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Abstract: This paper discusses the design of features that are intended to provide the IBM System/360 with
a significant improvement in serviceability over that of previous systems. It was decided from the begin-
ning to develop the System/360 as an integrated package of hardware, operational programs, and main-

tenance procedures,

The major problems to be solved in gaining this improvement and integration were (a) reducing the maxi-
mum duration of service calls; (b) reducing the median duration and mean duration of service calls; and
(c) matching a single package of maintenance programs and procedures to a large variety of operational

monitor programs and machine models.

These problems have been attacked by supplementing standard servicing facilities (both hardware and pro-
gram) with (a) the ability to record automatically the complete, detailed, system environment at the instant
of error discovery; (b) the ability to initinlize the CPU to any arbitrarily specified state (either “legal” or “ille-
gal”), to advance from this state by a specified number of machine cycles, and to compare the new state with
a precomputed result state, much of this using circvits that are independent of those required for program
sequencing; (c¢) a system of programs that can be integrated with the System/360 Design Automation to
produce automatically the inputs, results, and location analyses that are required 1o exploit the capabilities
described in (b); (d) a family of diagnostic monitor programs that attack directly the problem of matching
maintenance procedures to machine models and operational monitor programs; and (e) a facility fo retry
failing CPU operations at the instruction level in the larger models, in addition to the usual retry at the pro-

gram-segment level.

Introduction

During the early planning for the IBM System/360, the
goal was to make a significant improvement in service-
ability performance over that of existing systems. Improve-
ments of the desired magnitude have necessitated a number
of innovations and shifts of emphasis in system design.
The purpose of this paper is to describe the more novel
ways in which the response to the challenge of improving
serviceability have been made in the System/360. The
amount of bardware added, being model dependent, is
not described. Because of the special attention given to
the integration of features into the system models, and

the multiple use of components wherever feasible, the
amount of additional hardware was not excessive.

The process by which the general goal has been trans-
lated into specific objectives is outlined first. Next, the
automatic fault-locating system developed to reduce the
duration of service calls is presented. Then the combination
of special hardware and programs that is provided to
enable maintenance programs to be integrated into any
machine/monitor program complex is explained. In the
final section, the more significant serviceability advances
in the System/360 are summarized.
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The major serviceahility objectives for the
System/360

o Basic definitions

The system considered for serviceability consists of the
System/360 hardware, systems programs, operational
programs, operator, and environment. Most unscheduled
maintenance calls are caused by system failures, which
may be defined as the detected presence of an unwanted
action or the detected absence of a wanted action. A
solid failure is defined as one that always exhibits itself
in the same manner to conditions that the user can con-
trol. An intermittent failure is defined as one over whose
occurrence the user has little or no control.!

The operating period consists of time available for
productive usage of the system, time for scheduled main-
tenance, and time for unscheduled maintenance. The time
for the unscheduled maintenance is the product of the
number of component failures and the mean time to repair
these failures, plus the time necessary for the maintenance
caused by operator mistakes, improperly acting programs,
and the environment. Component failures are discussed
by Davis, et al” Although a number of System/360
facilities has been provided to facilitate the handling of
program errors, the present discussion is limited largely to
features that enable better isolation of failures in the
hardware.

o Developing the objectives

The objectives to be set all assume that the initial effects
of the learning curve® have passed, and the period of rapid
change in maintenance effectiveness due to the introduction
of new techniques and systems is over. This period fre-
quently lasts approximately a year.

Current operating experience in the industry shows a
distribution of unscheduled system down time of the
form shown in Fig. 1. For most installations the most
serious aspect of unscheduled maintenance is not so much
the median or mean duration (although these are im-
portant) as the duration of the 90th and higher percentile
failures. Grave inconveniences presently come from having
a system down 4, 5, 6 or more hours at a time, because
this disrupts the entire schedule of the installation. Hence,
an immediate objective is to reduce drastically the maxi-
mum length of service calls.

In addition to the duration of the long service call, the
mean and median durations of the service call are im-
portant. These three quantities are interrelated and depend
upon the distribution of the duration of unscheduled
maintenance calls as a function of the cumulative per-
centage of unscheduled maintenance calls. The distribution
currently experienced is shown in Fig. 1. A working
hypothesis is that the general shape of the distribution
will remain relatively unchanged. If some mean duration
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Figure I Cumulative percentage of calls as a func-
tion of the duration of the call. The dimen-
sions d, and d, represent mean durations, and
the dimensions m, and m, represent median
durations of calls for the anticipated distri-
butions A and B.

of unscheduled interruption is assumed, say 4, or d,, then
the curves labeled 4 and B in Fig. 1 indicate reasonable
distributions of the duration of unscheduled interruptions.
It can be shown from these curves that to reduce the
mean for this empirical distribution it is necessary to
reduce the median by the same percentage.

Based on the general goal mentioned in the Introduction
and the considerations just discussed, the following priority
of serviceability objectives for the System/360 was estab-
lished :

a) Drastically reduce the maximum duration of unsched-
uled maintenance calls.

b) Reduce substantially the median duration of the un-
scheduled maintenance call.

¢) As a corollary to priority b, reduce substantially the
mean duration of the unscheduled maintenance call.

In a different vein, it was recognized that if program
compatibility and component standardization were to
contribute to serviceability to the extent they might, it
would be necessary to ensure that the threads of similarity
that pervade the several models remain visible to those
who service the systems. The combinations of different




hardware implementations and operational-monitor pro-
grams must not be permitted to mask the fundamental
sameness of different models. The determination that these
potential benefits should not be lost led to the fourth
serviceability objective:

d) Develop a single, comprehensive set of standard
servicing programs and procedures that are effective for
all of the important combinations of machine configura-
tions and monitor programs.

Having set the objectives, the next task was to specify
the tools with which the objectives would be accomplished
and the environment in which the tools would be used. The
first tool is additional circuitry that is designed to facilitate
maintenance. The second tool consists of programs that
use the new facilities and standard computer instructions
to isolate malfunctioning components. These tools must
be used in two environments. The environment most fre-
quently encountered is that in which the system is failing
repeatedly and symptoms of the failure are readily avail-
able. Diagnostic tools must be designed to use these symp-
toms directly. In the second environment, the system is
failing only infrequently but its failure is interfering seri-
ously with its desired use. In this case the problem is to
obtain symptoms that can be analyzed. Once these symp-
toms are obtained, the infrequently failing computer may
be used to process the data obtained concerning these
symptoms.

Reducing the median and the mean duration of
service calls

Reducing the duration of unscheduled service calls can be
accomplished by the following general strategy:

a) For failures in units whose functions can be assumed
by other units in the system, use a diagnostic program to
gather symptom data, decouple the failing unit and
continue operating the reduced system.

b) For failures in units whose functions cannot be per-
formed by other units, improve servicing performance.

A method of implementing this strategy has been
devised for the System/360. Failures of category a) will
be discussed in later sections of the paper.

For failures of category b) it was decided to concentrate
on decreasing the time required for diagnosis, since it is
the largest single time component and the one that offered
most promise for improvement. Two major obstacles that
limited the reduction in diagnosis time in earlier systems
are the following:

1) Only a minor fraction of the circuit elements was
accessible to direct program control and interrogation.
This has been called the addressing-resolution problem.

2) The interval between points at which the system status

could be determined by a program was a complete instruc-
tion execution time. The system passed through many
intermediate states, but these could be deduced only from
what was observed at the end points, This has been called
the timing-resolution problem.

Since earlier work® had suggested that an elegant solu-
tion to both of these problems could be achieved at
modest cost, it was decided to attack them directly for
some CPU’s—and to do this from the inception of design
in order to keep costs down.

For the smaller, read-only storage controlled models,
a slightly different approach to accomplish the same end
was provided. This will be discussed under the section
entitled “Auto-Diagnosis.”

e Fault Locating Tests (FLT’s)

Diagnosis is accomplished by applying a series of stimuli
and observing the corresponding responses. If the logic
between stimulus and response can be uniquely controlled
and identified, then a series of correct and incorrect
responses can lead to the pinpointing of the failing circuit
element. To provide better addressing resolution in the
System/360, hardware is required to limit the participation
of circuits to particular test stimuli. To perform the
identification, a long and complicated program is required
to calculate the necessary stimuli to test the logic, and to
evaluate the responses. Since an ailing computer cannot be
expected to perform this calculation, the data must be
precalculated on a working system. The additional hard-
ware needed by the ailing system is that required to apply
the stimuli, to observe the responses, and to determine
the next action to perform in order to arrive at a diagnostic
conclusion.

How can the stimulus patterns be calculated? It is well
known that the logical properties of primitive building
blocks can be tested using a subset of all possible combi-
nations of inputs.®> The combinational logic network con-
necting any two storage elements in a computer consists
of many levels of such elementary blocks connected as
dictated by the computer logic. Any elementary block can
be tested by an input pattern if an inversion of the correct
state of its input or output lines will invert the observed
logic network output.®”

An IBM 7094 program complex (see Appendix) was
developed to precalculate the sequence of stimuli necessary
to identify a small number of replaceable circuit cards,
one of which contains the failing component. The term
fault-locating pattern is used to describe these stimuli. Each
pattern represents a set of storage element states calcu-
lated to test a set of elementary blocks in the combinational
logic network defined by an output and all of its inputs.

With the 7094 programs and the System/360 features,
the following basic approach to rapid isolation of logic
circuit failures is possible:
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a) Improve the addressing resolution by manipulating
directly the failing component at the combinational logic,
sequential logic, or timing chart level.

b) Improve the timing resolution by providing the ability
to record each sequential machine state at computer speeds.

c) Present information derived from this data in a way
that requires a minimum of human analysis at the time
of repair.

d) Provide immediate verification of repair.

To apply the stimuli, it was necessary only to add
circuits to the System/360 to set the status of any storage
element in the computer to any state and to provide the
ability to determine the status of any storage element, i.e.,
to observe the response. This feature is also used in auto-
matic environment recording, and is discussed later in
this paper.

The FLT generator program complex analyzes the logic
design data stored on the Design Automation Logic Master
Tape® and calculates or analyzes a set of fault locating
tests depending on the System/360 model for which they
will be used. These tests may be stored on an input medium,
such as magnetic tape or disk, for direct reading by a
System,/360 model in the fault location testing mode, or,
for some models, diagnostic tests may reside in read-only
storage.

This program complex (a) produces the FLT data to
test directly most System/360 CPU components in the
larger models; (b) orders these data so that the results of
testing can be easily analyzed; (c) keeps these data up to
date with engineering changes in the hardware logic; and
(d) produces up-to-date documentation, which in itself is
sufficient to reduce the duration of many maintenance calls.

Test application for externally-stored tests

The FLT tests are stored on an external storage medium,
such as magnetic tape or disk pack. When the Load FLT
button is pushed on the maintenance console, a simplified
sequence of channel control circuits transfers a record of
tests from the external medium into main storage. Each
FLT is divided into the several fields shown in Table 1.

After an FLT record has been read into storage, the
subsequent action of the CPU is controlled by the addi-
tional special circuitry* designed to test the computer
using the FLT patterns. The storage elements of the CPU
are first initialized according to the values of the stimulus
pattern. A special counter is also set to the value given by
the clock advance field. When this initialization (scan-in)
has been completed, the machine clock is allowed to ad-
vance synchronously with the counter. As soon as the
counter reaches zero, the clock is stopped and the machine

* These circuits exist only in the larger models.
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Table 1 FLT format

Field Function
a Identification
b Stimulus pattern
c Clock advance
d Control bits
e Precomputed expected result

and its location identification
Identification of the alternate FLT’s

~n

identifies the storage element it has to compare with the
precomputed result. This comparison is made, the result
stored, and the test repeated a fixed number of times, N.
If N consistent results are obtained, a decision is made
depending upon this result as to which of the two alternate
FLT’s identified in field f of Table 1 is to be run next. If the
results are inconsistent, an intermittent failure has been
found, the computer is stopped, and the test and reason for
the halt are displayed on the maintenance console. FLT
documentation, discussed later, may then be consulted.

The primary sequence of FLT’s will be followed by an
error-free machine. (One of the FLT’s identified in field f of
a test in the primary sequence is the next such test.) The
precalculated FLT patterns are prepared by the FLT
generator so that an extremely wide coverage of the
computer’s elementary logic blocks is given.

If a failure is detected by a primary test, then the ma-
chine’s failure of this test either does or does not provide
sufficient diagnosis to identify the replaceable failing cards
in the machine. If it does, the machine stops and the test
number is displayed on the maintenance console. FLT
documentation then lists the suspected failing circuit cards.
The control bits—field ¢ of Table 1 in the test—provide
the information to determine whether to proceed or stop
after a consistent failure.

If the primary test does not provide sufficient resolution,
further FLT’s are applied to improve the resolution. The
second FLT identified in field f of Table 1 checks a subset
of the elementary logic blocks that failed the primary test.
If the subset fails the secondary test, then that subset con-
tains the failure; if it passes, the failure is in the comple-
ment subset. Testing continues until a termination point is
reached as shown in the typical test sequence given in
Fig. 2. The primary and secondary sequences have been
precomputed so that resolution to a few replaceable
suspected cards has been achieved when a termination
point is reached.*

* For a simple engineering model, the number of replaceable sus-
pected cards averaged approximately three,
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PRIMARY TEST FAIL TERMINATE
PASS
PRIMARY TEST |2k seconpary TEST (EAL o) spconpary TEsT |LFAIL SECONDARY TEST |—tAlk TERMINATE
PASS PASS PASS PASS
SECONDARY TEST |-FAIL TERMINATE
SECONDARY TEST |-LAILL TERMINATE
SECONDARY TEST |FALL TERMINATE
PRIMARY TEST FAIL SECONDARY TEST |—CAlL SECONDARY TEST |-EAIL TERMINATE
PASS PASS PASS
SECONDARY TEST |-FAIL TERMINATE
SECONDARY TEST |[TAL TERMINATE
PASS
SECONDARY TEST |—Alk TERMINATE
PRIMARY TEST FAIL TERMINATE
PASS

Figure 2 Typical sequence of tests. Terminate blocks on the diagram indicate that sufficient resolution to allow re-

pair has been achieved.

To avoid erroneous conclusions caused by intermittent
failures, the tests are designed so that the failure of a test
is the condition that leads to a termination. If this does
not happen naturally, the last test on a branch repeats the
pattern of the first test in which a failure was indicated. If
the last test does not indicate a failure, the machine is
halted, and a special indication of an intermittent failure
is given.

Test documentation

The FLT test documentation identifies all the machine
logic that actively participates in producing the desired

output for the test pattern input. A single failure in any
one of the logic blocks described, or in the wiring between
them, would cause an incorrect answer to be detected at
the expected result location. (This does not mean that
these are the only circuits used in the machine during the
execution of this pattern. Instead, they are the only circuits
that, with a single failure in them, can be detected at the
output.) This listing also includes the test identification,
all pertinent circuit pin numbers, together with the value
that would be observed at these points with a dc probe or
an oscilloscope, references to corresponding logic dia-
grams, and the particular cards that are suspects for
specific termination points.
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FLT features

Earlier work,* and experience with an experimental model,
System/360 prototypes, and the IBM 1418, "1419, and
1428 have suggested that the following are the more
significant FLT features:

a) The percentage of CPU hardware required to be
operable for FLT’s ranges between 3 and 10 percent (de-
pending upon the model).

b) Fault location testing provides uniform procedures,
documentation, and preplanned troubleshooting tech-
niques.

¢) Successive tests check out a controllably small part of
the logic, thereby affording excellent location resolution.

d) The FLT’s check small combinations of circuit actions,
thereby making it possible to simulate logic conditions
that would, under testing with conventional programs, be
possible only with externally introduced unusual signals
or with special computer instructions.

¢) Fault location testing provides secondary documents
that identify both the circuits that are tested and those
that are not.

f) FLT’s and their associated documents are automatically
produced and updated.

g) FLT’s, being generated by a production computer,
require less debugging time on the prototype model, and
less verification time to confirm that they do truly locate
the failing circuits.

o Auto-diagnosis

For the System/360 Read-Only Storage (ROS) controlled
computers, each instruction belongs to a compatible Sys-
tem/360 set, and is executed in one or more cycles. Each
cycle determines a definite machine state by setting storage
elements according to the contents of a word read from
ROS, and by active logic as in conventionally controlled
machines.

To the engineer who is single-cycling through an in-
struction, the computer controls seem conventional. In
this method of design the direct use of microprogramming
by the user is impossible. Both the advantages of the direct
use of microinstructions, and the disadvantages of two
levels of control are eliminated.

However, in machines with an ROS control element,
it is easy to build in diagnostic facilities by using part of
the ROS for diagnostic microprograms.* The computer
circuits are diagnostically exercised on a cycle-by-cycle
level, thereby maintaining both addressing and timing
resolution. Error indications are given by the checking

* These tests are used extensively in the smaller models.
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circuits. The local store and main storage tests exercise
these units directly without reading instructions from them.
The ROS also contains microinstructions that are used to
invert parity bits so that the error indication circuits may
be tested directly.

The serviceability attributes of ROS models of the
System/360 are as follows:

a) Controls are easy to check; both the present ROS
word and the possible next words are parity checked.

b) Documentation is complete on the single-cycle level,
is presented in flow-chart form for ease of understanding,
and is updated by computer programs.

¢) ROS arrays in the smaller models can be easily checked
by tests stored in the ROS.

d) ROS failures in the larger models can be diagnosed
using FLT’s.

e) Special features, as discussed later, can be included at
modest cost and with little effect on existing control logic.

Reducing the duration of long service calls

Generally, the largest single factor contributing to long
service calls is the time for diagnosis. Frequently the
failures that offer the greatest resistence to rapid diagnosis
are those called intermittents. The strategy for reducing
the duration of long service calls in the System/360 is
directed at three problem areas related to intermittent
failures. First, the efficiency of intermittent failure diag-
nosis has been low because accurate and detailed symptom
information has not been available. Second, in the past,
the impact of intermittent failures in the CPU has been
amplified by time-consuming recovery procedures. Third,
many failures have been labeled and treated as inter-
mittents simply because the tools available for inducing
their symptoms have been inadequate.

e Symptom data collection and analysis

By definition, intermittent failures cannot be induced by
the user in order to get symptom data. An alternative is to
collect and preserve these data as they occur in real time.
The System/360 provides a hardware/program system
that does just this.

The requirements imposed by the problem on the hard-
ware part of the system are (a) detection of errors im-
mediately upon their occurrence; (b) recording of the
detailed state of the system at the time of error; and
(c) switching to a different instruction stream.

In the System/360, interruptions caused by checking-
circuit alarms are automatically separated by the hardware
from interruptions arising from program-caused condi-
tions. Since the disposition of program failures is obviously
at the discretion of the routines to which the interruption




system leads, we shall limit the comments that follow to
circuit failures.

Requirement (a), detection of errors immediately upon
their occurrence, is satisfied by distributing checking cir-
cuits* throughout the system, including areas of control
circuits, so that failures are discovered close to both their
spatial and temporal points of occurrence.

Requirement (b), recording the detailed state of the
system at the time of error, introduces an interesting
problem that is reminiscent of the Uncertainty Principle:
How can a machine record its status without changing
what is being recorded? For CPU failures and failures in
some 1/0 channels, the System/360 solution is the straight-
forward one of providing a special set of independent
circuits to control this function. When a checking circuit
detects an error in the CPU or in some parts of the I/0
channels of larger models: (1) normal sequencing in the
affected unit is halted immediately (CPU errors do not
affect channel operations, and vice versa, for models in
which the CPU and 1/0 channels operate autonomously);
(2) under control of the special circuits the states of the
control and data path storage elements of the affected
unit are recorded as a pattern of bits in main storage; and
(3) normal sequencing is then resumed.

Requirement (c), switching to a different instruction
stream, is met by forcing a special program interruption,
called Machine Interruption, upon resumption of normal
sequencing.

Requirement (b) is satisfied somewhat differently in the
1/0 units. There are two basic differences here:

(1) A checking-circuit alarm causes a halting of the control
unit for the device, but not necessarily of the device itself
(because of mechanical motion). For instance, magnetic
tape proceeds to the end of the current record, on reading.
In some control units this halting is immediate, preserving
the status at that point in time; in other control units only
a partial status is preserved, while the unit proceeds to
normal termination.

(2) The status information must be retrieved from the
affected unit by a program.

For input/output units, requirement (c) is met by
coded status information made available upon a normal
1/0 interruption, which occurs after termination of the
command.’

Now the automatically recorded data give an accurate
and detailed picture of the status of the affected unit itself
(i.e., CPU, channel, or control unit), but they do not
provide complete information about the total system
environment. It is important, for this class of failures, to
know more than just the local conditions of failure,
because interference from sources external to the affected

* A variety of checking techniques are used in the System/360 but
they are model dependent and so will not be discussed here.

units is a common source of failure. The information to
complete the environment record for each incident is
gathered by a special program. Included in these supple-
mentary data are: the I/O units that were active at the
time of error, time of day, program identification, instruc-
tion operands, instruction addresses in storage and, where
relevant, tape or disk-pack label. This information is
combined with the automatically recorded data to form
an entry in the environment record in secondary storage.
The result is a complete, detailed, chronological mainte-
nance history of the system, in machine-readable form.

To aid the customer engineer to use this information
effectively, a program is provided to edit in a number
of ways the entries in the environment record. Included
are routines that print entries in a format convenient for
reading, and retrieval routines that search the record and
extract entries that satisfy the parameter keys specified in
standard retrieval requests. For example, the customer
engineer may ask for all entries related to a unit having
a specified unit address, or for all entries triggered by a
specified checking circuit.

o Bypassing the effects of error—instruction retry

The user of a system is largely indifferent to machine
failures if they do not interfere with his operations. For
instance, if all failures are discovered and repaired during
periods when he is not using the system, the user is usually
satisfied. Experience suggests, however, that failures are
not always timed so fortuitously. When machine failures
occur during normal operating periods, the user can either
terminate his use of the system or he can (and often does
for failures in tape units, for instance) try to continue
operating the system by bypassing the effects of the failure,

Bypassing the effects of failures can be realized either by
avoiding the system area in which errors have been
observed or by repeating the processing that has been
contaminated in the hope that the cause of the error no
longer exists. The first alternative is clearly the choice for
solid failures, and the second is preferable for errors whose
symptoms are not persistent. This second alternative has
been called checkpointing.

Avoiding an ailing system area can be done gracefully
if the system contains sufficient redundancy and processing
capacity so that the function of the suspected area can be
assumed by a different area, or if the function performed
by the suspected area may be temporarily eliminated. Both
of these techniques have been applied with some success
to I/0 equipment. The widely varying I/O requirements
of different programs have made redundancy a by-product
of accommodating the 1/0 needs of the more demanding
programs,

The avoidance technique can also be applied success-
fully, but less so, to the area of main storage. Avoiding
suspected areas of main storage is practical only if there
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are multiple storage subsections on line and the entire
subsection in question can be deleted. Even here the
impact on system operation is considerable since in most
cases the affected program will have to be reintroduced
into a different storage area and restarted from either
the last checkpoint or the absolute beginning.

But it is in the CPU area that the avoidance technique
can be used least successfully. Solid failures in the CPU
have usually led to a halting of system operation in
single-CPU systems and at least to a drastic revision of the
operation of systems having more than one CPU. Recon-
figuration of the system to continue processing with one
less CPU requires specialized planning and programming.

In the past, the handling of intermittent CPU errors has
not been very effective. Program segmentation coupled
with checkpoint dumps and checkpoint rollback does
indeed work for intermittent failures but with considerable
waste of time. Also, it takes a long time to unmask a solid
failure with this approach.

Avoidance is not required for intermittent errors in I/0O
operations. I/O control programs have for some years
had an iteration resolution at the operation level rather
than at the program-segment level. By proper program-
ming, all of the information required to re-execute the I/0
operation is still available at the end of the operation.

The hardware facilities included in the System/360 to
solve other problems offer a new ability: the opportunity
to re-execute a CPU instruction in the event a failure is
detected. For retry to be effective for CPU operations, a
first condition is that all the information required to
re-execute the operation is still available after the failure
is detected. A second condition is that the effects of the
failure be nonpersistent.

For example, in an instruction that loads a register from
storage, the first condition is satisfied since the operand is
still available in main storage. However, if core storage
failed, the effects of the error would be persistent and the
retry would fail. The majority of instructions cannot be
retried after their execution has been completed; their
retry threshold* is usually after instruction-fetch sequenc-
ing, at some point in the execution phase.

Re-executing instructions imposes two requirements on
the machine:

a) Execution must be halted immediately upon error dis-
covery, so that if the retry threshold has not yet been
reached no operands will be destroyed.

b) Sufficient information about the state of the machine
when it was halted must be available to the program that
decides whether or not re-execution is possible.

As was observed earlier, circuitry to satisfy these require-

* The retry threshold for an instruction is that point in its execu-
tion after which some initial operands are no longer available.
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ments has been provided for the System/360 environment-
recording facility. Following a checking circuit alarm the
computer state is frozen, and special circuits record the
detailed status of the CPU as a pattern of bits in an area
of main storage reserved for this purpose. The routine
that stores the environment record also analyzes the stored
status information, determines if retry is possible and
counts the number of retry attempts. If the retry threshold
is passed or the failure effects are persistent, the retry is
unsuccessful. This routine takes a fraction of a second
compared to the minutes required to perform checkpoint
restart with its accompanying rerun.

The total effectiveness of this facility depends on the
proportion of all failure incidents for which the retry
threshold is not reached and for which the failure effects
are not persistent. For a given machine the retry threshold
varies from instruction to instruction, so that the relative
success of retry is very sensitive to the instruction mix over
which it is measured. Using the gross assumptions that
failures in all cycles are equally probable, and that instruc-
tion usage is uniformly distributed, more than 509, of
retrys will be successful for the System/360 models in
which the facility works best. Variations in the instruction
mix could lower this success percentage to perhaps 359,
or raise it to perhaps 80%.

o Reducing the number of intermittent failures

If failures that would otherwise be treated as intermittent
can be treated as solids, then the average time for diag-
nosing failures can be reduced. This is done by more
thorough and better-controlled exercising of primitive
building blocks. As discussed earlier, the procedure for
generating fault locating tests is done by a complex of
IBM 7094 programs. These programs produce lists of all
logic blocks that are directly tested and those that are not.
This permits a greatly increased coverage of directly tested
components. This increased coverage allows many failures
to be treated as solids that otherwise would be labelled
intermittents.

In addition, if any FLT indicated failure only once, a
list of suspected circuits would be immediately available.
The cards containing these circuits can be replaced as a
preventive maintenance precaution.

In summary, the number of intermittents is significantly
reduced by increasing the control a person may have in
the face of a symptom indicating suspicious behavior, and
by providing better documentation to use when a failure
is discovered.

Integrating maintenance programs into the
machine/monitor program complex—standardizing
servicing procedures

System/360 maintenance programs will be used in what
may be called a two-dimensional application environment.




In the simplest case, a maintenance program has all
system facilities available for the duration of its running.
In a more demanding environment the program must
restrict itself to a subset of the host system and be pre-
pared to yield control to the operational monitor im-
mediately upon the occurrence of events, external to the
subset, that require a fast response. So the first dimension
is the presence or absence of a monitor. The second di-
mension is whether there is one or more than one CPU
in the system.

Program compatibility, the use of one set of I/O devices
and control units in all models, and having basic storage
units appear in several models, suggest the goal of a single
set of maintenance programs as a basis to support these
devices for the entire line. To leave the programs for a
given unit basically unchanged from one environment to
another, it was decided to interpose a buffer program
between the programs for each unit and the external
environment, and at the same time to provide in this
program, called a diagnostic monitor, those facilities (utility
functions) that are common to many of the unit programs.
The problem of integrating the maintenance program pack-
age into the machine/monitor program complex has in
this way been reduced to the problem of matching the
diagnostic monitor to this complex.

The necessities of operating both in a stand-alone
environment and in a monitor-controlled environment, and
the decision to centralize common functions have led to
providing the following facilities in the diagnostic moni-
tor: (a) self loading, through the initial-program-loading
operation; (b) system initialization; (c) initial handling
of interruptions and their distribution to the unit diag-
nostics; (d) decoding of externally-originated messages and
taking appropriate action on these; (e) recognition of
priority interruptions;* (f) loading unit diagnostics;
(g) control of the sequence in which the units are treated,
including the cases in which several units are handled
simultaneously; and (h) run option (e.g., error printouts)
control.

Primarily because of the severe size constraints imposed
on the diagnostic monitors by the smaller System/360
models, and to minimize the diagnostic monitor storage
demands when sharing the system with an operational
monitor, several diagnostic monitors are provided. They
constitute a family in the sense that diagnostic monitors
have upward-compatible facilities. The size reduction is
achieved by the expedients of reducing the number of
features and providing some in simpler form.

Initial versions of three members of the diagnostic
monitor family have been in operation on System/360
prototypes since the latter part of 1963.

® A priority interruption is one that arises outside the domain defined
for the diagnostic monitor by the operational monitor. Without excep-
tion, a priority interruption causes the diagnostic monitor immediately
to return control of its domain to the operational monitor program.

From the viewpoint of a diagnostic monitor program,
the problem of adapting to changing environments is
largely the problem of how to communicate with the
outside world. In this context the outside world falls
naturally into four classes: the unit diagnostic programs,
operational monitor programs, other diagnostic monitor
programs (in other CPU’s), and operators and customer
engineers.

All communication by a System/360 diagnostic monitor
with its environment is through standard program inter-
faces. As used here, a program interface consists of a
means for transmitting intentions (passing control in-
formation) and a means for transferring parametric infor-
mation and other data. These interfaces are standard in
the sense that they are identical in all diagnostic monitors
of the family.

The diagnostic monitor/unit diagnostic interface provides
a direct solution to the problems of integrating into one
system a collection of unit-diagnostic programs that have
been produced by independent design groups, and using
the same unit diagnostic with different monitors. Common
agreement is first reached on the definition of this inter-
face, and then all coding conforms to this standard.

Frequently-used functions are provided as subroutines
in the diagnostic monitors where they are accessible to
the unit diagnostics through this interface.

Control of run options is exerted by the diagnostic
monitors through this interface. The diagnostic monitor
exerts a normalizing influence on commands directed to
the unit diagnostics from the outside world, so that re-
gardless of their origin, messages are always presented to
the unit diagnostics in a standard way.

The diagnostic monitor/operational monitor interface
provides a solution to the problem of matching several
diagnostic monitors to an even larger number of opera-
tional monitors. Just as important from a practical point
of view is the fact that operational monitor design and
diagnostic monitor design need not be so carefully phased
in time. But perhaps the most attractive advantage is that
users who provide their own operational monitor can
integrate a suitable IBM maintenance program package
into their system simply by including in their program a
section that provides the operational monitor side of
this interface.

It is through this interface that the operational monitor
passes job requests to the diagnostic monitor, Included
in such job requests are the definition of a diagnostic
monitor’s domain and the system units to be tested.
The control of this domain is returned to the operational
monitor through this interface on the normal completion
of job-request servicing and priority interruptions. Results
of requested runs are given to the operational monitor
through the interface at the time control is returned.

The diagnostic monitor/diagnostic monitor interface is
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required for running several unit diagnostics under the
coordinated control of more than one CPU. For these
applications there must be a diagnostic monitor in each
of the participating CPU’s. These diagnostic monitors
communicate with each other through the diagnostic
monitor/diagnostic monitor interface.

The diagnostic monitor / human interface provides a single
set of procedures and messages that the operator and cus-
tomer engineer may use to request and control the running
of maintenance programs on any System/360 machine.

It is through this interface that run options may be
manually specified and output messages and data printed.
Because of this capability there is no requirement for the
human user to learn and compensate for the inevitable
individual differences that appear in the unit-diagnostic
programs. This standard interface facilitates the user’s
learning of the procedures applicable to any System/360
installation, regardless of which model is installed. It is
especially valuable for learning the procedures applicable
to a system configuration in which several different models
are present.

Summary

Among the serviceability features for the System/360,
the following were designed to supplement standard
hardware:

a) Error detection circuitry (data flow and controls).

b) Freezing and then transferring to main storage the
pattern of the CPU’s internal elements which defines the
present machine state.

¢) Branching under program control to a specific monitor
location upon given signals.

d) Transferring a pattern from main storage to the CPU’s
internal elements.

€) Advancing the machine clock a specified number of
cycles under independent control.

f) Special comparison circuits to compare machine states
with the actual states.

g) Control of this hardware by a special instruction or by
independent circuits.

As indicated in the text, not all models have all features.
These features were supplemented by the following new
programs and procedures:

a) Use of a 7094 to (1) produce bit patterns to test almost
all of the System/360 CPU components (for the larger
models), (2) sequence the tests on magnetic tape or disks
to allow resolution of circuitry failures to a few replaceable
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circuit cards, and (3) produce documentation, updated by
engineering change level, to specify the suspected cards.

b) Use of the ROS as storage for diagnostic routines (on
the smaller models) to (1) exercise the circuitry in in-
crements of single steps at full machine speed, (2) isolate
the error after detection by use of checking circuitry, and
(3) allow these routines to be used by setting maintenance
console switches.

¢) Use of FLT (in the larger models) or ROS test proce-
dures to diagnose a system with frequently recurring error
indications.

d) Programs to operate as part of the operational moni-
tor to (1) produce the error environment record, (2) use
the machine state pattern to permit instruction retry, and
(3) use the diagnostic monitor to test parts of machine
systems, as directed by operator or operational monitor.

e) Programs to operate independently to (1) analyze the
error environment record to aid the customer engineer
in the diagnosis of intermittent failures, and (2) control
diagnostic procedures efficiently by diagnostic monitors.

After the initial effects of the learning curve have passed,
this planned combination of hardware and software pro-
cedures is intended to (a) reduce the maximum duration
of service calls, (b) reduce the median duration and mean
duration of service calls, and (c) match a single package
of maintenance programs and procedures to a large
variety of operational monitor pregrams and models.

Appendix

Testing and diagnostic procedures that rest upon the
analysis of computer circuits is feasible only if this analysis
is performed automatically. The first programs to do this
analysis were produced by Roth, et al.” and Forbes, et al.’
The techniques of doing the analysis for an entire computer
system (as opposed to logic without feedback) and the
definition of the hardware requirements to implement
these tests for an entire system were first described by
Maling and Allen.* These techniques have been used very
successfully to analyze such systems as the IBM 1418, 1419,
1428, and such machine features as storage protection for
the IBM 7094 at MIT. The knowledge gained from de-
signing and using these first systems is being used to pro-
duce improvements in these systems. The new system uses
as input the Design Automation Logic Master Tape.?
It also can analyze more than twice as many logic circuits
as the previous program and even with its increased
capabilities takes less computing time on the IBM 7094,

The general flow of the FLT generating programs com-
plex is shown in Fig. 3. The information defining the
logical structure of the computer nets is extracted from the
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Figure 3 Fault Locating Test generator program
complex. This complex is for use on the IBM
7094 to precalculate test patterns.

Design Automation Logic Master Tape. Then the combina-
tional logic nets are unravelled from the sequentially
connected nets, the physical location information is
separated from the logical, and the latter is put into a
form that is convenient for analysis. (Not mentioned in
this outline are the many necessary routines for printout
and for error analysis.)

The next part of the program consists of the routines
to analyze heuristically a logic tree network. The routines
trace forward from an assumed line failure to the tree

output, and backward to the net inputs. At each step,
logical values as determined by the circuit elements are
assigned to the lines. This may lead to logical impos-
sibilities and abandoning this attempt. The net inputs de-
fine a combination of input conditions that should de-
termine if the particular line tested is working correctly.
Each input and output line to a circuit element is analyzed.

After a pattern has been developed, it is evaluated to
determine what lines it actually tests, and if it tests any
lines not previously tested. The development and evalua-
tion continue until a set of tests that will indicate the
malfunctioning components collectively is obtained.

The tests themselves do not necessarily provide enough
resolution to locate the malfunctioning component. How-
ever, after they are organized into a sequence in the form
of a decision tree, this resolution is obtained.

The final routine of the program complex translates the
decision trees and associated test patterns into pattern
test data. These data are then transformed into the form
necessary for the particular pattern testing circuits that
are associated with a specific IBM System/360 model.
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