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Abstrad: This paper discusses  the  design of features that are  intended  to provide the IBM System/360 with 

u significant  improvement in serviceability over that of  previous systems. It was decided from the begin- 

ning to  develop  the  System1360 as an  integrated  package  of  hardware, operational programs, and main- 

tenance  procedures. 

The major  problems  to be solved in gaining this  improvement  and integration were  (a)  reducing the maxi- 

mum duration of service  calls; (b)  reducing  the  median duration and mean duration of service  calls; and 

(c) matching a single  package of maintenance  programs  and  procedures  to a large variety of operational 

monitor  programs  and  machine models. 

These problems  have  been  attacked by supplementing  standard  servicing facilities (both hardware and pro- 

gram) with (a)  the ability to record automatically  the complete,  detailed,  system  environment at the  instant 

of error discovery; (b)  the ability to initialize the CPU to any arbitrarily specified  state  (either  "legal"  or "ille- 

gal"), to advance from this state by a specified  number of machine  cycles, and  to compare  the  new  state with 

a precomputed  result  state,  much of this using  circuits that are independent of those required for program 

sequencing;  (c) a system of  programs that can  be integrated with the  System/360  Design Automation  to 

produce  automatically  the inputs,  results, and  location analyses that are  required  to exploit the  capabilities 
described in (b); (d) a family of diagnostic  monitor  programs that attack  directly  the  problem of matching 

maintenance  procedures  to  machine  models  and operational monitor programs; and (e) a facility to retry 

failing CPU operations at the  instruction level in the larger models, in addition to  the  usual retry at the pro- 

gram-segment  level. 

Introduction 

During the early  planning  for the IBM  System/360, the 
goal was to make a significant  improvement  in  service- 
ability  performance  over that of  existing  systems.  Improve- 
ments of the desired  magnitude  have  necessitated a number 
of innovations and shifts of emphasis  in  system  design. 
The purpose of this  paper  is to describe the more  novel 
ways in which the response to the challenge of improving 
serviceability  have  been  made in the System/360. The 
amount of hardware added,  being  model  dependent,  is 
not described. Because  of the special attention given to 
the integration of features into the system  models, and 

the multiple  use of components wherever feasible, the 
amount of additional hardware was not excessive. 

The process by  which the general  goal  has been trans- 
lated into specific  objectives  is outlined first.  Next, the 
automatic fault-locating system  developed to reduce the 
duration of service  calls  is  presented.  Then the combination 
of  special  hardware and programs that is  provided to 
enable  maintenance  programs to be integrated into any 
machine/monitor  program  complex  is  explained. In the 
final  section, the more  significant  serviceability  advances 
in the System/360 are summarized. 115 
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The major serviceability  objectives for the 
System/360 

Basic definitions 

The  system  considered for serviceability  consists of the 
System/360 hardware, systems  programs, operational 
programs, operator, and environment. Most unscheduled 
maintenance  calls are caused  by system failures, which 
may  be  defined as the detected  presence of an unwanted 
action or the detected  absence  of a wanted action. A 
solid failure is  defined as one that always  exhibits  itself 
in the same  manner to conditions that the user can con- 
trol. An intermittent failure is  defined  as  one  over  whose 
occurrence  the  user  has  little or no control.' 

The operating period  consists of time  available for 
productive  usage of the system,  time for scheduled  main- 
tenance, and time for unscheduled  maintenance.  The  time 
for the unscheduled  maintenance  is the product of the 
number of component  failures and the mean  time to repair 
these  failures,  plus the time  necessary for the maintenance 
caused by operator mistakes,  improperly acting programs, 
and the environment. Component failures are discussed 
by Davis, et a1.' Although a number of  System/360 
facilities  has  been  provided to facilitate the handling of 
program errors, the present  discussion  is  limited  largely to 
features that enable  better  isolation of failures in the 
hardware. 

Developing the objectives 

The objectives to be  set all assume that the initial effects 
of the learning  curve3  have  passed, and the period of rapid 
change  in  maintenance effectiveness due to the introduction 
of  new techniques and systems  is  over.  This  period  fre- 
quently lasts approximately a year. 

Current operating experience in the industry shows a 
distribution of  unscheduled  system  down  time of the 
form shown in Fig. 1. For most installations the most 
serious  aspect of  unscheduled  maintenance  is not so much 
the median or mean duration (although these are im- 
portant) as the duration of the 90th and higher  percentile 
failures.  Grave  inconveniences  presently  come from having 
a system  down 4, 5, 6 or more hours at a time,  because 
this disrupts the entire schedule of the installation. Hence, 
an immediate  objective is to reduce  drastically the maxi- 
mum  length of  service  calls. 

In addition to the duration of the long  service  call, the 
mean and median durations of the service call are im- 
portant. These three quantities are interrelated and depend 
upon the distribution of the duration of  unscheduled 
maintenance  calls as a function of the cumulative  per- 
centage  of  unscheduled  maintenance  calls. The distribution 
currently  experienced  is  shown in Fig. 1. A working 
hypothesis  is that  the general  shape of the distribution 
will remain  relatively  unchanged. If some  mean duration 

(DURATION OF CALL- 

Figure I Cumulative  percentage of calls  as a func- 
tion of the duration of  the  call. The dirnen- 
sions d ,  and d ,  represent mean  durations,  and 
the dimensions m, and mb represent median 
durations of calls for the anticipated  distri- 
butions A and B.  

of  unscheduled interruption is  assumed,  say d,  or db, then 
the curves  labeled A and B in Fig. 1 indicate reasonable 
distributions of the duration of  unscheduled interruptions. 
It can  be  shown from these  curves that  to reduce the 
mean for this empirical distribution it is  necessary to 
reduce the median by the same  percentage. 

Based on the  general goal mentioned in the Introduction 
and the considerations just discussed, the following priority 
of  serviceability  objectives for the System/360  was estab- 
lished : 

a) Drastically  reduce the maximum duration of unsched- 
uled  maintenance  calls. 
b) Reduce substantially the median duration of the un- 
scheduled  maintenance  call. 
c) As a corollary to priority b,  reduce  substantially the 
mean duration of the unscheduled  maintenance  call. 

In a different  vein, it was  recognized that if program 
compatibility and component standardization were to 
contribute to serviceability to the extent they  might, it 
would  be  necessary to ensure that the threads of similarity 
that pervade the several  models  remain  visible to those 
who  service the systems. The combinations of different 
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hardware  implementations and operational-monitor pro- 
grams  must not be permitted to mask the fundamental 
sameness of different  models. The determination that these 
potential  benefits should not be lost led to  the fourth 
serviceability  objective: 

d)  Develop a single,  comprehensive set of standard 
servicing  programs and procedures that are effective for 
all of the important combinations of machine  configura- 
tions and monitor programs. 

Having  set the objectives, the next  task  was to specify 
the tools with  which the objectives  would  be  accomplished 
and the environment in which the tools would  be  used.  The 
first tool is additional circuitry that is  designed to facilitate 
maintenance. The second tool consists of programs that 
use the new facilities and standard computer instructions 
to isolate  malfunctioning  components.  These tools must 
be  used in two  environments. The environment  most  fre- 
quently  encountered is that in which the system  is  failing 
repeatedly and symptoms of the failure are readily  avail- 
able.  Diagnostic tools must  be  designed to use  these  symp- 
toms  directly.  In  the  second  environment, the system  is 
failing  only  infrequently but its failure is  interfering  seri- 
ously  with its desired  use. In this  case the problem  is to 
obtain symptoms that can be analyzed. Once  these  symp- 
toms are obtained, the infrequently  failing  computer  may 
be  used to process the data obtained concerning  these 
symptoms. 

Reducing  the median  and the mean duration of 
service  calls 

Reducing the duration of unscheduled  service  calls  can be 
accomplished by the following  general strategy: 

a) For failures in units whose  functions can be  assumed 
by other units in the system,  use a diagnostic  program to 
gather  symptom data, decouple the failing unit and 
continue operating the reduced  system. 

b) For failures in units whose  functions cannot be  per- 
Formed  by other units, improve  servicing  performance. 

A method of implementing this strategy  has been 
devised for the System/360. Failures of category a) will 
be discussed in later sections of the paper. 

For failures of category  b) it was  decided to concentrate 
3n decreasing the time required for diagnosis,  since it is 
the largest  single  time component and the one  that offered 
most  promise  for  improvement.  Two  major  obstacles that 
limited the reduction in diagnosis  time in earlier  systems 
are the following: 

I)  Only a minor fraction of the circuit  elements  was 
accessible to direct  program control and interrogation. 
Ibis has been  called the addressing-resolution problem. 

2 )  The  interval  between  points at which the system status 

could be determined by a program was a complete instruc- 
tion execution  time. The system  passed through many 
intermediate states, but these  could  be  deduced  only  from 
what  was  observed at the end  points.  This  has been  called 
the timing-resolution problem. 

Since  earlier  work4 had suggested that  an elegant  solu- 
tion to both of these  problems  could  be  achieved at 
modest cost, it was  decided to attack them directly for 
some  CPU’s-and to do this from the inception of  design 
in order to keep  costs down. 

For the smaller,  read-only  storage  controlled  models, 
a slightly  different approach to accomplish the same  end 
was provided.  This will  be  discussed under the section 
entitled  “Auto-Diagnosis.’’ 

Fault Locating Tests  (FLT’s) 

Diagnosis is accomplished by applying a series  of stimuli 
and observing the corresponding  responses. If the logic 
between stimulus and response can be uniquely  controlled 
and identified,  then a series  of  correct and incorrect 
responses can lead to the pinpointing of the failing  circuit 
element. To provide better addressing  resolution in the 
System/360,  hardware  is  required to limit the participation 
of circuits to particular test stimuli. To perform the 
identification, a long and complicated  program is required 
to calculate the necessary stimuli to test the logic, and to 
evaluate the responses.  Since an ailing  computer cannot be 
expected to perform  this  calculation, the data must  be 
precalculated on a working  system.  The additional hard- 
ware  needed by the ailing  system  is that required to apply 
the stimuli, to observe the responses, and to determine 
the next action to perform in order to arrive at a diagnostic 
conclusion. 

How can the stimulus patterns be calculated? It is well 
known that  the logical  properties of primitive  building 
blocks can be  tested  using a subset of all possible  combi- 
nations of  input^.^ The combinational logic  network con- 
necting  any  two storage elements in a computer  consists 
of many  levels  of  such  elementary  blocks  connected as 
dictated by the computer  logic.  Any  elementary  block  can 
be tested by an input pattern if an inversion of the correct 
state of its input or output lines  will  invert the observed 
logic  network 

An IBM  7094 program  complex (see Appendix)  was 
developed to precalculate the sequence  of  stimuli  necessary 
to identify a small  number of replaceable  circuit  cards, 
one of  which contains the failing  component. The term 
fault-locating pattern is  used to describe  these  stimuli.  Each 
pattern represents a set of storage element states calcu- 
lated to test a set of elementary  blocks in the combinational 
logic  network defined  by an  output and all of its inputs. 

With the 7094 programs and the System/360  features, 
the following  basic approach to rapid isolation of  logic 
circuit  failures  is  possible: 



a) Improve the addressing  resolution by manipulating 
directly the failing  component at the combinational  logic, 
sequential  logic, or timing chart level. 

b)  Improve the timing  resolution by providing the ability 
to record  each  sequential  machine state at computer  speeds. 

c)  Present information derived from this data in a way 
that requires a minimum  of  human  analysis at the time 
of repair. 

d)  Provide  immediate  verification of repair. 

To apply the stimuli, it was  necessary  only to add 
circuits to the System/360 to set the status of any  storage 
element in the computer to any state and to provide the 
ability to determine the status of any storage element,  i.e., 
to observe the response.  This feature is  also used in auto- 
matic  environment  recording, and is discussed  later  in 
this  paper. 

The FLT generator  program  complex  analyzes  the  logic 
design data stored on the  Design Automation Logic  Master 
Tape' and calculates or analyzes a set of fault locating 
tests  depending on the System/360  model for which  they 
will be  used.  These  tests  may  be stored on an input medium, 
such as magnetic tape or disk, for direct  reading by a 
System/360  model in the fault location testing  mode, or, 
for some  models,  diagnostic  tests  may  reside in read-only 
storage. 

This program complex  (a)  produces the FLT data to 
test  directly  most  System/360 CPU components in the 
larger  models;  (b) orders these data so that the results of 
testing  can  be  easily analyzed; (c)  keeps  these data up to 
date with  engineering  changes  in the hardware logic; and 
(d) produces up-to-date documentation, which in itself  is 
sufficient to reduce the duration of  many maintenance  calls. 

Test application for externally-stored tests 

The FLT tests are stored on an external storage medium, 
such as magnetic tape or disk  pack.  When the Load FLT 
button is  pushed on the maintenance  console, a simplified 
sequence  of  channel control circuits transfers a record of 
tests from the external  medium into main  storage.  Each 
FLT is  divided into the several  fields  shown  in  Table 1. 

After an  FLT record  has been read into storage, the 
subsequent action of the CPU is controlled by the addi- 
tional special  circuitry*  designed to test the computer 
using the FLT patterns. The storage elements of the CPU 
are first  initialized  according to the values  of the stimulus 
pattern. A special counter is also set to  the value  given  by 
the clock  advance field.  When this  initialization  (scan-in) 
has  been  completed, the machine  clock  is  allowed to ad- 
vance  synchronously  with the counter. As soon as the 
counter reaches  zero, the clock  is  stopped and the machine 

118 * These  circuits  exist  only  in  the  larger models. 
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Table 1 FLT format 

Field  Function 

a Identification 
b Stimulus pattern 
C Clock  advance 
d Control bits 
e Precomputed  expected  result 

and its location identification 
f Identification  of the alternate FLT's 

identifies the storage  element it has to compare with  the 
precomputed  result. This comparison  is  made, the result 
stored, and the test  repeated a fixed  number of  times, N. 
If N consistent  results are obtained, a decision  is  made 
depending upon this  result as to which of the two alternate 
FLT's  identified  in  field f of Table 1 is to be run next. If the 
results are inconsistent, an intermittent failure  has been 
found, the computer is stopped, and the test and reason  for 
the halt are displayed on the maintenance  console.  FLT 
documentation, discussed later, may then be  consulted. 

The primary  sequence of  FLT's  will  be  followed  by an 
error-free  machine.  (One of the  FLT's  identified in field f of 
a test in the primary  sequence  is the next  such  test.)  The 
precalculated FLT patterns are prepared by the FLT 
generator so that  an extremely  wide  coverage  of the 
computer's  elementary  logic  blocks is  given. 

If a failure  is  detected by a primary test, then the ma- 
chine's failure of this  test  either  does or does not provide 
sufficient  diagnosis to identify  the  replaceable  failing cards 
in the machine. If it does, the machine stops and the test 
number is displayed on  the maintenance  console. FLT 
documentation  then  lists the suspected  failing  circuit  cards. 
The control bits-field c of Table 1 in the test-provide 
the information to determine  whether to proceed or stop 
after a consistent  failure. 

If the primary  test  does not provide sufficient resolution, 
further FLT's are applied to improve the resolution. The 
second FLT identified in field f of Table 1 checks a subset 
of the elementary  logic  blocks that failed  the  primary test. 
If the  subset  fails the secondary  test,  then that subset  con. 
tains the failure; if it passes, the failure is in the comple. 
ment  subset.  Testing  continues until a termination point i5 
reached as shown in the typical test sequence  given in 
Fig. 2 .  The primary and secondary  sequences  have been 
precomputed so that resolution to a few  replaceable 
suspected cards has been  achieved  when a termination 
point is  reached.* 

* For a simple  engineering model, the  number of replaceable sus- 
pected cards  averaged  approximately  three. 
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To avoid erroneous conclusions  caused by intermittent 
failures, the tests are designed so that the failure of a  test 
is the condition that leads to a termination. If this does 
not happen naturally, the last test on a branch repeats the 
pattern of the first  test  in which a  failure was indicated. If 
the last test  does not indicate  a  failure, the machine  is 
halted, and a special  indication of an intermittent failure 
is given. 

Test documentation 

The FLT test  documentation  identilies  all the machine 
logic that actively participates in producing the desired 119 
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Figure 2 Typical sequence of tests. Terminate  blocks on the diagram indicate that sufficient resolution to allow re- 
pair has been achieved. 

output for the test pattern input. A single failure in any 
one of the logic  blocks  described, or in the wiring  between 
them,  would  cause an incorrect  answer to be detected at 
the expected  result location. (This  does not mean that 
these are the only  circuits used  in the machine during the 
execution  of  this pattern. Instead, they are the only  circuits 
that, with a single failure in them, can be  detected at the 
output.) This listing  also  includes the test identification, 
all pertinent circuit  pin  numbers,  together  with the value 
that would be observed at these  points  with  a  dc probe or 
an oscilloscope,  references to corresponding  logic  dia- 
grams, and the particular cards that are suspects for 
specific termination points. 



FLT features 

Earlier work: and experience  with an experimental  model, 
System/360  prototypes, and the IBM 1418, ' 1419, and 
1428 have  suggested that  the following are  the more 
significant FLT features : 

a) The percentage of CPU hardware required to be 
operable for FLT's  ranges  between 3 and 10 percent  (de- 
pending upon the model). 

b) Fault location testing  provides  uniform  procedures, 
documentation, and preplanned troubleshooting tech- 
niques. 

c) Successive tests check out a controllably  small part of 
the logic,  thereby  affording  excellent location resolution. 

d) The ET'S check  small  combinations  of  circuit  actions, 
thereby  making it possible to simulate logic  conditions 
that would,  under  testing  with  conventional  programs,  be 
possible  only  with  externally  introduced  unusual  signals 
or with  special  computer  instructions. 

e) Fault location testing  provides  secondary  documents 
that identify both the circuits that are tested and those 
that are not. 

f )  FLT's and their associated  documents are automatically 
produced and updated. 

g)  FLT's,  being  generated by a  production  computer, 
require less  debugging  time on the prototype model, and 
less  verification  time to confirm that they do truly locate 
the failing  circuits. 

Auto-diagnosis 

For the System/360  Read-Only  Storage (ROS) controlled 
computers,  each instruction belongs to a  compatible Sys- 
tem/360  set, and is  executed in one or more cycles. Each 
cycle determines  a  definite  machine state by setting  storage 
elements  according to the contents of a  word read from 
ROS, and by active  logic as in conventionally  controlled 
machines. 

To the engineer  who  is  single-cycling through an in- 
struction, the computer controls seem conventional. In 
this  method of design the direct use  of microprogramming 
by the user is impossible.  Both the advantages of the direct 
use  of microinstructions, and the disadvantages of  two 
levels  of control are eliminated. 

However, in machines  with an ROS control element, 
it is easy to build in diagnostic  facilities by using part of 
the ROS for diagnostic  microprograms.* The computer 
circuits are diagnostically  exercised on a cycle-by-cycle 
level, thereby  maintaining both addressing and timing 
resolution. Error indications are given  by the checking 

120 * These tests are used  extensively in the smaller models. 
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circuits.  The  local store and main storage tests exercise 
these units directly  without  reading  instructions  from  them. 
The ROS also contains microinstructions that are used to 
invert panty bits so that the error indication circuits may 
be  tested  directly. 

The serviceability attributes of ROS models  of  the 
System/360 are as follows : 

a) Controls are easy to check; both the present ROS 
word and the possible  next  words are parity  checked. 

b) Documentation is  complete on the single-cycle  level! 
is presented in flow-chart form for ease of understanding, 
and is  updated by computer  programs. 

c) ROS arrays in the smaller  models can be  easily  checked 
by tests stored in the ROS. 

d) ROS failures in the larger  models can be  diagnosed 
using FLT's. 

e) Special  features,  as  discussed later, can be included at 
modest  cost and with little effect on existing control logic. 

Reducing the duration of long service calls 
Generally, the largest  single factor contributing to long 
service  calls is the time for diagnosis. Frequently the 
failures that offer the greatest  resistence to rapid diagnosis 
are those called intermittents. The strategy for reducing 
the duration of long  service  calls in the System/360  is 
directed at three problem areas related to intermittent 
failures. First, the efficiency  of intermittent failure diag- 
nosis  has  been  low  because accurate and detailed  symptom 
information  has not been  available.  Second,  in the past, 
the impact of intermittent failures in the CPU has been 
amplified by time-consuming  recovery  procedures. Third, 
many  failures  have  been  labeled and treated as inter- 
mittents simply  because the tools available  for  inducing 
their  symptoms  have  been  inadequate. 

Symptom data collection and analysis 

By definition, intermittent failures cannot be induced by 
the user  in  order to get  symptom data. An alternative is to 
collect and preserve  these data as they  occur in real time. 
The System/360  provides  a hardware/program system 
that does  just  this. 

The requirements  imposed by the problem on  the hard- 
ware part of the system are (a) detection of errors im- 
mediately upon their  occurrence; (b) recording of the 
detailed state of the system at the time of error; and 
(c)  switching to a  different instruction stream. 

In the System/360, interruptions caused by checking- 
circuit alarms are automatically separated by the hardware 
from interruptions arising from program-caused  condi- 
tions.  Since the disposition of program  failures is obviously 
at the discretion of the routines to which the interruption 



system  leads, we shall  limit the comments that follow to 
circuit  failures. 

Requirement  (a),  detection of errors immediately  upon 
their occurrence,  is  satisfied by distributing checking  cir- 
cuits* throughout the system,  including areas of control 
circuits, so that failures are discovered  close to both their 
spatial and temporal points of occurrence. 

Requirement  (b),  recording the detailed state of the 
system at the time of error, introduces an interesting 
problem that is  reminiscent  of the Uncertainty  Principle: 
How can a machine  record its status without  changing 
what  is  being recorded? For CPU failures and failures in 
some 1/0 channels, the System/360 solution is the straight- 
forward  one  of  providing a special  set  of  independent 
circuits to control this  function. When a checking  circuit 
detects an error in the CPU or in  some parts of  the 1/0 
channels of larger  models: (1) normal sequencing in the 
affected unit  is  halted  immediately  (CPU errors do not 
affect channel operations, and vice  versa, for models  in 
which the CPU and 1/0 channels operate autonomously); 
:2) under control of the special  circuits the states of the 
:ontrol and data path storage elements  of the affected 
unit are recorded as a pattern of bits in main storage; and 
:3) normal sequencing  is  then  resumed. 

Requirement  (c),  switching to a different instruction 
stream,  is  met by forcing a special  program interruption, 
:alled  Machine Interruption, upon resumption of normal 
lequencing. 

Requirement (b) is  satisfied  somewhat  differently  in the 
[/O units.  There are two  basic  differences here: 

:1) A checking-circuit alarm causes a halting of the control 
mit for the device, but not necessarily of the device  itself 
'because of  mechanical  motion). For instance,  magnetic 
ape proceeds to the end of the current record, on reading. 
:n some control units this halting is immediate,  preserving 
he status at that point in time; in other control units only 
L partial status is  preserved,  while the unit proceeds to 
lormal termination. 

2) The status information must  be  retrieved  from  the 
Iffected unit by a program. 

For input/output units,  requirement (c)  is  met  by 
:oded status information made  available  upon a normal 
/ O  interruption, which occurs after termination  of the 
:~mmand.~  

Now the automatically  recorded data give an accurate 
md detailed  picture of the status of the affected unit itself 
i.e., CPU, channel, or control unit), but they do not 
rovide complete  information about the total system 
invironment. It is important, for this  class  of  failures, to 
mow more than just the local conditions of failure, 
)ecause  interference from sources  external to the affected 

* A  variety of checking  techniques  are  used  in  the  System/360  but 
hey are model dependent  and so will not be discussed  here. 

units  is a common  source of failure. The information to 
complete the environment  record for each  incident  is 
gathered by a special  program.  Included  in  these  supple- 
mentary data are: the 1/0 units that were active at the 
time of error, time of day,  program  identification,  instruc- 
tion operands, instruction addresses in storage and, where 
relevant, tape or disk-pack  label.  This  information is 
combined  with the automatically  recorded data  to form 
an entry in the environment  record  in  secondary storage. 
The result  is a complete,  detailed,  chronological  mainte- 
nance  history of the system,  in  machine-readable  form. 

To  aid the customer  engineer to use  this  information 
effectively, a program  is  provided to edit in a number 
of  ways the entries  in the environment  record.  Included 
are routines that print entries  in a format convenient for 
reading, and retrieval  routines that search the record and 
extract entries that satisfy the parameter keys  specified in 
standard retrieval  requests. For example, the customer 
engineer  may ask for all entries  related to a unit having 
a specified unit address, or for all  entries  triggered by a 
specified  checking  circuit. 

Bypassing the effects of error-instruction retry 

The  user of a system  is  largely  indifferent to machine 
failures if they do  not interfere  with  his operations. For 
instance, if all failures are discovered and repaired  during 
periods  when  he  is not using the system, the user is usually 
satisfied.  Experience  suggests,  however, that failures are 
not always timed so fortuitously. When machine  failures 
occur  during normal operating periods, the user can either 
terminate his  use  of the system or he  can (and often does 
for failures in tape units, for instance) try  to continue 
operating the system by bypassing the effects  of the failure. 

Bypassing the effects  of failures  can be realized either by 
avoiding the system area in which errors have  been 
observed or by repeating the processing that has been 
contaminated in the hope that the cause of the error no 
longer  exists. The first alternative is  clearly the choice for 
solid  failures, and the second  is  preferable for errors whose 
symptoms are  not persistent.  This  second alternative has 
been  called checkpointing. 

Avoiding  an  ailing  system area can be done gracefully 
if the system contains sufficient  redundancy and processing 
capacity so that the function of the suspected area can be 
assumed by a different area, or if the function  performed 
by the suspected area may  be  temporarily  eliminated.  Both 
of these  techniques  have been applied  with  some success 
to 1/0 equipment. The widely  varying 1/0 requirements 
of  different  programs  have  made  redundancy a by-product 
of accommodating the 1/0 needs of the more  demanding 
programs. 

The  avoidance  technique  can  also be applied success- 
fully, but less so, to the area of  main storage. Avoiding 
suspected  areas of main  storage is practical  only if there 121 
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are multiple  storage  subsections on line and the entire 
subsection in question can be  deleted.  Even here  the 
impact on system operation is  considerable  since in most 
cases the affected  program  will  have to be  reintroduced 
into a  different  storage area and restarted from  either 
the last checkpoint or the absolute beginning. 

But it is  in the  CPU area that  the avoidance  technique 
can  be used least successfully.  Solid  failures in the CPU 
have  usually  led to a halting of  system operation in 
single-CPU  systems and at least to a drastic revision of the 
operation of  systems  having  more than one CPU. Recon- 
figuration of the system to continue processing  with  one 
less CPU requires  specialized  planning and programming. 

In the past, the handling of intermittent CPU errors has 
not been  very  effective. Program segmentation  coupled 
with  checkpoint  dumps and checkpoint  rollback  does 
indeed  work for intermittent failures but with  considerable 
waste  of  time.  Also, it takes a  long  time to unmask  a  solid 
failure  with this approach. 

Avoidance  is not required for intermittent errors in 1/0 
operations. 1/0 control programs  have for some  years 
had an iteration resolution at the operation level rather 
than at the program-segment level. By proper  program- 
ming, all of the information required to re-execute  the 1/0 
operation is still  available at the end of the operation. 

The hardware facilities  included in the System/360 to 
solve other problems offer a new ability: the opportunity 
to re-execute  a CPU instruction in the event  a  failure  is 
detected. For retry to be  effective for CPU operations, a 
first  condition  is that all the information  required to 
re-execute the operation is  still  available after the failure 
is  detected. A second  condition  is that the effects  of the 
failure  be  nonpersistent. 

For example, in an instruction that loads  a  register  from 
storage, the first  condition  is  satisfied  since the operand is 
still  available in main  storage.  However, if core storage 
failed, the effects  of the error would be persistent and the 
retry  would  fail. The majority of instructions cannot be 
retried after their execution  has  been  completed; their 
retry  threshold*  is  usually after instruction-fetch  sequenc- 
ing, at some point in the execution  phase. 

Re-executing  instructions  imposes  two  requirements on 
the machine: 

a) Execution  must  be  halted  immediately upon error dis- 
covery, so that if the retry threshold  has not yet  been 
reached no operands will  be destroyed. 

b) Sufficient information about the state of the machine 
when it was halted  must  be  available to  the program that 
decides  whether or not re-execution is possible. 

As  was  observed  earlier,  circuitry to satisfy  these  require- 

122 tion after which some  initial  operands are no  longer  available. 
* The  retry  threshold  for  an  instruction is that  point  in  its  execu- 

ments  has  been  provided for the System/360  environment 
recording  facility.  Following  a  checking  circuit alarm thc 
computer state is  frozen, and special  circuits record thc 
detailed status of the  CPU as a pattern of bits  in an are  
of main storage reserved for this purpose. The routinc 
that stores the environment  record  also  analyzes the storec 
status information, determines if retry is possible  anc 
counts the number of retry attempts. If the retry thresholc 
is  passed or the failure effects are persistent, the retry is 
unsuccessful.  This routine takes  a fraction of a seconc 
compared to the minutes  required to perform  checkpoinl 
restart with its accompanying rerun. 

The total effectiveness  of this  facility  depends on the 
proportion of all  failure  incidents for which the retrq 
threshold  is not reached and for which the failure effects 
are not persistent. For a given machine the retry threshold 
varies from instruction to instruction, so that  the relative 
success  of retry is  very  sensitive to the instruction mix over 
which it is  measured.  Using the gross  assumptions  thal 
failures in all cycles are equally  probable, and that instruc- 
tion  usage is uniformly distributed, more than 50% ol 
retrys will be  successful for the System/360  models in 
which the facility  works  best.  Variations  in the instruction 
mix could  lower this success  percentage to perhaps 35% 
or  raise it  to perhaps 80%. 

Reducing the number of intermittent failures 

If failures that would  otherwise be treated as intermitteni 
can  be treated as solids, then the average  time for diag- 
nosing  failures  can be  reduced.  This  is done by  morc 
thorough and better-controlled  exercising of  primitive 
building  blocks. As  discussed  earlier, the procedure for 
generating fault locating tests is done by a  complex 01 
IBM 7094 programs.  These  programs  produce  lists of  all 
logic  blocks that  are directly  tested and those that  are not. 
This  permits  a  greatly  increased  coverage of directly tested 
components.  This  increased  coverage  allows  many  failures 
to be treated as  solids that otherwise  would be labelled 
intermittents. 

In addition, if any FLT indicated failure only  once, a 
list  of  suspected  circuits  would  be  immediately  available. 
The cards containing these  circuits can be  replaced as a 
preventive  maintenance  precaution. 

In summary, the number of intermittents is  significantly 
reduced  by  increasing the control a  person  may  have in 
the face  of a symptom  indicating  suspicious  behavior,  and 
by providing  better  documentation to use  when a  failure 
is discovered. 

Integrating maintenance  programs  into  the 
machine/monitor program complex-standardizing 
servicing  procedures 

System/360  maintenance  programs will be  used in what 
may be called  a  two-dimensional application environment. 
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In the simplest  case, a maintenance  program  has  all ' 
system  facilities  available  for the duration of its running. 
In a more  demanding  environment the program  must 
restrict  itself to a subset of the host system and be  pre- 
pared to yield control to  the operational monitor im- 
mediately upon the occurrence of events,  external to the 
subset, that require a fast response. So the first  dimension 
is the presence or absence  of a monitor. The  second  di- 
mension  is  whether  there is one or more than one CPU 
in the system. 

Program  compatibility, the use of  one  set  of 1/0 devices 
and control units in all models, and having  basic  storage 
units appear in several  models,  suggest  the  goal of a single 
set  of maintenance  programs as a basis to support these 
devices for the entire line. To leave  the  programs for a 
given unit basically  unchanged from one  environment to 
another, it was  decided to interpose a buffer  program 
between the programs for each unit and the external 
environment, and at the same  time  to  provide in this 
program,  called a diagnostic monitor, those  facilities  (utility 
functions) that are common to many  of  the unit programs. 
The problem of integrating  the  maintenance  program  pack- 
age into the machine/monitor  program  complex  has in 
this way  been reduced to the problem of matching the 
diagnostic  monitor to this  complex. 

The necessities  of operating both in a stand-alone 
environment and in a monitor-controlled  environment, and 
the  decision to centralize  common  functions  have  led to 
providing the following  facilities  in the diagnostic  moni- 
tor: (a) self loading, through the initial-program-loading 
operation; (b) system initialization; (c) initial handling 
of interruptions and their distribution to the unit diag- 
nostics; (d) decoding  of  externally-originated messages and 
taking appropriate action on these; (e) recognition of 
priority interruptions;* (f) loading unit diagnostics; 
(g) control of the sequence  in  which the units are treated, 
including the cases in which  several units are handled 
simultaneously; and (h) run option (e.g., error printouts) 
control. 

Primarily  because of the severe  size constraints imposed 
on the diagnostic monitors by the smaller  System/36O 
models, and to minimize the diagnostic monitor storage 
demands when sharing the system  with an operational 
monitor, several  diagnostic monitors are provided.  They 
constitute a family in the sense that diagnostic  monitors 
have  upward-compatible  facilities.  The  size  reduction  is 
achieved by the expedients of reducing the number of 
features and providing  some in simpler  form. 

Initial versions of three members  of the diagnostic 
monitor  family  have been in operation on System/360 
prototypes since the latter part of  1963. 

A priority  interruption  is one that  arises  outside  the  domain defined 

tion, a priority  interruption  causes  the  diagnostic  monitor  immediately 
for the  diagnostic  monitor by the  operational  monitor.  Without  excep- 

to  return control of its  domain  to  the  operational  monitor  program. 

From the viewpoint of a diagnostic  monitor  program, 
the problem of adapting to changing  environments  is 
largely the problem of  how to communicate  with the 
outside  world. In this context the outside world  falls 
naturally into four classes: the unit diagnostic  programs, 
operational monitor  programs, other diagnostic  monitor 
programs  (in other CPU's), and operators and customer 
engineers. 

All communication by a System/360  diagnostic  monitor 
with its environment  is through standard program inter- 
faces. As used  here, a program  interface  consists of a 
means for transmitting intentions (passing control in- 
formation) and a means for transferring parametric infor- 
mation and other data. These  interfaces are standard in 
the sense that they are identical  in  all  diagnostic monitors 
of the family. 

The diagnostic monitor/unit diagnostic interface provides 
a direct solution to the problems of integrating into one 
system a collection of unit-diagnostic  programs that have 
been produced by independent design groups, and using 
the same unit diagnostic  with  different monitors. Common 
agreement  is  first  reached on the definition of this inter- 
face, and then all  coding  conforms to this standard. 

Frequently-used  functions are provided as subroutines 
in the diagnostic monitors where  they are accessible to 
the unit diagnostics through this interface. 

Control of run options is  exerted by the diagnostic 
monitors through this interface. The diagnostic monitor 
exerts a normalizing  influence on commands  directed to 
the unit diagnostics  from the outside world, so that re- 
gardless  of their origin, messages are always  presented to 
the unit diagnostics in a standard way. 

The diagnostic monitor/operational monitor interface 
provides a solution to the problem of matching  several 
diagnostic monitors to  an even larger  number  of opera- 
tional monitors. Just as important from a practical point 
of  view is the fact that operational monitor design and 
diagnostic  monitor  design  need not be so carefully  phased 
in  time.  But  perhaps the most attractive advantage  is that 
users  who  provide  their  own operational monitor  can 
integrate a suitable IBM  maintenance  program  package 
into their  system  simply by including  in  their  program a 
section that provides the operational monitor  side of 
this interface. 

It is through this  interface that the operational monitor 
passes job requests to the diagnostic  monitor.  Included 
in  such job requests are the definition of a diagnostic 
monitor's  domain and the system units to be  tested. 
The control of this domain  is returned to the operational 
monitor through this  interface on  the normal completion 
of job-request  servicing and priority interruptions. Results 
of requested runs are given to the operational monitor 
through the interface at the time control is returned. 

The diagnostic monitor/diagnostic monitor interface is 123 
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required  for running several unit diagnostics  under the 
coordinated control of more than one CPU. For these 
applications there must  be a diagnostic monitor in  each 
of the participating CPU's.  These  diagnostic  monitors 
communicate  with  each other through the diagnostic 
monitor/diagnostic monitor interface. 

The diagnostic monitorlhuman interface provides a single 
set of procedures and messages that the operator and cus- 
tomer  engineer  may  use to request and control the running 
of maintenance  programs on any  System/360  machine. 

It is through this interface that run options may  be 
manually specified and output messages and data printed. 
Because  of this  capability there is no requirement for the 
human  user to learn and compensate for the inevitable 
individual  differences that appear in the unit-diagnostic 
programs. T h i s  standard interface facilitates the user's 
learning of the procedures  applicable to any  System/360 
installation, regardless of  which  model  is installed. It is 
especially  valuable for learning the procedures  applicable 
to a system  configuration in which  several  different  models 
are present. 

Summary 

Among the serviceability  features  for the System/360, 
the following  were  designed to supplement standard 
hardware : 

a) Error detection  circuitry (data flow and controls). 

b)  Freezing and then  transferring to main  storage the 
pattern of the CPU's internal elements  which  defines the 
present  machine state. 

c) Branching  under  program control to a specific monitor 
location upon given  signals. 

d) Transferring a pattern from main storage to the CPU's 
internal elements. 

e) Advancing the machine  clock a specified  number  of 
cycles under  independent control. 

f) Special  comparison  circuits to compare  machine states 
with the actual states. 

g) Control of this hardware by a special instruction or by 
independent  circuits. 

As indicated  in the text, not all  models  have all features. 
These  features were supplemented by the following new 

programs and procedures : 

a) Use of a 7094 to (1) produce  bit patterns to test  almost 
all of the System/360 CPU components  (for the larger 
models), (2) sequence the tests on magnetic tape or disks 
to allow  resolution of circuitry  failures to a few replaceable 

CARTER,  MONTGOMERY,  PREISS AND REINHEIMER 

circuit cards, and (3)  produce documentation, updated by 
engineering  change  level, to specify the suspected cards. 

b) Use of the ROS as storage  for  diagnostic routines (on 
the smaller  models) to (1) exercise the circuitry in in- 
crements of  single steps at full  machine  speed, (2) isolate 
the error after detection by use  of  checking  circuitry, and 
(3)  allow  these  routines to be  used  by setting maintenance 
console switches. 

c)  Use of FLT (in the larger  models) or ROS  test  proce- 
dures to diagnose a system  with  frequently  recurring error 
indications. 

d) Programs to operate as part of the operational moni- 
tor  to (1) produce the error environment record, (2) use 
the machine state pattern to permit instruction retry, and 
(3) use the diagnostic monitor to test parts of machine 
systems, as directed by operator or operational monitor. 

e) Programs to operate independently to (1) analyze  the 
error environment  record to aid the customer  engineer 
in the diagnosis of intermittent failures, and (2) control 
diagnostic  procedures efficiently  by diagnostic  monitors. 

After the initial effects  of the learning  curve  have  passed, 
this  planned  combination  of  hardware and software  pro- 
cedures  is  intended to (a) reduce the maximum duration 
of  service  calls,  (b)  reduce the median duration and mean 
duration of  service  calls, and (c) match a single  package 
of maintenance  programs and procedures to a large 
variety  of operational monitor  programs and models. 

Appendix 

Testing and diagnostic  procedures that rest upon the 
analysis of computer  circuits  is  feasible  only if this analysis 
is performed  automatically.  The  first  programs to do this 
analysis were produced by Roth, et a1.7 and Forbes, et al.' 
The techniques of doing the analysis for an entire computer 
system (as opposed to logic  without  feedback) and the 
definition of the hardware requirements to implement 
these tests for an entire system  were  first  described by 
Maling and Allen.4  These  techniques  have  been  used  very 
successfully to analyze  such systems as the IBM 1418,  1419, 
1428, and such  machine  features  as storage protection for 
the IBM 7094 at MIT. The knowledge  gained  from  de- 
signing and using  these  first  systems  is  being  used to pro- 
duce  improvements in these systems. The new system uses 
as input the Design Automation Logic  Master  Tape.' 
It also can analyze  more than twice as many  logic  circuits 
as the previous program and even  with  its  increased 
capabilities  takes  less  computing  time on the IBM 7094. 

The general flow  of the F'LT generating  programs  com- 
plex  is  shown  in  Fig.  3. The information defining the 
logical structure of the computer  nets  is  extracted  from the 
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Figure 3 Fault locating Test generator program 
complex. This complex is for use on the IBM 
7094 to precalculate test patterns. 

Design Automation Logic Master  Tape. Then the  combina- 
tional logic nets are unravelled from  the sequentially 
connected nets, the physical location  information is 
separated from  the logical, and  the  latter is put  into a 
form  that is convenient for analysis. (Not mentioned in 
this  outline are  the many necessary routines for  printout 
and for error analysis.) 

The next part of the program consists of the routines 
to analyze heuristically a logic tree network. The routines 
trace  forward from  an assumed line failure to the  tree 

output,  and backward to the  net inputs. At each  step, 
logical values as determined by the circuit elements are 
assigned to the lines. This  may  lead to logical impos- 
sibilities and  abandoning this  attempt. The  net  inputs de- 
fine a combination of input conditions that should de- 
termine if the particular line tested is working correctly. 
Each input  and  output line to a circuit element is analyzed. 

After a pattern  has been developed, it is evaluated to 
determine  what lines it actually tests, and if it tests any 
lines not previously tested. The development and evalua- 
tion  continue  until a set  of tests that will indicate the 
malfunctioning components collectively is obtained. 

The tests themselves do  not necessarily provide  enough 
resolution to locate the malfunctioning  component. How- 
ever, after  they are organized into a sequence in the  form 
of a decision tree,  this  resolution is obtained. 

The final routine of the program complex translates the 
decision trees and associated test patterns  into  pattern 
test data. These data  are  then transformed into  the  form 
necessary for  the particular pattern testing circuits that 
are associated with a specific IBM System/360 model. 
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