket S, ;  the 
card and socket so assigned are removed from the tables, 
and the process is repeated until  all  cards have been 
assigned. In practice, the Algorithmic Program  has as- 
signed 60 small cards to socket positions on a board 
in 10 minutes of 7090 computer time. 

9 

2. Interchange Program 

When all cards have been  given assignments to sockets, 
the Interchange Program attempts to improve the “wire- 
ability” of the board.  The wireability factor equals the 
sum of all N ,  i, where each N ,  is computed as before. The 
lower the factor, the more wireable the  board. 

In attempting to improve wireability, the  computer 
tentatively interchanges each card with every other card 
on the  board. At every tentative interchange, N d i  is 
computed. If a lower sum than  that produced by the 
preceding arrangement is encountered, a permanent re- 
assignment of cards is made. The interchange process 
continues until no interchange that will produce a lower 

Figure 9 Partitioning  placement,  and  pin  assignment  information added to  logic  diagram. 
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FROM CABLE SOCKET TO CABLE  SOCKET 

B-C5K2 

Figure 10 Cable block diagram. 

N i i  is  possible. The engineer  uses the wireability factor 
as a  means of comparing the efficacy  of various  place- 
ments. In practice, the Interchange  Program takes from 
15 to 40 minutes of 7090 time to evaluate  a  60-card board 
for  wireability and make  reassignments. 

Cabling Programs 

Use of flat cables  poses new challenges to the designer in 
obtaining an efficient and accurate physical  (mechanical) 
layout.  Highly accurate information  specifying the length 
and position of folds  is  required. In addition, sequencing 
and routing must be such that  the  total thickness of 
several  cables  does not exceed the cross-sectional depth 
of the cable  channel, and such that cables  emerging from 
a channel at a given point are in the same  relative  sequence 
as the sockets to which  they  connect. 

The Cabling  Programs will,  given the endpoints of the 
cables  desired,  compute the routing, sequencing,  folds, 
and lengths of flat  cables. To do this, an additional input 
is provided  by the engineer, who draws  “cable  block” 
diagrams as shown  in  Fig. 10. These  diagrams contain 
pairs of  blocks  which  identify  each  cable and the large- 
board sockets it uses. 

The Cabling Program first considers  cables which are 
plugged into sockets  nearest the routing channels, and 
places  them into a table of “available”  cables. From this 
group, those cables  which  have  only one routing path are 
selected.  An  examination  of the paths of these  cables, 
along  with the matching of folds as a cable’s direction 
changes,  determines an initial placement in the routing 
channels. As each  cable  is  placed, other sockets are made 
accessible and new cables are added to the list of avail- 
ables. As each  cable  is  placed  in its path along the chan- 
nels,  a  summary of build-up at channel intersections is 
maintained.  This  is  used as a factor in choosing a route 
for a cable when there are alternate paths which are 
equally  desirable. During the routing of a cable, lengths 
are subtotaled for  fold  marking.  Each subtotal is  used to 

Figure I 1  Identification of etched-wiring board features. 
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indicate to the cable  manufacturing  process the midpoint 
of a mark that shows  where it is  necessary to fold a cable 
when a change of direction  is  indicated or where it is 
necessary to clamp a cable (or cable  set)  for additional 
support. 

Upon completion of the design of a set of cables, mag- 
netic  tapes are produced for use  in the manufacturing 
process.  The  primary  advantages  accruing from the use 
of these  programs  is  accuracy of  design data and reduction 
in manual effort and cost. 

Although the features  provided  for  design  assistance 
described above are important, the most  essential design 
aid  provided to the engineer  using the SLT  technology  is 
the preparation of etched board wiring.  This  is  considered 
in the following  section. 

Etched wiring  board  design 

Defining the etched board wiring  is the final  major step 
in the design  process.  Previous  sections  have  described 
how the initial design has been  successively  defined,  tested, 
checked, and packaged into small  cards.  Since  each  small 
card was  assigned a position on an etched board, the 
process  has  resulted  in the gross definition of the inter- 
connections which must  be  formed between the pins  of 
the etched boards. The primary task of the Etched  Board 
Wiring  Design  Programs  is to compute  this wiring  in 
complete  detail. 

As with the previously  described  design-assistance pro- 
grams, the source of data for wiring  is the magnetic tape 
file holding the accumulated  logic  design.  This  is of con- 
siderable importance since it gives absolute assurance that 
the wiring and logical  design  agree.  Another important 
provision of the programs is the  ability to retain a history 
file of the wiring data. Use  is  made of this file to compute 
the add/delete wiring data that is  necessary to translate 
from one  design  level to another. 

The succeeding  sections of this  paper  will  refer to the 
computation of the complete  wiring for an etched board 
as “original  wiring”  design, while the computation of 
add/delete wiring  will  be  called  “rework  wiring”  design. 

Physical layout of etched wiring board 

The physical  arrangement of the etched board is  shown 
schematically in Fig. 11. The board has  two  surfaces on 
which the wiring pattern may  be etched.  Communication 
between the two  surfaces  occurs by  means  of plated- 
through holes.  Pins  occupy  some  of the plated-through 
holes and constitute the means  by  which  signals enter or 
leave the board. Plated-through holes  without  pins are 
called  “vias” and are used  solely to interconnect the sur- 
faces.  The  holes are arranged in a regular  rectangular 
65 X 98 matrix, and are grouped in 5 X 14 arrays to 
form  sockets.  Each  socket contains 3 columns of vias 
and 2 columns of  pins. 

Figure 12 Methods of connecting a three-pin net. 
( a )  multi-ended  etched  wiring, ( b )  pin-to- 

pin  discrete  wiring, ( c )  pin-to-pin  etched 
wiring. 

Up to three etched wires are placed  in the space  between 
adjacent  holes, as illustrated.  The  etched patterns are pro- 
duced  by a numerically  controlled  machine  which  utilizes 
a moving light source to expose the patterns. Additional 
connections between  pins can be made by discrete wires 
that  are wire-wrapped to pins on the obverse  side  of the 
board from the pluggable cards. 

Original etched wiring computation 

Computation of a set of etched wiring  segments  which 
satisfies the interconnection  requirements  is a demanding 
task, primarily  because of the constraints imposed by 
the requirement that only  two  planes  be  used for the 
etched wiring. 

The following are the significant  features of the pro- 
grams  which compute the wiring: 

1. Where circumstances  require, the engineer  may  pre- 
specify a wiring route. This  is  provided so that special 
cases  may  be  handled.  Therefore, the programs  first  con- 
sider  any  such  manually  generated data. 137 

SOLID LOGIC DESIGN AUTOMATION 



2. Etched  connections,  unlike  discrete  connections,  may 
be “multi-ended’’ as illustrated in Fig. 12.  Since all verti- 
cal wiring  segments are kept on one plane and horizontal 
segments on the other (for efficient space  utilization), it 
is important to make  use of these  multi-ended  connections 
where  possible to decrease  wire  length and increase wiring 
density. 

3. The pattern of pin  connections  within a net  must  some- 
times  be arranged in severely constrained ways to allow 
for the characteristics  of particular circuits.  The  programs 
therefore  include a provision for accepting  special  con- 
figuration  rules  associated  with the use  of particular small 
cards. 

4. In the computation of the actual wiring paths, two 
separate methods are employed  sequentially. A heuristic 
approach completes  approximately 6OY0 of all required 
connections.  This  is  accomplished  within  approximately 
2 to 3 minutes of  7090 computer  time. A maze-running 
appr~ach ,”~  which  is  exhaustive in finding an open path 
for a required interconnection, is used to compute the 
remaining  interconnections and completes an average of 
95%  of all interconnections.  This is accomplished in ap- 
proximately 30 minutes of computer  time. The remaining 
5% of necessary  connections are completed by discrete 
wire  jumpers. 

Results of wiring trials 

In the course of  developing the wiring  methods many 
experiments  were  made to determine the best approach. 
Some  of the more significant  results are as follows: 

1. The multi-ended  method was better than the pin-to-pin 
method  with  respect to average wire length and quantity 
of discrete wires  necessary to complete the wiring. Table 2 
compares the results obtained using the two  methods. 

Table 2 Comparison of multi-ended vs pin-to-pin 
wiring results. 

Discrete wires 
remaining after wiring 

~~~~ 

Board Pins per Nets  per Multi-ended Pin-to-pin 
number board board method method 

1 961 314 0 3 
2 1161 514 54 68 
3 989 323 23 57 
4 1113 297 164 203 
5 1046 298 52 97 
6 901 261 0 13 
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2. It was found to be a definite advantage to control the 
order in which various nets were  wired.  An  average of 
15%  fewer discrete wires are necessary if nets are wired 
in order of decreasing  size rather than in a random order. 
(The sue of a net  is  defined  here as the perimeter of the 
smallest  rectangle which contains all the pins  of a net.) 

3. Computer processing  time and the required  number of 
discrete wires both increased  significantly  when the maze- 
running  technique was  used alone rather than in con- 
junction with the heuristic  technique. 

4. Restrictions placed on  the freedom of the maze-run- 
ning  program  result  in a measurable  decrease in the num- 
ber of  discrete wires required.  These  restrictions  consist of 
limiting the area in  which the program  is  allowed to oper- 
ate when searching for open paths, and of limiting the 
number of  vias and the length of printed conductors per- 
mitted to complete a path. Best results are obtained by 
initially  limiting the program while attempting all the re- 
quired  connections, and gradually  relaxing the restrictions 
in  subsequent iterations. 

The  Etched  Wiring  Board  Design  Programs  used for 
System/360  designs are arranged to employ the above 
results to best  advantage. As one  might  expect,  invested 
computer  time  follows a curve of diminishing returns. 
The  parameters which control the restrictions and iter- 
ations can be  adjusted by control-card input for each 
board  processed. Table 3 shows the results when the 
wiring paths for boards of  varying  degrees  of  complexity 
are computed  using the three available  sets of control 
parameters. 

Rework wiring computation 

Following the completion and release  of an initial design, 
the engineer  is  faced  with the problem of incorporating 
design  changes. It is often necessary that these  changes  be 
treated as modifications to the existing  design, rather 
than as completely  new  designs. 

For this purpose the Etched  Wiring  Board  Design Pro- 
grams  have the ability to derive the logical additions and 
deletions to be made to a previous  design  level. The logical 
changes are then applied to the previous  wiring  configu- 
ration, modifying it into  the desired new design. 

The  significant  characteristics of this process are: 

1.  Only the unwanted  wiring in the original  design  is 
deleted. 

2. The additional wiring  required  is  added  such that a 
complete new design  is  available for the manufacturing 
process. For efficiency, this process  demands  maximum 
use  of etched  connections. 

3. Both of the above  processes are completed  under the 
restraint that the deletion/addition steps  can  be  described 
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Table 3 Results of wiring methods. 

Board characteristics Results I N 2 

Board 1 
Number of  pins 
Number of nets 
Average pins per net 

Board 2 
Number of pins 
Number of nets 
Average  pins  per net 

Board 3 
Number of pins 
Number of nets 
Average  pins  per net 

79 1 
280 

2.32 

1050 
357 

2.94 

1299 
362 

3.58 

7090 running time (in  minutes) 12 4 0.5 
Number of discrete wires 12 16 60 
Number of  vias  used 915 898 71 8 
Average vias per net 3.36 3.34 3.01 
Average  inches  per net 6.75 6.77 6.85 

7090 running time (in minutes) 37 18 2 
Number of discrete wires 60 78 139 
Number of  vias  used 1319 1179 852 
Average  vias per net 4.27 3 .94 3.37 
Average inches per net 8.64 8.69 9 .ll 

7090 running time (in minutes) 94 60 7 
Number of discrete wires 169 188 272 
Number of  vias  used 1653 1576 1099 
Average  vias  per net 5.66 5.69 4.70 
Average inches per net 10.72 11.15 11.62 

Legend 
1 Parameter set  for  use when a larger-than-normal investment in computer time is warranted. 
N Set recommended for normal use. 
2 Parameter set  resulting  in minimum computer time. 

and performed on a previously manufactured board by 
an efficient manual process. Manual deletions are accom- 
plished by severing  existing etched wiring or removing 
existing  discrete connections ; additions are accomplished 
by adding discrete wire. 

4. As a result of the two physical routes by  which a given 
board may  be obtained (i.e.,  newly manufactured or manu- 
ally reworked), the entire process is constrained so that 
any future changes can be implemented identically on  the 
two physical boards. This is accomplished  by making all 
additional etched connections in a pin-to-pin manner and 
with direct correspondence to the discrete connections 
added manually. 

In addition to being  necessary for the efficient manu- 
facturing and field  servicing  of  machines  which are sub- 
ject to design  changes, the rework programs offer two 
important design  benefits: they enable design iterations 
to be made under tightly controlled conditions, and they 
significantly reduce the computer time required for pro- 
ducing a modified  design.  (A rework design change which 
affects 10% of the wiring can be made in 30% of the com- 
puter time required to recompute the entire design as an 
original.) 

Conclusions 

The use of Solid  Logic  Design Automation has materially 
assisted  in the application of  Solid  Logic  Technology to 
the new System/360 computer family.  Specifically,  Solid 
Logic Design Automation: 

1. Has provided the various laboratories participating in 
the project with identical design procedures for the Sys- 
tem/360. 

2. Has provided uniform documentation so that all plants 
can manufacture designs from any laboratory and anyone 
trained on one machine can understand the documenta- 
tion of any other. 

3. Has provided  designers with powerful new tools for 
organizing, validating, and detailing their designs  with a 
previously unattainable degree of accuracy.  This  increased 
accuracy is particularly valuable because packaging on 
etched boards imposes  severe  penalties for mistakes found 
after prototypes are constructed. 

4. Has made it easy for designers to evaluate design  vari- 
ations in order to select the best alternative. 

5. Has made possible the economical  design  of etched 
wiring boards and flat  cables. 139 
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6. Has converted logic diagrams into digital information 
to  control  automated tools that manufacture  etched wiring 
boards  and flat cables. 
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