
P. W. Case A. R. LeClercq

H. H. Graff W. B. Murley

1. E. Grifith T. M. Spence

Solid Logic Design Automation

Abstract: This paper describes the unique features

of a set of IBM 7090 programs which provide

design assistance to engineers who use Solid logic

Technology. These programs were applied in the

design of the IBM System/360.

Introduction

Automatic design aids have become necessary for the effi-
cient use of engineering manpower in developing modern
digital systems. The design of such systems involves the
handling and documentation of vast amounts of informa-
tion. Without design aids, the engineer is required not
only to perform his vital task of specifying the system’s
internal logical structure, but also to perform manually
all the tedious chores of detailing, recording and checking
his design.

The concept of design automation for digital systems
has been previously discussed.’ Operating within this
concept, an engineer must state in rough-draft form the
arrangement of logical elements for the system he is de-
signing. Once he has done this, computer processing can
assist with each further stage of design detailing, and
furnish up-to-date documentation of the state of the de-
sign. The basis for this process is a central file kept on
magnetic tape, which serves as the prime definition of the
design in much the same way that master drawings for-
merly served. Automatic printout of logic diagrams by
the computer replaces the outmoded process of obtaining
blueprints.

Design automation for the System/360

Logic design

The design of the IBM System/360 required that new de-
sign automation techniques be provided. Since the system
philosophy’ demanded high performance objectives and
strict compatibility, with a consequent increase ih the
volume and complexity of logical design, a need for more

efficient design-information handling and documentation
became evident.

Thus, previous concepts for retaining accumulated de-
signs and producing computer-printed logic pages were
included in the design procedures, but novel features
were added to reduce the burden on the engineer. These
features increase the computer’s ability to use data on the
central design tape to produce a variety of documents.
This increased ability eliminates many of the errors which
formerly were caused by manual generation of data.

A set of simulation programs was developed so that
System/360 designers might evaluate their logic designs
before they construct hardware models. Several features
of these programs provide greater flexibility of operation
than previous simulation programs have been able to
attain.

Packaging

An early systems planning decision was that the Sys-
tem/360 would use a new circuit-packaging technique
called Solid Logic Technology (SLT). This decision pro-
vided the primary motivation for developing the design
automation techniques described in this paper.

As described by Davis, et a1.: SLT microelectronic
circuits are encapsulated into modules. From 6 to 24 of
these modules are mounted on “small cards” of various
standard sizes. Etched wiring on both sides of a small
card interconnects module terminals with female connec-
tors at the base of the card. The small cards, in turn, are
mounted on larger wiring boards whose various terminal
pins make pluggable contact with the small card con- 127

IBM JOURNAL * APRIL 1964

nectors. The "large boards" also have etched wiring signal
paths on both sides.

Interconnection between large boards is accomplished
by flat, flexible cable^.^ Figure 1 shows small cards
mounted on a large board. Predesigned small cards with
circuit modules attached are the smallest units of hard-
ware with which a System/360 designer works.

New programs were developed (1) to assign each block
appearing on the logic diagrams to appropriate small-
card units, (2) to assign labels to small-card connection
points associated with each input and output line from
the blocks on logic diagrams, (3) to assign each small
card to a position on a large board, and (4) to compute
the routing, sequencing, folds, and lengths of the flat
cables that interconnect large boards.

Other new programs were created to automatically
determine the layout of etched wiring patterns on the
large boards.

logic Design Accumulation Process

The Logic Design Accumulation Process provides an up-
to-date record of the machine design status at every stage
of development. The primary document of this record
is a computer-printed logic diagram like that shown in
Fig. 2.

The process begins when an engineer draws a diagram

Figure I Small cards mounted on large etched-
wiring board.

Figure 2 Sample computer-printed logic page.

128

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE

showing how a group of logical elements (e.g., AND or
OR blocks) should be connected to perform a desired
machine function. The engineer makes this drawing on
a special form which enables a keypunch operator to
transcribe his design onto punched cards. The punched-
card data are then processed through an IBM 7090 com-
puter and stored on magnetic tape in the Design Auto-
mation Logic Master File. The computer also produces
at this time a printed diagram of the logic specified by
the engineer. Whenever the engineer makes a change in
his design, the Logic Master File is revised, and an up-
dated logic page is printed. As Fig. 3 shows, other pro-
grams will subsequently obtain data directly from the
Logic Master File.

Throughout the design process, the engineer is provided
with a complete set of the most recent computer-printed
logic pages specifying the system design. These pages are
numbered and titled to identify the logic function that is
depicted. The names and numbers of all signal lines enter-
ing and leaving the page are shown. Each logic block on
the page has space provided for printing (1) the type of
logical function performed by the block (AND, OR,
INVERT, TRIGGER, etc.), (2) the identification number
of the microelectronic circuit represented by the block, (3)
a number specifying the type of small card on which the
circuit appears, (4) a designation representing the portion
of the small card on which the circuit appears, (5) a num-
ber stating where the small card will be located on the
large board, and (6) identification of the small card termi-
nals which make contact with pins on the large board.
Figure 4 shows the information associated with a sample
block from a logic diagram.

Although all the information just stated must eventually
appear on the logic page, the engineer does not have to
specify it all in his initial input to the Logic Master File.
He is encouraged only to specify initially the signal-line
names and call out the logic function and microelectronic
circuit numbers associated with each block on the dia-
gram; subsequent programs will assist him with further
detailing. Logic at this early stage is said to be “imple-
mented” because its operation is completely specified even
though it is not yet packaged or converted to hardware.
Checking programs are used after the logic is implemented
to test the design on the Logic Master File against a set of
circuit interconnection rules. These programs will discover,
for example, whether there are any overloaded circuits.

The purpose of the logic diagrams, as already stated, is
to provide designers with an up-to-date picture of the sys-
tem’s design status. This statement implies that design
changes are expected, and can be automatically recorded on
the logic sheets. The new programs developed for the Sys-
tem/360 simplify the problem of recording changes. One
of these programs provides automatic cross-referencing
of changes. Figure 5 gives an example of this. Figure 5a

ENGINEER

I 1
LOGIC

MASTER
LOGIC MASTER

TAPE PROGRAMS

n e SIMULATION 1
ELECTRICAL DATA

INTERCONNECTION
AN D

CRITERIA rn PRINTOUT

PACKAGING
PROGRAMS

PRINTOUT

-
TO

I

129

SOLID LOGIC DESIGN AUTOMATION

MANUFACTURING

IEDBACK

. - -
MANUFACTURING

TO

0 ETCHED WIRING
BOARD PROGRAMS

MANUFACTURING I PRINTOUT I

Figure 3 Solid logic Design Automation program
sets.

LOGIC FUNCTION

\ f NUMBER
CIRCUIT IDENTIFICATION

TYPE SOCKET POSITION OF
SMALL-CARD ON
LARGE BOARD

COLUMN AND LINE OF
/”- I

BLOCK POSITION ON LOGIC PAGE L

-SMALL-CARD PORTION
AN0 SUBPORTION

-SMALL-CARD PIN FOR
OUTPUT SIGNAL

ARGE’BOARD BLOCK SERIAL NUMBER

Figure 4 Information associated with a sample
block on logic page.

ABlOl

-
OR I

BC211 + READY

-CDJ

ABlOl

;.i cj"Bc211 + READY

A B l O I

L A B 4 0 5

-STOP - AB230RS4 r
ABlOlCD4

-STOP- AB230RS4

ENG CHG

t READY- ABIOICD4

L

- STOP - AB230RS4

AB405

Figure 5 Example illustrating automatic cross referencing of design changes.
a) Pages prior to change;
b) Changed page submitted by engineer;
c) Pages produced by programs.

shows portions of two logic pages (pages AB101 and
AB405) before changes. Suppose the engineer wishes to
use a signal generated on page AB101 as input to a block
on page AB405. He then marks up page AB405 as shown
in Fig. 5b: he specifies the incoming signal line by writing
the page (AB101) and location within that page (block CD,
line 4) where the signal was generated.

Using the signal line code (ABlOICD4), the computer
can search the Logic Master File to get the name of the
signal (+READY) and print it on page AB405. It will also
automatically revise and print the new usage of the signal
on page AB101. Figure 5c shows the appearance of the

130 pages after they have been revised. This unique program

allows automatic cross-referencing of signal usage and
immediate updating of all pages affected by an engineer-
ing change. It reduces the amount of information to be
supplied manually, and helps to avoid redundant and
ambiguous entries of signal lines into the design.

Permanent assignment of eight-character signal-line
codes (called "net numbers") has a further benefit in the
latter stages of design. That is, checking of wiring and
cabling lists will be facilitated since all net numbers in the
lists refer directly to logic pages on which they originate.

Another novelty of the Solid Logic Design Automation
programs is called Version Design Processing. Once the
basic design of a system has been completed, the design

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE

versions resulting from the addition of various optional
features are recorded as modifications to the basic system.
Because the unaltered part of the basic design does not
need to be duplicated, redundancies and ambiguities are
avoided. Composite logic pages are automatically pro-
duced for each version which show the appropriate feature
superimposed on the basic logic. One of the most signifi-
cant advantages of Version Design Processing is that the
programs automatically produce altered feature pages
when the basic design is changed.

logic simulation

The logic design of the System/360 was made more effi-
cient through the use of logic simulation programs. These
programs were devised to enable engineers to predict
the performance of their proposed designs before they
build hardware models of them. Several new features were
incorporated into the operation of this simulator: (1) the
logic to be tested is obtained directly from the Logic
Master File by the simulation program, (2) the simulator
can account for nominal transit and switching delays, (3)
it can handle logic feedback loops, (4) it examines the
simulated logic only at the times when some element has
changed state, and (5) at examining time it checks only
those elements which could possibly change state in the
future as a result of the present change of state.

To use the simulator an engineer specifies what portion
of logic he wishes to test. Since the logic is already on the
Master File, the tape serves as the input to the simulator;
this eliminates the need for an engineer to manually gen-
erate the logic for use in the simulator. Other data that
the engineer must supply are a time scale for the simula-
tion run, and the specific times along this scale at which
he wants input nets to switch logical states.

When the coded logic from the Master File enters the

simulator it is combined with data from another mag-
netic tape which specify the delays of each logic block.
This combination of data is translated into a set of coded
equations that defines the logical state of each net as a
function of the delays and the logical states of other nets.
The functional equations are then entered into a section
of the simulator’s core storage called the Functional
Table.

Another section of core storage contains a Forward-
Referencing Table. For each net in the logic, a list is stored
to identify all the other nets whose logical state depends
on the state of the given net. Whenever a net changes
state, the simulator refers to its entry in the table. It de-
termines which nets may subsequently be affected by that
action. By doing so, it eliminates the need to interrogate
every net in the logic under test, thus reducing running
time. Also, this feature makes it possible for the simulator
to consider feedback loops in the logic circuits.

A third section of storage is occupied by a Switching
Events Table. The switching of a signal at a designated
time is called an “event.” Events are listed chronologically
in the table along the time scale specified by the engineer.
Initially, the events associated with the input nets are
entered at the appropriate times in the table. For example,
the engineer may have specified that input net x switches
“on” at time-unit 1 and switches “off’ at time-unit 12.
Thus, events are entered in the table at times 1 and 12.

However, the Forward-Referencing Table might indi-
cate that an event on net x could affect the logical state
of net y . The entry in the Equation Table for net y may
then state that net y turns “off” 4 time units after net x
turns “on.” Therefore, when the event of x switching “on”
is executed at time 1, it will generate a new entry in the
Events Table. This new entry will state that net y switches
off at time 5.

Figure 6 Sample sequence chart obtained from logic simulator.

L I S T OF NETS SIMULATOR OUTPUT
l l t M l B B 4 1 111I1111111111111111111111~11~111111111~111111111111111111111111
U O 1 K) O l 2 222222222222 222222222222222222222 222222222222222222 22222222222UP
FC037Dn4 3
FCOlZac4 4 44494b4444444444444444~444~44b444b44444444444~44~444444444bb44444~4444444444444444b4b4444444b444444444~444444444444494bkb4b44444444
R 0 4 l B C 9 5
K O 1 3 7 0 4 b
w o l 3 n n 4 7

bbbbbbb6b6bbbbbbbbb6bbbbbb6bbb6b6bbbbbbbbbbbbbbbbbb6b6b6bbbbbbb6b6b6bbb6bbbb6bbbbb6bb6bbbbbbb6bbbbbbbbbbbb6bbbbbb6bbbbbbbbbbb6bb6
777777

W 0 1 Y I D 4 8
w o t 3 n n 4 9 999999999999 999999999999999999999999

880888

mt0131Pl4 1 111111111111111111111 111111111111111111111
999999999999999999999

rn01y1Eb 2
mtO131J4 3
WOl30N4 4

33
944444444444444444444
55s5555555555555555555s555555555555555555555

444444444444444444444444444444 444Q44444444444444444

mCOIy114 b 6bbbbb6bbb6bb66666666bbbbbb
W0130m4 7 ?7???777??7??777?? 777777777777777777
FCOI3BP4 8 888888888888888888

??7?7?7?????
888888888808

7?7??777?7?77????7???
808808808088888080

?7?7???7???7??7?r? ????r???7??7?r????
8e800888808u8a8888800 88e88u888888888e88u08

999999999999999999999
111111111111111111111

m c o r 3 a ~ 4 5
444444444444444444444444444444444

66bbbbbbb6bb6666bb66bbbb bbbbbb6bbbbbbbbbbbbbbbbb
7 ~ 7 7 ~ ~ 7 ~ ~ ~ 7 ~ ~ ~ 7 7 7 ~

a8888a9eaa8aa88868
m c 0 1 3 a ~ 4 9 999999999999999999999999999
~ l c o l 3 n a 4 1
PlC013BE4 2
AC013BC4 3
~ C O ~ ~ L I U ~ 4 444

ICO13BU4 b
PlCOl 30F 9 5 55555555555555555555555s555555555 555555555555555555555555555 5555s5 555555555555555555555555555

I C 0 1 3 8 5 4 7

088e08088e88888888
999999999999999999999999 999999999999999999999999

222222222222222222222
333333333333333333

222222222222222222222
333333333333333

222222222222222222222 222222222222
333333333333333

b6bbbbbbbb~bbbbbb bbbbbbbbbbbt6b6 6bbbbb6bbb6bbb

m c 0 1 3 ~ 4 B 8 8 a 8 8 ~ 8 8 8 8 8 8 8 u 8 8 8 8 8 8 ~ ~ a ~ ~ ~ 8 e ~ ~ ~ ~ ~ ~ u ~ ~ ~ 8 8 a ~ 8 ~ a ~ ~ ~ ~ ~ ~ n ~ e a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ u a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ e ~
mc011ec4 9
~ 0 1 3 8 ~ 4 1

999~999~9999999999999999999

PlcOl3aW4 2
mcO13lL4 3

222~222

RC013BC4 4
33
44444444444.444444444444444444444444944

llCO13aV4 5
W O l 3 9 8 4 6

555s555

T l M E S C A L E - o o 3 5 8 o 1 2 3 5 ? 8 o 1 2 3 5 6 8 o r 2 3 ~ ? 8 o 2 3 5 b ~ o r 2 3 ~ ? 8 o 2 a 5 6
0

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 ~ 4 5 5 5 5 5 5 5 6 b b b ~

131

SOLID LOGIC DESIGN AUTOMATION

Since time-unit 5 is the next event in the table, the simu-
lator next determines what effect this event will have in
producing future events, and enters any future events at
the appropriate place in the table. In this way the Events
Table is continually revised throughout the simulation run.

The use of the Forward-Referencing and Events Tables
is a valuable utilization of storage space since, normally,
only about 1% of the logic elements under test are active
at any time. Thus, total running time is conserved by the
simulator’s ability (1) to examine logic only at those
points on the time scale where it encounters an event,
and (2) to examine only those logic elements affected by
an event.

The results of the simulation run are provided to the
engineer in the form of either a timing chart or a sequence
chart. To produce a timing chart the simulator samples
and prints the status of every net in the logic at equal
time intervals. To produce a sequence chart, it prints only
at the times corresponding to an event.

Figure 6 shows a sequence chart for the logic page given
in Fig. 2. The left part of the chart is a list of all the nets
on this logic page for which charting was requested. Three
identical columns are printed after one or more of the
charted nets has changed state. There will be an entry in
a given row of a column if the corresponding net is “on”
at time of printing. The time scale along the base of the
chart designates the simulated times at which the event
occurred.

Simulator timing charts, which can show the activity
of up to 100 nets, may be compared to the output that
would be observed on a multitrace oscilloscope if a probe
were attached to each net. By studying such charts, engi-
neers are often able to spot undesirable timing situations
and correct their design before any hardware models are
built.

The simulator just described is able to approximate the
performance of 3000 to 4000 logical elements through
10 to 20 clock cycles in less than 30 minutes of IBM 7090
computer time.

Packaging and cabling programs
Once the design of the logic is satisfactory, the next prob-
lem is to specify the physical layout of logic as it will ap-
pear in the machine. As discussed earlier, the System/360
logic is packaged using SLT modular circuitry. New de-
sign automation programs have been developed to assign
logic elements to standard small cards, to assign small-
card pin labels to appropriate logic block terminals, to
assign the small cards to positions on large wiring boards,
and to determine cabling requirements.

Assignment of logic to cards and boards

1. Formation of logic groups
132 The Partitioning Program examines a section of logic con-

tained on the Master File and divides it into groups of
blocks for assignment to small cards. Each logical element
on the tape is represented by a number (e.g., Z03BB)
which specifies a standard IBM circuit. This number im-
plies the logical function performed by the element and
the electrical characteristics of the circuit.

The total library of small-card packaging units consists
of many cards. For purposes of example suppose, how-
ever, that the library contains only the three cards shown
in Fig. 7. This figure indicates that card 1234 has two
Z03BB circuits contained in the modules mounted on it.
One circuit is in portion A of the card and the other is
in portion B. All input and output terminals of the circuits
are connected via pins to the large-board signal paths.
Card 6189 has four circuits contained in its modules.
Circuits Z03AC are connected by wiring paths on the
small card to circuit Z03CC. These three circuits are in
portion A of the small card and are in subportions 1, 2,
and 3, respectively. The circuit terminals that are con-
nected internally on the card are not available to the signal
paths on the large board. Circuit Z03BB is connected on
the card independent of the other circuits.

Figure 7 library of small cards.

BO8

CARD 1234

BI 2 4 7 1

CARD 6 7 8 9

I ZO3BB

,808 Z03BB +DO9

DO7

CASE, GRAFF, GRJFFITH, LECLERCQ, MURLEY, SPENCE

1

A

ZO3AC

- AA
D A-BIA2

4 5 6 7 A 2

-AE

“ A B J [AD J r

CIRCUIT TYPE NUMBER

PREASSIGNED CARD TYPE NUMBER

A-BIA2 -E Z03BB D -

L
20386

1234Al

t
’I
v

C

i

S

t
<

r
t
C

a

S

d
a

l ti

b
~ tc

The circuit configurations encountered on the previous
wo cards are designated as “non-functional” portions.
*his is because they are either unit groups or are clusters
vhich always appear together on a single small card.

The third card illustrated (card 4567) has three Z03BB
ircuits interconnected into portion A, subportions 1, 2,
md 3. Since Z03BB can also appear as a unit circuit as
;hewn on the previous cards, the collection labeled por-
.ion A is called a “functional” portion. Portion B of
:ard 4567 is again an independent circuit.

It is important to remember that the small cards with
nounted modules are available as prepackaged units;
he computer’s function is to assign the blocks on logic
liagrams to appropriate portions and subportions of
rppropriate standard card units.

Now, suppose that an engineer wishes to have the logic
hown in Fig. 8 assigned to small cards. At the stage of
lesign represented by this figure, the engineer has manu-
lly assigned block AK to card 1234, portion A, subpor-
ion 1 ; he has manually assigned blocks AC, AE, and AF
3 card 4567, portion A, subportions 1, 2, and 3; all other
‘locks are to be automatically assigned. (Refer to Fig. 4

for a review of the information contained on a logic dia-
gram.) The engineer’s manual assignment of block AK

L

:@re 8 Appearance of logic diagram before partitioning.

was prompted by his knowledge of conditions such as
heating or electrical interference which caused him to
have a preference for the particular assignment chosen.

The engineer’s manual assignment of blocks AC, AE,
and AF was prompted by his preference for the use of a
functional portion in the packaging. The partitioning
programs would otherwise choose nonfunctional portions
for the packaging of these circuits.

The Partitioning Program extracts the logic from the
Master File and checks each logic block against a set of
partitioning criteria obtained from another tape. The
criteria are used to determine groups. The groups of blocks
formed by the program for this example and the reasons
for each group formation are listed in Table 1 (page 134).

2. Assignment of groups to cards

The next step of partitioning is to assign each previously
unassigned group to a small card using a process described
by Haspel.‘ First, the computer program chooses from
the card library a minimum set of cards which is capable
of packaging all the groups.

Then the computer goes through a routine which as-
signs to the same card groups that are “close” together.
To do this, the program arbitrarily selects one of the 133

SOLID LOGIC DESIGN AUTOMATION

Table I Formation of logic groups.

Logic
blocks

Group comprising Group Reasons for the
number the group name group formation

2

3
4

5

6

1 AG Z03BB This block is not yet assigned
to a card. Partitioning criteria
require ZO3BB to be a unit
group which exists as a sepa-
rate portion on a small card.

AJ Z03BB Same as Group 1.

AL Z03BB Same as Group 1.

AD,AA,AB Z03CZ The criteria require these three
blocks to always be together
on a small card. They are
therefore treated as a group.

AK blank This block is not a candidate
for partitioning, since it has
been preassigned by the en-
gineer.

AF, AE, AC blank These blocks are not candi-
dates for partitioning; they
have been preassigned by the
engineer into a functional por-
tion. If called upon, partition-
ing would have treated these
blocks as three distinct groups,
each similar to Group 1.

cards. A “portion” of this card is selected for consider-
ation and a group is assigned to it. (Assume for simplicity
that no groups have been preassigned.) Next, another
portion is selected and the “best candidate group” is
chosen for assignment. A “candidate group” is one whose
configuration will fit the configuration of the portion.
The “best candidate group” will be the candidate group
that is “closest” to the already assigned group. The
“closest” group is that one which shares the most nets
with the assigned group(s) and has the least number of
nets not shared with the assigned group(s). If more than
one of the candidates meet this criterion, an arbitrary
choice is made.

Now, with two groups assigned to portions, the com-
puter selects another portion and finds the candidate
group that is closest to the two assigned groups. In this
manner, each card in the set selected from the library is
examined portion by portion until all groups have been
assigned. Of course, in some cases, there will be more
portions available than there are groups to fill them, and
the program must decide which portions will not receive

134 an assignment.

For the example logic shown in Fig. 8 the groups could
be assigned as follows by the process just described:

Group 1 : Card type 4567, portion B, subportion 1
Group 2: Card type 6789, portion By subportion 1
Group 3: Card type 1234, portion B, subportion 1
Group 4: Card type 6789, portion A, subportions 1, 2, 3
Group 5 : Preassigned
Group 6 : Preassigned

3. Assignment of cards to boarak

After groups have been assigned to cards the next step of
the partitioning process is to assign the cards to appropri-
ate large boards. This process is much the same as the
group assignment process in that cards which are close to
each other are assigned to the same board. Here, closeness
of cards has exactly the same meaning as closeness of
groups; the closest candidate card is that one which shares
the most nets with the already assigned cards, and has
the least number of nets not shared with assigned cards.

4. Assignment of pin labels

When the partitioning process has been completed, enough
data are available on the Master File so that labels associ-
ating small-card connection pins with the signal lines for
all blocks on the logic diagrams can be assigned. Pin
label assignments are also entered into the Master File.

The diagram of Fig. 9 shows how the logic of Fig. 8
will appear after all assignments have been made. This
diagram indicates that each logic block has been assigned
to a portion and subportion of a small card, that terminal-
pin labels have been assigned, that small cards have been
assigned to large boards, and that cards have been as-
signed to socket positions on the large boards. This last
problem of assignment has yet to be discussed.

Assignment of small cards to large-board socket positions

Interconnections between small cards are accomplished
by the etched wiring paths on a large board. Because
wiring the board involves problems of signal-path routing
and requires that intercard signal connections be as short
as possible for good circuit performance, it is desirable to
make the best possible use of the flexibility that is available
for positioning the small cards on a board. The Placement
Programs compute positions for a set of cards.

Two basic placement programs are provided for the
engineer, an Algorithmic Program and an Interchange
Program. They may be used individually or successively.
Since the engineer himself will sometimes wish to specify
the exact placement of some of the small cards on the
large assembly, both programs make provision for this
situation. The programs give priority to the predesig-
nations and will assign the remaining small cards to the
positions available.

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE

1. Algorithmic Program

To make assignments using the algorithmic method, the
program first selects a board from the already chosen
set of boards. It then compiles a list of all cards to be
positioned on that board and another list of all available
socket positions on that board. (A socket is available if
it has received no prior assignment, or has not been ex-
cluded as available by the engineer.)

Assume, for example, that one card has been assigned
to a socket by the engineer. This card and socket do not
appear in the tables. The program now picks card C , from
the table and tries it, in turn, in each socket S i . Each time
the computer tries a card-to-socket combination C i s i , it
notes the location of all pins which must be interconnected
between the already assigned socket@) and the trial socket.
It then computes the half-perimeter of the smallest rec-
tangle which can enclose the interconnecting pins of a
net that is common to both sockets. If there are more
than one common nets (and there usually are), the com-
puter calculates the half-perimeters of the rectangles en-
closing each net, and adds them together.

This sum N i j is determined for all possible card-to-
socket combinations Cisj. From all N i j , a particular N,,

is found such that

N,, = max [min (N i l)] .

Using this criterion, card C, is assigned to socket S, ; the
card and socket so assigned are removed from the tables,
and the process is repeated until all cards have been
assigned. In practice, the Algorithmic Program has as-
signed 60 small cards to socket positions on a board
in 10 minutes of 7090 computer time.

9

2. Interchange Program

When all cards have been given assignments to sockets,
the Interchange Program attempts to improve the “wire-
ability” of the board. The wireability factor equals the
sum of all N , i, where each N , is computed as before. The
lower the factor, the more wireable the board.

In attempting to improve wireability, the computer
tentatively interchanges each card with every other card
on the board. At every tentative interchange, N d i is
computed. If a lower sum than that produced by the
preceding arrangement is encountered, a permanent re-
assignment of cards is made. The interchange process
continues until no interchange that will produce a lower

Figure 9 Partitioning placement, and pin assignment information added to logic diagram.

E02 OR

I
2 0 3 8 8
4567A2

zo3cc D E I O

-813 A-BIB2

- BO8

DO9

203AC
6789A2

I
-D04D OR

I I

CAR0 PIN LABEL \ 7.p. 4567A3 A-BIA2

LB07

456781 -GATE, BOARD, AND
A-BIA2 POSITION ASSIGNMENT

’ [1
r E09

1234AI

-
A

ZO3BE
678981
A-BIB2

AJ -

r CARD TYPE ASSIGNMENT

L B O 5

2 0 3 8 8
123481

1
D EIO -

135

SOLID LOGIC DESIGN AUTOMATION

136

CABLA CABL’

B -C3A4

FROM CABLE SOCKET TO CABLE SOCKET

B-C5K2

Figure 10 Cable block diagram.

N i i is possible. The engineer uses the wireability factor
as a means of comparing the efficacy of various place-
ments. In practice, the Interchange Program takes from
15 to 40 minutes of 7090 time to evaluate a 60-card board
for wireability and make reassignments.

Cabling Programs

Use of flat cables poses new challenges to the designer in
obtaining an efficient and accurate physical (mechanical)
layout. Highly accurate information specifying the length
and position of folds is required. In addition, sequencing
and routing must be such that the total thickness of
several cables does not exceed the cross-sectional depth
of the cable channel, and such that cables emerging from
a channel at a given point are in the same relative sequence
as the sockets to which they connect.

The Cabling Programs will, given the endpoints of the
cables desired, compute the routing, sequencing, folds,
and lengths of flat cables. To do this, an additional input
is provided by the engineer, who draws “cable block”
diagrams as shown in Fig. 10. These diagrams contain
pairs of blocks which identify each cable and the large-
board sockets it uses.

The Cabling Program first considers cables which are
plugged into sockets nearest the routing channels, and
places them into a table of “available” cables. From this
group, those cables which have only one routing path are
selected. An examination of the paths of these cables,
along with the matching of folds as a cable’s direction
changes, determines an initial placement in the routing
channels. As each cable is placed, other sockets are made
accessible and new cables are added to the list of avail-
ables. As each cable is placed in its path along the chan-
nels, a summary of build-up at channel intersections is
maintained. This is used as a factor in choosing a route
for a cable when there are alternate paths which are
equally desirable. During the routing of a cable, lengths
are subtotaled for fold marking. Each subtotal is used to

Figure I 1 Identification of etched-wiring board features.

-TOP PLANE

””” BOTTOM PLANE

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE

indicate to the cable manufacturing process the midpoint
of a mark that shows where it is necessary to fold a cable
when a change of direction is indicated or where it is
necessary to clamp a cable (or cable set) for additional
support.

Upon completion of the design of a set of cables, mag-
netic tapes are produced for use in the manufacturing
process. The primary advantages accruing from the use
of these programs is accuracy of design data and reduction
in manual effort and cost.

Although the features provided for design assistance
described above are important, the most essential design
aid provided to the engineer using the SLT technology is
the preparation of etched board wiring. This is considered
in the following section.

Etched wiring board design

Defining the etched board wiring is the final major step
in the design process. Previous sections have described
how the initial design has been successively defined, tested,
checked, and packaged into small cards. Since each small
card was assigned a position on an etched board, the
process has resulted in the gross definition of the inter-
connections which must be formed between the pins of
the etched boards. The primary task of the Etched Board
Wiring Design Programs is to compute this wiring in
complete detail.

As with the previously described design-assistance pro-
grams, the source of data for wiring is the magnetic tape
file holding the accumulated logic design. This is of con-
siderable importance since it gives absolute assurance that
the wiring and logical design agree. Another important
provision of the programs is the ability to retain a history
file of the wiring data. Use is made of this file to compute
the add/delete wiring data that is necessary to translate
from one design level to another.

The succeeding sections of this paper will refer to the
computation of the complete wiring for an etched board
as “original wiring” design, while the computation of
add/delete wiring will be called “rework wiring” design.

Physical layout of etched wiring board

The physical arrangement of the etched board is shown
schematically in Fig. 11. The board has two surfaces on
which the wiring pattern may be etched. Communication
between the two surfaces occurs by means of plated-
through holes. Pins occupy some of the plated-through
holes and constitute the means by which signals enter or
leave the board. Plated-through holes without pins are
called “vias” and are used solely to interconnect the sur-
faces. The holes are arranged in a regular rectangular
65 X 98 matrix, and are grouped in 5 X 14 arrays to
form sockets. Each socket contains 3 columns of vias
and 2 columns of pins.

Figure 12 Methods of connecting a three-pin net.
(a) multi-ended etched wiring, (b) pin-to-

pin discrete wiring, (c) pin-to-pin etched
wiring.

Up to three etched wires are placed in the space between
adjacent holes, as illustrated. The etched patterns are pro-
duced by a numerically controlled machine which utilizes
a moving light source to expose the patterns. Additional
connections between pins can be made by discrete wires
that are wire-wrapped to pins on the obverse side of the
board from the pluggable cards.

Original etched wiring computation

Computation of a set of etched wiring segments which
satisfies the interconnection requirements is a demanding
task, primarily because of the constraints imposed by
the requirement that only two planes be used for the
etched wiring.

The following are the significant features of the pro-
grams which compute the wiring:

1. Where circumstances require, the engineer may pre-
specify a wiring route. This is provided so that special
cases may be handled. Therefore, the programs first con-
sider any such manually generated data. 137

SOLID LOGIC DESIGN AUTOMATION

2. Etched connections, unlike discrete connections, may
be “multi-ended’’ as illustrated in Fig. 12. Since all verti-
cal wiring segments are kept on one plane and horizontal
segments on the other (for efficient space utilization), it
is important to make use of these multi-ended connections
where possible to decrease wire length and increase wiring
density.

3. The pattern of pin connections within a net must some-
times be arranged in severely constrained ways to allow
for the characteristics of particular circuits. The programs
therefore include a provision for accepting special con-
figuration rules associated with the use of particular small
cards.

4. In the computation of the actual wiring paths, two
separate methods are employed sequentially. A heuristic
approach completes approximately 6OY0 of all required
connections. This is accomplished within approximately
2 to 3 minutes of 7090 computer time. A maze-running
appr~ach ,”~ which is exhaustive in finding an open path
for a required interconnection, is used to compute the
remaining interconnections and completes an average of
95% of all interconnections. This is accomplished in ap-
proximately 30 minutes of computer time. The remaining
5% of necessary connections are completed by discrete
wire jumpers.

Results of wiring trials

In the course of developing the wiring methods many
experiments were made to determine the best approach.
Some of the more significant results are as follows:

1. The multi-ended method was better than the pin-to-pin
method with respect to average wire length and quantity
of discrete wires necessary to complete the wiring. Table 2
compares the results obtained using the two methods.

Table 2 Comparison of multi-ended vs pin-to-pin
wiring results.

Discrete wires
remaining after wiring

~~~~ 

Board Pins per Nets  per Multi-ended Pin-to-pin 
number board board method method 

1 961 314 0 3 
2 1161 514 54 68 
3 989 323 23 57 
4 1113 297 164 203 
5 1046 298 52 97 
6 901 261 0 13 

138 

2. It was found to be a definite advantage to control the 
order in which various nets were  wired.  An  average of 
15%  fewer discrete wires are necessary if nets are wired 
in order of decreasing  size rather than in a random order. 
(The sue of a net  is  defined  here as the perimeter of the 
smallest  rectangle which contains all the pins  of a net.) 

3. Computer processing  time and the required  number of 
discrete wires both increased  significantly  when the maze- 
running  technique was  used alone rather than in con- 
junction with the heuristic  technique. 

4. Restrictions placed on  the freedom of the maze-run- 
ning  program  result  in a measurable  decrease in the num- 
ber of  discrete wires required.  These  restrictions  consist of 
limiting the area in  which the program  is  allowed to oper- 
ate when searching for open paths, and of limiting the 
number of  vias and the length of printed conductors per- 
mitted to complete a path. Best results are obtained by 
initially  limiting the program while attempting all the re- 
quired  connections, and gradually  relaxing the restrictions 
in  subsequent iterations. 

The  Etched  Wiring  Board  Design  Programs  used for 
System/360  designs are arranged to employ the above 
results to best  advantage. As one  might  expect,  invested 
computer  time  follows a curve of diminishing returns. 
The  parameters which control the restrictions and iter- 
ations can be  adjusted by control-card input for each 
board  processed. Table 3 shows the results when the 
wiring paths for boards of  varying  degrees  of  complexity 
are computed  using the three available  sets of control 
parameters. 

Rework wiring computation 

Following the completion and release  of an initial design, 
the engineer  is  faced  with the problem of incorporating 
design  changes. It is often necessary that these  changes  be 
treated as modifications to the existing  design, rather 
than as completely  new  designs. 

For this purpose the Etched  Wiring  Board  Design Pro- 
grams  have the ability to derive the logical additions and 
deletions to be made to a previous  design  level. The logical 
changes are then applied to the previous  wiring  configu- 
ration, modifying it into  the desired new design. 

The  significant  characteristics of this process are: 

1.  Only the unwanted  wiring in the original  design  is 
deleted. 

2. The additional wiring  required  is  added  such that a 
complete new design  is  available for the manufacturing 
process. For efficiency, this process  demands  maximum 
use  of etched  connections. 

3. Both of the above  processes are completed  under the 
restraint that the deletion/addition steps  can  be  described 

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE 



Table 3 Results of wiring methods. 

Board characteristics Results I N 2 

Board 1 
Number of  pins 
Number of nets 
Average pins per net 

Board 2 
Number of pins 
Number of nets 
Average  pins  per net 

Board 3 
Number of pins 
Number of nets 
Average  pins  per net 

79 1 
280 

2.32 

1050 
357 

2.94 

1299 
362 

3.58 

7090 running time (in  minutes) 12 4 0.5 
Number of discrete wires 12 16 60 
Number of  vias  used 915 898 71 8 
Average vias per net 3.36 3.34 3.01 
Average  inches  per net 6.75 6.77 6.85 

7090 running time (in minutes) 37 18 2 
Number of discrete wires 60 78 139 
Number of  vias  used 1319 1179 852 
Average  vias per net 4.27 3 .94 3.37 
Average inches per net 8.64 8.69 9 .ll 

7090 running time (in minutes) 94 60 7 
Number of discrete wires 169 188 272 
Number of  vias  used 1653 1576 1099 
Average  vias  per net 5.66 5.69 4.70 
Average inches per net 10.72 11.15 11.62 

Legend 
1 Parameter set  for  use when a larger-than-normal investment in computer time is warranted. 
N Set recommended for normal use. 
2 Parameter set  resulting  in minimum computer time. 

and performed on a previously manufactured board by 
an efficient manual process. Manual deletions are accom- 
plished by severing  existing etched wiring or removing 
existing  discrete connections ; additions are accomplished 
by adding discrete wire. 

4. As a result of the two physical routes by  which a given 
board may  be obtained (i.e.,  newly manufactured or manu- 
ally reworked), the entire process is constrained so that 
any future changes can be implemented identically on  the 
two physical boards. This is accomplished  by making all 
additional etched connections in a pin-to-pin manner and 
with direct correspondence to the discrete connections 
added manually. 

In addition to being  necessary for the efficient manu- 
facturing and field  servicing  of  machines  which are sub- 
ject to design  changes, the rework programs offer two 
important design  benefits: they enable design iterations 
to be made under tightly controlled conditions, and they 
significantly reduce the computer time required for pro- 
ducing a modified  design.  (A rework design change which 
affects 10% of the wiring can be made in 30% of the com- 
puter time required to recompute the entire design as an 
original.) 

Conclusions 

The use of Solid  Logic  Design Automation has materially 
assisted  in the application of  Solid  Logic  Technology to 
the new System/360 computer family.  Specifically,  Solid 
Logic Design Automation: 

1. Has provided the various laboratories participating in 
the project with identical design procedures for the Sys- 
tem/360. 

2. Has provided uniform documentation so that all plants 
can manufacture designs from any laboratory and anyone 
trained on one machine can understand the documenta- 
tion of any other. 

3. Has provided  designers with powerful new tools for 
organizing, validating, and detailing their designs  with a 
previously unattainable degree of accuracy.  This  increased 
accuracy is particularly valuable because packaging on 
etched boards imposes  severe  penalties for mistakes found 
after prototypes are constructed. 

4. Has made it easy for designers to evaluate design  vari- 
ations in order to select the best alternative. 

5. Has made possible the economical  design  of etched 
wiring boards and flat  cables. 139 

SOLID LOGIC DESIGN AUTOMATION 



6. Has converted logic diagrams into digital information 
to  control  automated tools that manufacture  etched wiring 
boards  and flat cables. 

Acknowledgments 

It is impractical to mention  all the individuals whose pro- 
gramming contributions made possible the implementa- 
tion of this unified set of programs-a programming  task 
ten times the magnitude of FORTRAN. However, im- 
portant concepts were contributed by R. R. Burch, D. J. 
Galletta, V. A. Nelson, R. J. Preiss, J. E. Steitz, S. G. 
Tucker, and R. H. Glaser. The Printed  Circuit Generator 
referred to  in this  paper was developed at the  IBM  Manu- 
facturing  Research Laboratory  in Endicott,  N. Y. The 
support  and encouragement of E. Bloch and D. L. Kil- 
crease proved invaluable. Special acknowledgment is due 
to D. R. White for his assistance in  the  preparation of 
this  paper. 

References 
1. M. Kloomok, P. W. Case,  and  H.  H.  Graff,  “The  Recording, 

Checking, and Printing of  Logic  Diagrams,” Proceedings of 
the EJCC, 108  (December,  1958). 

2. G. A.  Blaauw, G. M. Amdahl,  and  F.  P.  Brooks,  Jr.,  “Archi- 
tecture of the IBM System/360,” IBM Journal 8, No. 2, 
87-101 (April, 1964). 

3. E. M. Davis, W. E. Harding, R. S. Schwartz,  and J. J. Corn- 
ing,  “Solid  Logic  Technology:  Versatile,  High-Performance 
Microelectronics,” IBM Journal 8, No. 2, 102-114 (April, 
1964). 

4. R. C.  Paulsen and W. K. Springfield,  “High-Frequency, 
Multiple-Signal-Conductor  Transmission  Line.” In prepa- 
ration. 

5. C. H.  Haspel,  “Automatic  Packaging of Computer Cir- 
cuitry.” In preparation. 

6. U. R.  Kodres  and  H. E. Lippman,  “SLT  Board Layout,” 
IBM Technical  Report TROO.lO1O,  Revised  March  10,  1964. 

7. C. Y .  Lee, “An Algorithm for Path Connections and Its 
Applications,” IRE Trans. on Elect. Computers EC-10, No. 
3, 346-365  (September,  1961). 

Received January 20, 1964 

140 

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY,  SPENCE 


