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Aaron D. Wyner*

A Note on a Class of Binary Cyclic Codes Which
Correct Solid-Burst Errors

In a recent paper’, Melas and Gorog discussed a tech-
nique for extending the length of certain shortened cyclic
codes to correct the same class of error patterns (for
example, “burst” error patterns). In this note a similar
result is stated for unshortened cyclic codes,” and the
technique is employed to generate a class of binary cyclic
codes which correct solid-burst errors.

Definition

Let G(X) by a polynomial over GF(q). The cyclic code
generated by G(X) is the set of multiples of G(X) modulo
X" — 1, where n is the smallest integer for which G(X)
divides X" — 1; n is the lengrh of the code.

If the code is to correct the class of error polynomials
& it is necessary and sufficient that for E,(X) and Ex(X)e&,

E(X) = Ex(X) modulo G(X)
which implies that
E(X) = E,(X) modulo X" — 1. (1)

Usually, the class of errors to be corrected may be
written in the form X P(X), where P(X) belongs to some
set of error “patterns” 8, that is &(8) = {X"P(X) : P(X)eS,
r=1,23,--}. If condition (1) is satisfied for &(8) we
say that the code corrects the patterns 8.

Theorem

Let g(X) generate a cyclic code over GF(q) of length n,,
which corrects the error patterns 8. Let f(X) generate a
cyclic code over GF(q) of length n, which corrects each of
the classes of error patterns §; = {P,(X), 0} for every
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P,(X)eS. Further say that $ has the property that for
PX), P{(X)eS,

A, XP(X)— P(X)=0mod X" — 1lon|r
and P,(X) = P](X)
B. X'P(X)— P{(X)=0mod X" — 1 & n, | r.

In other words, no member of § is a cyclic shift of
another member of § when the cycle length is n;, and no
member of § is a cyclic shift of itself when the cycle length
is n, or n, (except, of course, when the shift length r is a
muliiple of », or n,). Then the code generated by l.c.m.
(g(X), (X)) corrects the class of error patterns § with code
length Lc.m.(n,, n,).

We now apply this technique to obtain a class of binary
cyclic codes which correct solid-bursts,®

Let P(X) =14+ X+ X+ --- + X", and let § =
{0, PAX):i=0,1,2, -+ b}, the class of solid bursts of
length up to 5.

Letg(X) = X°+ 1,sothatn; = c. If ¢ > b+ 1, con-
dition A is satisfied. Since g(X) generates the trivial code
with only the zero code word, g(X) corrects the patterns §.

Let f(X) be an irreducible polynomial of degree r whose
roots have order n,. If n, > b+ 1, condition B is satisfied.
Further assume that f(X) does not divide X° + 1 so that
f(X) and g(X) are relatively prime. We shall now demon-
strate that the code generated by f(X) corrects the class
of patterns $; = {P,(X), 0}. To do this we must show
that if X"P,(X) = P,(X) modulo f(X), then r is a multiple
of n, (so that these are, in fact, the same error patterns).

If f(X) divides (X" + 1)P,(X), then, since f(X) is irre-
ducible, f(X) divides P(X) or X" 4 1. If f(X) divides
P(X)= X114+ X4 ..« + X 1, then f(X) divides

X' 4 1. By minimality of n,, and since i < b, we have




n, < i< b.Butn, > b+ 1> b, hence f(X) divides X"+ 1.
This can be so only when r is a multiple of n,.

Since all the hypotheses of the theorem are satisfied,
we conclude that the cyclic code generated by g(X)f(X) =
(X° 4+ DH(X) corrects the class of solid-bursts of length
up to b with code length l.c.m.(n,, #,).

Example
Say b = 20. Choose g(X) = X* + 1, and f(X) = X° +
X® + 1, a primitive polynomial with 7, = 31 which

is greater than b -+ 1. Hence the code generated by
X* 4+ DX 4+ X* 4 1) corrects solid-bursts of length
up to 20 with code length 31-21 = 651. The number of
digits required is 21 4 5 = 26.
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