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Solid Logic Design Automation

Abstract: This paper describes the unique feafures
of a set of IBM 7090 programs which provide
design assistance to engineers who use Solid Logic
Technology. These programs were applied in the
design of the IBM System /360,

Introduction

Automatic design aids have become necessary for the effi-
cient use of engineering manpower in developing modern
digital systems. The design of such systems involves the
handling and documentation of vast amounts of informa-
tion. Without design aids, the engineer is required not
only to perform his vital task of specifying the system’s
internal logical structure, but also to perform manually
all the tedious chores of detailing, recording and checking
his design.

The concept of design automation for digital systems
has been previously discussed.' Operating within this
concept, an engineer must state in rough-draft form the
arrangement of logical elements for the system he is de-
signing. Once he has done this, computer processing can
assist with each further stage of design detailing, and
furnish up-to-date documentation of the state of the de-
sign. The basis for this process is a central file kept on
magnetic tape, which serves as the prime definition of the
design in much the same way that master drawings for-
merly served. Automatic printout of logic diagrams by
the computer replaces the outmoded process of obtaining
blueprints.

Design automation for the System/360

o Logic design

The design of the IBM System/360 required that new de-
sign automation techniques be provided. Since the system
philosophy’ demanded high performance objectives and
strict compatibility, with a consequent increase in the
volume and complexity of logical design, a need for more

efficient design-information handling and documentation
became evident.

Thus, previous concepts for retaining accumulated de-
signs and producing computer-printed logic pages were
included in the design procedures, but novel features
were added to reduce the burden on the engineer. These
features increase the computer’s ability to use data on the
central design tape to produce a variety of documents.
This increased ability eliminates many of the errors which
formerly were caused by manual generation of data.

A set of simulation programs was developed so that
System/360 designers might evaluate their logic designs
before they construct hardware models. Several features
of these programs provide greater flexibility of operation
than previous simulation programs have been able to
attain.

o Packaging

An early systems planning decision was that the Sys-
tem/360 would use a new circuit-packaging technique
called Solid Logic Technology (SLT). This decision pro-
vided the primary motivation for developing the design
automation techniques described in this paper.

As described by Davis, et al.,’ SLT microelectronic
circuits are encapsulated into modules. From 6 to 24 of
these modules are mounted on “small cards” of various
standard sizes. Etched wiring on both sides of a small
card interconnects module terminals with female connec-
tors at the base of the card. The small cards, in turn, are
mounted on larger wiring boards whose various terminal
pins make pluggable contact with the small card con-
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wiring board.

Figure 1 Small cards mounted on large etched-

Figure 2 Sample computer-printed logic page.

nectors. The “large boards” also have etched wiring signal
paths on both sides.

Interconnection between large boards is accomplished
by flat, flexible cables.* Figure 1 shows small cards
mounted on a large board. Predesigned small cards with
circuit modules attached are the smallest units of hard-
ware with which a System/360 designer works.

New programs were developed (1) to assign each block
appearing on the logic diagrams to appropriate small-
card units, (2) to assign labels to small-card connection
points associated with each input and output line from
the blocks on logic diagrams, (3) to assign each small
card to a position on a large board, and (4) to compute
the routing, sequencing, folds, and lengths of the flat
cables that interconnect large boards.

Other new programs were created to automatically
determine the layout of etched wiring patterns on the
large boards.

Logic Design Accumulation Process

The Logic Design Accumulation Process provides an up-
to-date record of the machine design status at every stage
of development. The primary document of this record
is a computer-printed logic diagram like that shown in
Fig. 2.

The process begins when an engineer draws a diagram
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showing how a group of logical elements (e.g., AND or
OR blocks) should be connected to perform a desired
machine function. The engineer makes this drawing on
a special form which enables a keypunch operator to
transcribe his design onto punched cards. The punched-
card data are then processed through an IBM 7090 com-
puter and stored on magnetic tape in the Design Auto-
mation Logic Master File. The computer also produces
at this time a printed diagram of the logic specified by
the engineer. Whenever the engineer makes a change in
his design, the Logic Master File is revised, and an up-
dated logic page is printed. As Fig. 3 shows, other pro-
grams will subsequently obtain data directly from the
Logic Master File.

Throughout the design process, the engineer is provided
with a complete set of the most recent computer-printed
logic pages specifying the system design. These pages are
numbered and titled to identify the logic function that is
depicted. The names and numbers of all signal lines enter-
ing and leaving the page are shown. Each logic block on
the page has space provided for printing (1) the type of
logical function performed by the block (AND, OR,
INVERT, TRIGGER, etc.), (2) the identification number
of the microelectronic circuit represented by the block, (3)
a number specifying the type of small card on which the
circuit appears, (4) a designation representing the portion
of the small card on which the circuit appears, (5) a num-
ber stating where the small card will be located on the
large board, and (6) identification of the small card termi-
nals which make contact with pins on the large board.
Figure 4 shows the information associated with a sample
block from a logic diagram.

Although all the information just stated must eventually
appear on the logic page, the engineer does not have to
specify it all in his initial input to the Logic Master File.
He is encouraged only to specify initially the signal-line
names and call out the logic function and microelectronic
circuit numbers associated with each block on the dia-
gram; subsequent programs will assist him with further
detailing. Logic at this early stage is said to be “imple-
mented” because its operation is completely specified even
though it is not yet packaged or converted to hardware.
Checking programs are used after the logic is implemented
to test the design on the Logic Master File against a set of
circuit interconnection rules. These programs will discover,
for example, whether there are any overloaded circuits.

The purpose of the logic diagrams, as already stated, is
to provide designers with an up-to-date picture of the sys-
tem’s design status. This statement implies that design
changes are expected, and can be automatically recorded on
the logic sheets. The new programs developed for the Sys-
tem/360 simplify the problem of recording changes. One
of these programs provides automatic cross-referencing
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Figure 3 Solid Logic Design Automation program
sefs,
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Figure 4 Information associated with a sample
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Figure 5 Example illustrating automatic cross referencing of design changes.

a) Pages prior to change;
b) Changed page submitted by engineer;
¢) Pages produced by programs.

shows portions of two logic pages (pages AB101 and
AB405) before changes. Suppose the engineer wishes to
use a signal generated on page AB101 as input to a block
on page AB405. He then marks up page AB405 as shown
in Fig. 5b: he specifies the incoming signal line by writing
the page (AB101) and location within that page (block CD,
line 4) where the signal was generated.

Using the signal line code (AB101CD4), the computer
can search the Logic Master File to get the name of the
signal (+READY) and print it on page AB405. Tt will also
automatically revise and print the new usage of the signal
on page ABI101. Figure 5¢ shows the appearance of the
pages after they have been revised. This unique program
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allows automatic cross-referencing of signal usage and
immediate updating of all pages affected by an engineer-
ing change. It reduces the amount of information to be
supplied manually, and helps to avoid redundant and
ambiguous entries of signal lines into the design.
Permanent assignment of eight-character signal-line
codes (called “net numbers”) has a further benefit in the
latter stages of design. That is, checking of wiring and
cabling lists will be facilitated since all net numbers in the
lists refer directly to logic pages on which they originate.
Another novelty of the Solid Logic Design Automation
programs is called Version Design Processing. Once the
basic design of a system has been completed, the design




versions resulting from the addition of various optional
features are recorded as modifications to the basic system.
Because the unaltered part of the basic design does not
need to be duplicated, redundancies and ambiguities are
avoided. Composite logic pages are automatically pro-
duced for each version which show the appropriate feature
superimposed on the basic logic. One of the most signifi-
cant advantages of Version Design Processing is that the
programs automatically produce altered feature pages
when the basic design is changed.

Logic simulation

The logic design of the System/360 was made more effi-
cient through the use of logic simulation programs. These
programs were devised to enable engineers to predict
the performance of their proposed designs before they
build hardware models of them. Several new features were
incorporated into the operation of this simulator: (1) the
logic to be tested is obtained directly from the Logic
Master File by the simulation program, (2) the simulator
can account for nominal transit and switching delays, (3)
it can handle logic feedback loops, (4) it examines the
simulated logic only at the times when some element has
changed state, and (5) at examining time it checks only
those elements which could possibly change state in the
future as a result of the present change of state.

To use the simulator an engineer specifies what portion
of logic he wishes to test. Since the logic is already on the
Master File, the tape serves as the input to the simulator;
this eliminates the need for an engineer to manually gen-
erate the logic for use in the simulator. Other data that
the engineer must supply are a time scale for the simula-
tion run, and the specific times along this scale at which
he wants input nets to switch logical states.

When the coded logic from the Master File enters the

simulator it is combined with data from another mag-
netic tape which specify the delays of each logic block.
This combination of data is translated into a set of coded
equations that defines the logical state of each net as a
function of the delays and the logical states of other nets.
The functional equations are then entered into a section
of the simulator’s core storage called the Functional
Table.

Another section of core storage contains a Forward-
Referencing Table. For each net in the logic, a list is stored
to identify all the other nets whose logical state depends
on the state of the given net. Whenever a net changes
state, the simulator refers to its entry in the table. It de-
termines which nets may subsequently be affected by that
action. By doing so, it eliminates the need to interrogate
every net in the logic under test, thus reducing running
time. Also, this feature makes it possible for the simulator
to consider feedback loops in the logic circuits.

A third section of storage is occupied by a Switching
Events Table. The switching of a signal at a designated
time is called an “event.” Events are listed chronologically
in the table along the time scale specified by the engineer.
Initially, the events associated with the input nets are
entered at the appropriate times in the table. For example,
the engineer may have specified that input net x switches
“on” at time-unit 1 and switches “off” at time-unit 12.
Thus, events are entered in the table at times 1 and 12.

However, the Forward-Referencing Table might indi-
cate that an event on net x could affect the logical state
of net y. The entry in the Equation Table for net y may
then state that net y turns “off”” 4 time units after net x
turns “‘on.” Therefore, when the event of x switching ‘“‘on”
is executed at time 1, it will generate a new entry in the
Events Table. This new entry will state that net y switches
off at time 5.

Figure 6 Sample sequence chart obtained from logic simulator.
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Since time-unit 5 is the next event in the table, the simu-
lator next determines what effect this event will have in
producing future events, and enters any future events at
the appropriate place in the table. In this way the Events
Table is continually revised throughout the simulation run.

The use of the Forward-Referencing and Events Tables
is a valuable utilization of storage space since, normally,
only about 19, of the logic elements under test are active
at any time. Thus, total running time is conserved by the
simulator’s ability (1) to examine logic only at those
points on the time scale where it encounters an event,
and (2) to examine only those logic elements affected by
an event.

The results of the simulation run are provided to the
engineer in the form of either a timing chart or a sequence
chart. To produce a timing chart the simulator samples
and prints the status of every net in the logic at equal
time intervals. To produce a sequence chart, it prints only
at the times corresponding to an event.

Figure 6 shows a sequence chart for the logic page given
in Fig. 2. The left part of the chart is a list of all the nets
on this logic page for which charting was requested. Three
identical columns are printed after one or more of the
charted nets has changed state. There will be an entry in
a given row of a column if the corresponding net is “on”
at time of printing. The time scale along the base of the
chart designates the simulated times at which the event
occurred.

Simulator timing charts, which can show the activity
of up to 100 nets, may be compared to the output that
would be observed on a multitrace oscilloscope if a probe
were attached to each net. By studying such charts, engi-
neers are often able to spot undesirable timing situations
and correct their design before any hardware models are
built.

The simulator just described is able to approximate the
performance of 3000 to 4000 logical elements through
10 to 20 clock cycles in less than 30 minutes of IBM 7090
computer time.

Packaging and cabling programs

Once the design of the logic is satisfactory, the next prob-
lem is to specify the physical layout of logic as it will ap-
pear in the machine. As discussed earlier, the System/360
logic is packaged using SLT modular circuitry. New de-
sign automation programs have been developed to assign
logic elements to standard small cards, to assign small-
card pin labels to appropriate logic block terminals, to
assign the small cards to positions on large wiring boards,
and to determine cabling requirements.

o Assignment of logic to cards and boards

1. Formation of logic groups
The Partitioning Program examines a section of logic con-
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tained on the Master File and divides it into groups of
blocks for assignment to small cards. Each logical element
on the tape is represented by a number (e.g., Z03BB)
which specifies a standard IBM circuit. This number im-
plies the logical function performed by the element and
the electrical characteristics of the circuit.

The total library of small-card packaging units consists
of many cards. For purposes of example suppose, how-
ever, that the library contains only the three cards shown
in Fig. 7. This figure indicates that card 1234 has two
Z03BB circuits contained in the modules mounted on it.
One circuit is in portion A of the card and the other is
in portion B. All input and output terminals of the circuits
are connected via pins to the large-board signal paths.
Card 6789 has four circuits contained in its modules.
Circuits Z03AC are connected by wiring paths on the
small card to circuit Z03CC. These three circuits are in
portion A of the small card and are in subportions 1, 2,
and 3, respectively. The circuit terminals that are con-
nected internally on the card are not available to the signal
paths on the large board. Circuit Z03BB is connected on
the card independent of the other circuits.

Figure 7 Library of small cards.
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The circuit configurations encountered on the previous
two cards are designated as “non-functional” portions.
This is because they are either unit groups or are clusters
which always appear together on a single small card.

The third card illustrated (card 4567) has three Z03BB
circuits interconnected into portion A, subportions 1, 2,
and 3. Since Z03BB can also appear as a unit circuit as
shown on the previous cards, the collection labeled por-
tion A is called a “functional” portion. Portion B of
card 4567 is again an independent circuit.

It is important to remember that the small cards with
mounted modules are available as prepackaged units;
the computer’s function is to assign the blocks on logic
diagrams to appropriate portions and subportions of
appropriate standard card units.

Now, suppose that an engineer wishes to have the logic
shown in Fig. 8 assigned to small cards. At the stage of
design represented by this figure, the engineer has manu-
ally assigned block AK to card 1234, portion A, subpor-
tion 1; he has manually assigned blocks AC, AE, and AF
to card 4567, portion A, subportions 1, 2, and 3; all other
blocks are to be automatically assigned. (Refer to Fig. 4
for a review of the information contained on a logic dia-
gram.) The engineer’s manual assignment of block AK

AL-

Figure 8 Appearance of logic diagram before partitioning.

was prompted by his knowledge of conditions such as
heating or electrical interference which caused him to
have a preference for the particular assignment chosen.

The engineer’s manual assignment of blocks AC, AE,
and AF was prompted by his preference for the use of a
functional portion in the packaging., The partitioning
programs would otherwise choose nonfunctional portions
for the packaging of these circuits.

The Partitioning Program extracts the logic from the
Master File and checks each logic block against a set of
partitioning criteria obtained from another tape. The
criteria are used to determine groups. The groups of blocks
formed by the program for this example and the reasons
for each group formation are listed in Table 1 (page 134).

2. Assignment of groups to cards

The next step of partitioning is to assign each previously
unassigned group to a small card using a process described
by Haspel.” First, the computer program chooses from
the card library a minimum set of cards which is capable
of packaging all the groups.

Then the computer goes through a routine which as-
signs to the same card groups that are “close” together.
To do this, the program arbitrarily selects one of the

133
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Table 1 Formation of logic groups.

Logic

blocks
Group comprising  Group
number  the group  name

Reasons for the
group formation

1 AG Z03BB This block is not yet assigned
to a card. Partitioning criteria
require Z03BB to be a unit
group which exists as a sepa-

rate portion on a small card.
Al Z03BB Same as Group 1.
AL Z03BB Same as Group 1.

AD,AA,AB  Z03CZ The criteria require these three
blocks to always be together
on a small card. They are
therefore treated as a group.

5 AK blank  This block is not a candidate
for partitioning, since it has
been preassigned by the en-
gineer.

6 AF, AE, AC blank These blocks are not candi-
dates for partitioning; they
have been preassigned by the
engineer into a functional por-
tion. If called upon, partition-
ing would have treated these
blocks as three distinct groups,
each similar to Group 1.

cards. A “portion” of this card is selected for consider-
ation and a group is assigned to it. (Assume for simplicity
that no groups have been preassigned.) Next, another
portion is selected and the “best candidate group™ is
chosen for assignment. A “candidate group” is one whose
configuration will fit the configuration of the portion.
The “best candidate group” will be the candidate group
that is *“closest” to the already assigned group. The
“closest” group is that one which shares the most nets
with the assigned group(s) and has the least number of
nets not shared with the assigned group(s). If more than
one of the candidates meet this criterion, an arbitrary
choice is made.

Now, with two groups assigned to portions, the com-
puter selects another portion and finds the candidate
group that is closest to the two assigned groups. In this
manner, each card in the set selected from the library is
examined portion by portion until all groups have been
assigned. Of course, in some cases, there will be more
portions available than there are groups to fill them, and
the program must decide which portions will not receive
an assignment,
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For the example logic shown in Fig. 8 the groups could
be assigned as follows by the process just described:

Group 1: Card type 4567, portion B, subportion 1
Group 2: Card type 6789, portion B, subportion 1
Group 3: Card type 1234, portion B, subportion 1
Group 4: Card type 6789, portion A, subportions 1, 2, 3
Group 5: Preassigned

Group 6: Preassigned

3. Assignment of cards to boards

After groups have been assigned to cards the next step of
the partitioning process is to assign the cards to appropri-
ate large boards. This process is much the same as the
group assignment process in that cards which are close to
each other are assigned to the same board. Here, closeness
of cards has exactly the same meaning as closeness of
groups; the closest candidate card is that one which shares
the most nets with the already assigned cards, and has
the least number of nets not shared with assigned cards.

4. Assignment of pin labels

When the partitioning process has been completed, enough
data are available on the Master File so that labels associ-
ating small-card connection pins with the signal lines for
all blocks on the logic diagrams can be assigned. Pin
label assignments are also entered into the Master File.

The diagram of Fig. 9 shows how the logic of Fig. 8
will appear after all assignments have been made. This
diagram indicates that each logic block has been assigned
to a portion and subportion of a small card, that terminal-
pin labels have been assigned, that small cards have been
assigned to large boards, and that cards have been as-
signed to socket positions on the large boards. This last
problem of assignment has yet to be discussed.

o Assignment of small cards to large-board socket positions

Interconnections between small cards are accomplished
by the etched wiring paths on a large board. Because
wiring the board involves problems of signal-path routing
and requires that intercard signal connections be as short
as possible for good circuit performance, it is desirable to
make the best possible use of the flexibility that is available
for positioning the small cards on a board. The Placement
Programs compute positions for a set of cards.

Two basic placement programs are provided for the
engineer, an Algorithmic Program and an Interchange
Program. They may be used individually or successively.
Since the engineer himself will sometimes wish to specify
the exact placement of some of the small cards on the
large assembly, both programs make provision for this
situation. The programs give priority to the predesig-
nations and will assign the remaining small cards to the
positions available.




1. Algorithmic Program

To make assignments using the algorithmic method, the
program first selects a board from the already chosen
set of boards. It then compiles a list of all cards to be
positioned on that board and another list of all available
socket positions on that board. (A socket is available if
it has received no prior assignment, or has not been ex-
cluded as available by the engineer.)

Assume, for example, that one card has been assigned
to a socket by the engineer. This card and socket do not
appear in the tables. The program now picks card C; from
the table and tries it, in turn, in each socket S;. Each time
the computer tries a card-to-socket combination C.S;, it
notes the location of all pins which must be interconnected
between the already assigned socket(s) and the trial socket.
It then computes the half-perimeter of the smallest rec-
tangle which can enclose the interconnecting pins of a
net that is common to both sockets. If there are more
than one common nets (and there usually are), the com-
puter calculates the half-perimeters of the rectangles en-
closing each net, and adds them together.

This sum N;; is determined for all possible card-to-
socket combinations C;S;. From all N;, a particular N,

is found such that

N,, = max [min (N,;)].
i )

Using this criterion, card C, is assigned to socket S ; the
card and socket so assigned are removed from the tables,
and the process is repeated until all cards have been
assigned. In practice, the Algorithmic Program has as-
signed 60 small cards to socket positions on a board
in 10 minutes of 7090 computer time.

2. Interchange Program

When all cards have been given assignments to sockets,
the Interchange Program attempts to improve the “wire-
ability” of the board. The wireability factor equals the
sum of all N;;, where each N;; is computed as before. The
lower the factor, the more wireable the board.

In attempting to improve wireability, the computer
tentatively interchanges each card with every other card
on the board. At every tentative interchange, E N;; is
computed. If a lower sum than that produced by the
preceding arrangement is encountered, a permanent re-
assignment of cards is made. The interchange process
continues until no interchange that will produce a lower

Figure 9 Partitioning placement, and pin assignment information added to logic diagram,

B02 > OR
Z03BB
2| A —l— OR 4567A2
BO4 [> A-BIA2
Z03AC 203CC DBIOJ— L——ae
67894l 6789A3
B3 | A-BIB2 A-BIB2
AA- AD
CARD PIN LABEL CARD TYPE ASSIGNMENT
BOS| A A \ A
Z03AC zo3es P BO8 D10 | zo3B8 y > D09
6789A2 4567A3 45678I | —GATE, BOARD, AND
po9| A-BIB2 A-BIAZJ A-B1A24 | POSITION ASSIGNMENT
AB— AF AG-
DO4[> OR Bo7| A
20388 7038 DDIO
456741 6789BI
——e—DO05[> A-BIA2 B09 | A-BIB2
ac— N
+—B03| A
20388 PD06——
123441
B04| A-BIA3
AK—
L—Bos| a
20388 P BIO ——
12348l
Bog| A-BIA3

135

SOLID LOGIC DESIGN AUTOMATION



136

CABL* CABL*

B-C3A4 B-C5K2

FROM CABLE SOCKET
Figure 10 Cable block diagram.

TO CABLE SOCKET

2 N;; is possible. The engineer uses the wireability factor
as a means of comparing the efficacy of various place-
ments. In practice, the Interchange Program takes from
15 to 40 minutes of 7090 time to evaluate a 60-card board
for wireability and make reassignments,

& Cabling Programs

Use of flat cables poses new challenges to the designer in
obtaining an efficient and accurate physical (mechanical)
layout. Highly accurate information specifying the length
and position of folds is required. In addition, sequencing
and routing must be such that the total thickness of
several cables does not exceed the cross-sectional depth
of the cable channel, and such that cables emerging from
a channel at a given point are in the same relative sequence
as the sockets to which they connect.

The Cabling Programs will, given the endpoints of the
cables desired, compute the routing, sequencing, folds,
and lengths of flat cables. To do this, an additional input
is provided by the engineer, who draws “‘cable block™
diagrams as shown in Fig. 10. These diagrams contain
pairs of blocks which identify each cable and the large-
board sockets it uses.

The Cabling Program first considers cables which are
plugged into sockets nearest the routing channels, and
places them into a table of “available” cables. From this
group, those cables which have only one routing path are
selected. An examination of the paths of these cables,
along with the matching of folds as a cable’s direction
changes, determines an initial placement in the routing
channels. As each cable is placed, other sockets are made
accessible and new cables are added to the list of avail-
ables. As each cable is placed in its path along the chan-
nels, a summary of build-up at channel intersections is
maintained. This is used as a factor in choosing a route
for a cable when there are alternate paths which are
equally desirable. During the routing of a cable, lengths
are subtotaled for fold marking. Each subtotal is used to

Figure 11 ldentification of etched-wiring board features.

DETAIL

DISCRETE WIRE

CASE, GRAFF, GRIFFITH, LECLERCQ, MURLEY, SPENCE

ETCHED WIRING,
HORIZONTAL ON TOP PLANE
VERTICAL ON BOTTOM PLANE

= TOP PLANE
—————— BOTTOM PLANE

OUTLINE OF SOCKET
(REPEATED |3 HORIZONTALLY

SEE DETAIL AND 6 VERTICALLY)

~—
~—
~




indicate to the cable manufacturing process the midpoint
of a mark that shows where it is necessary to fold a cable
when a change of direction is indicated or where it is
necessary to clamp a cable (or cable set) for additional
support.

Upon completion of the design of a set of cables, mag-
netic tapes are produced for use in the manufacturing
process. The primary advantages accruing from the use
of these programs is accuracy of design data and reduction
in manual effort and cost.

Although the features provided for design assistance
described above are important, the most essential design
aid provided to the engineer using the SLT technology is
the preparation of etched board wiring. This is considered
in the following section.

Etched wiring board design

Defining the etched board wiring is the final major step
in the design process. Previous sections have described
how the initial design has been successively defined, tested,
checked, and packaged into small cards. Since each small
card was assigned a position on an etched board, the
process has resulted in the gross definition of the inter-
connections which must be formed between the pins of
the etched boards. The primary task of the Etched Board
Wiring Design Programs is to compute this wiring in
complete detail.

As with the previously described design-assistance pro-
grams, the source of data for wiring is the magnetic tape
file holding the accumulated logic design. This is of con-
siderable importance since it gives absolute assurance that
the wiring and logical design agree. Another important
provision of the programs is the ability to retain a history
file of the wiring data. Use is made of this file to compute
the add/delete wiring data that is necessary to translate
from one design level to another.

The succeeding sections of this paper will refer to the
computation of the complete wiring for an etched board
as “original wiring” design, while the computation of
add/delete wiring will be called “rework wiring” design.

o Physical layout of etched wiring board

The physical arrangement of the etched board is shown
schematically in Fig. 11. The board has two surfaces on
which the wiring pattern may be etched. Communication
between the two surfaces occurs by means of plated-
through holes. Pins occupy some of the plated-through
holes and constitute the means by which signals enter or
leave the board. Plated-through holes without pins are
called *‘vias” and are used solely to interconnect the sur-
faces. The holes are arranged in a regular rectangular
65 X 98 matrix, and are grouped in 5 X 14 arrays to
form sockets. Each socket contains 3 columns of vias
and 2 columns of pins.

Figure 12 Methods of connecting a three-pin net.

(@) multi-ended etched wiring, (b) pin-to-
pin discrete wiring, (c¢) pin-to-pin etched
wiring.

Up to three etched wires are placed in the space between
adjacent holes, as illustrated. The etched patterns are pro-
duced by a numerically controlled machine which utilizes
a moving light source to expose the patterns. Additional
connections between pins can be made by discrete wires
that are wire-wrapped to pins on the obverse side of the
board from the pluggable cards.

o Original etched wiring computation

Computation of a set of etched wiring segments which
satisfies the interconnection requirements is a demanding
task, primarily because of the constraints imposed by
the requirement that only two planes be used for the
etched wiring.

The following are the significant features of the pro-
grams which compute the wiring:

1. Where circumstances require, the engineer may pre-
specify a wiring route. This is provided so that special
cases may be handled. Therefore, the programs first con-
sider any such manually generated data.
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2. Etched connections, unlike discrete connections, may
be “multi-ended” as illustrated in Fig. 12. Since all verti-
cal wiring segments are kept on one plane and horizontal
segments on the other (for efficient space utilization), it
is important to make use of these multi-ended connections
where possible to decrease wire length and increase wiring
density.

3. The pattern of pin connections within a net must some-
times be arranged in severely constrained ways to allow
for the characteristics of particular circuits. The programs
therefore include a provision for accepting special con-
figuration rules associated with the use of particular small
cards.

4. In the computation of the actual wiring paths, two
separate methods are employed sequentially. A heuristic
approach completes approximately 609, of all required
connections. This is accomplished within approximately
2 to 3 minutes of 7090 computer time. A maze-running
approach,®” which is exhaustive in finding an open path
for a required interconnection, is used to compute the
remaining interconnections and completes an average of
959%, of all interconnections. This is accomplished in ap-
proximately 30 minutes of computer time. The remaining
59, of necessary connections are completed by discrete
wire jumpers.

o Results of wiring trials

In the course of developing the wiring methods many
experiments were made to determine the best approach.
Some of the more significant results are as follows:

1. The multi-ended method was better than the pin-to-pin
method with respect to average wire length and quantity
of discrete wires necessary to complete the wiring. Table 2
compares the resuits obtained using the two methods.

Table 2 Comparison of multi-ended vs pin-to-pin
wiring results.

Discrete wires
remaining after wiring

Board Pins per  Nets per  Multi-ended Pin-to-pin

number board board method method
1 961 314 0 3
2 1161 514 54 68
3 989 323 23 57
4 1113 297 164 203
5 1046 298 52 97
6 901 261 0 13
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2. It was found to be a definite advantage to control the
order in which various nets were wired. An average of
159, fewer discrete wires are necessary if nets are wired
in order of decreasing size rather than in a random order.
(The size of a net is defined here as the perimeter of the
smallest rectangle which contains all the pins of a net.)

3. Computer processing time and the required nomber of
discrete wires both increased significantly when the maze-
running technique was used alone rather than in con-
junction with the heuristic technigue.

4. Restrictions placed on the freedom of the maze-run-
ning program result in a measurable decrease in the num-
ber of discrete wires required. These restrictions consist of
limiting the area in which the program is allowed to oper-
ate when searching for open paths, and of limiting the
number of vias and the length of printed conductors per-
mitted to complete a path. Best results are obtained by
initially limiting the program while attempting all the re-
quired connections, and gradually relaxing the restrictions
in subsequent iterations.

The Etched Wiring Board Design Programs used for
System/360 designs are arranged to employ the above
results to best advantage. As one might expect, invested
computer time follows a curve of diminishing returns.
The parameters which control the restrictions and iter-
ations can be adjusted by control-card input for each
board processed. Table 3 shows the results when the
wiring paths for boards of varying degrees of complexity
are computed using the three available sets of control
parameters.

o Rework wiring computation

Following the completion and release of an initial design,
the engineer is faced with the problem of incorporating
design changes. It is often necessary that these changes be
treated as modifications to the existing design, rather
than as completely new designs.

For this purpose the Etched Wiring Board Design Pro-
grams have the ability to derive the logical additions and
deletions to be made to a previous design level. The logical
changes are then applied to the previous wiring configu-
ration, modifying it into the desired new design.

The significant characteristics of this process are:

1. Only the unwanted wiring in the original design is
deleted.

2. The additional wiring required is added such that a
complete new design is available for the manufacturing
process. For efficiency, this process demands maximum
use of etched connections.

3. Both of the above processes are completed under the
restraint that the deletion/addition steps can be described




Table 3 Results of wiring methods.

Board characteristics Results 1 N 2
Board 1 7090 running time (in minutes) 12 4 0.5
Number of pins 791 Number of discrete wires 12 16 60
Number of nets 280 Number of vias used 915 898 718
Average pins per net 2.32 Average vias per net 3.36 3.34 3.01
Average inches per net 6.75 6.77 6.85
Board 2 7090 running time (in minutes) 37 18 2
Number of pins 1050 Number of discrete wires 60 78 139
Number of nets 357 Number of vias used 1319 1179 852
Average pins per net 2.94 Average vias per net 4.27 3.94 3.37
Average inches per net 8.64 8.69 9.11
Board 3 7090 running time (in minutes) 94 60 7
Number of pins 1299 Number of discrete wires 169 188 272
Number of nets 362 Number of vias used 1653 1576 1099
Average pins per net 3.58 Average vias per net 5.66 5.69 4.70
Average inches per net 10.72 11.15 11 .62

Legend

1  Parameter set for use when a larger-than-normal investment in computer time is warranted.

N Set recommended for normal use.
2 Parameter set resulting in minimum computer time.

and performed on a previously manufactured board by
an efficient manual process. Manual deletions are accom-
plished by severing existing etched wiring or removing
existing discrete connections; additions are accomplished
by adding discrete wire.

4. As a result of the two physical routes by which a given
board may be obtained (i.e., newly manufactured or manu-
ally reworked), the entire process is constrained so that
any future changes can be implemented identically on the
two physical boards. This is accomplished by making all
additional etched connections in a pin-to-pin manner and
with direct correspondence to the discrete connections
added manually.

In addition to being necessary for the efficient manu-
facturing and field servicing of machines which are sub-
ject to design changes, the rework programs offer two
important design benefits: they enable design iterations
to be made under tightly controlled conditions, and they
significantly reduce the computer time required for pro-
ducing a modified design. (A rework design change which
affects 109, of the wiring can be made in 309, of the com-
puter time required to recompute the entire design as an
original.)

Conclusions

The use of Solid Logic Design Automation has materially
assisted in the application of Solid Logic Technology to
the new System/360 computer family. Specifically, Solid
Logic Design Automation:

1. Has provided the various laboratories participating in
the project with identical design procedures for the Sys-
tem/360.

2. Has provided uniform documentation so that all plants
can manufacture designs from any laboratory and anyone
trained on one machine can understand the documenta-
tion of any other.

3. Has provided designers with powerful new tools for
organizing, validating, and detailing their designs with a
previously unattainable degree of accuracy. This increased
accuracy is particularly valuable because packaging on
etched boards imposes severe penalties for mistakes found
after prototypes are constructed.

4, Has made it easy for designers to evaluate design vari-
ations in order to select the best alternative.

5. Has made possible the economical design of etched
wiring boards and flat cables.
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6. Has converted logic diagrams into digital information
to control automated tools that manufacture etched wiring
boards and flat cables.
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