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Letter  to the Editor 

Aaron D. Wyner* 

A Note on a  Class of Binary  Cyclic  Codes  Which 
Correct Solid-Burst Errors 

In a recent  paper’,  Melas and Gorog discussed a tech- 
nique for extending the length of certain shortened cyclic 
codes to correct the same  class  of error patterns (for 
example, “burst” error patterns). In this note a simiIar 
result  is stated for unshortened cyclic  codes: and the 
technique is  employed to generate a class of binary cyclic 
codes  which  correct  solid-burst errors. 

Definition 

Let C(X)  by a polynomial  over GF(q). The cyclic  code 
generated by  G(X) is the set of multiples of G(X)  modulo 
- 1, where n is the smallest  integer for which G(X) 

divides X - 1 ; n is the length of the code. 
If the code is to correct the class  of error polynomials 

E it  is  necessary and sufficient that for El(X) and E,(X)eE, 

&(X) = E 2 ( X )  modulo C ( X )  

which  implies that 

E,( X )  = E,( X) modulo X” - 1. (1) 

Usually, the class of errors to be corrected may be 
written in the form X‘P(X), where P(X) belongs to some 
set of error “patterns” S, that is E(S) = { X‘P(X) : P(X)eS, 
r = 1, 2, 3, - - - }. If condition (1) is  satisfied for &(S) we 
say that the code  corrects the patterns S. 

Theorem 

Let g(X) generate a cyclic code  over GF(q) of length nl, 
which corrects the error patterns S. Let f(X) generate a 
cyclic code  over GF(q) of length n2 which corrects  each of 
the classes of error patterns Si = {Pi(X), 0) for every 
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Pi (X)eS .  Further say that S has the property that fa 
Pi(X),  p m e s ,  

A. X‘P,(X)  - P , ( X )  3 0 mod X”’ - 1 Q n, 1 r 

and Pi( X) = P , ( X )  

B. X‘P, (X)  - Pi( X) = 0 mod X”’ - 1 * n2 I r .  

In other words, no member  of S is a cyclic shift a 
another member  of S when the cycle length is n,, and nl 
member  of S is a cyclic shift of  itself  when the cycle  lengtl 
is n1 or n2 (except,  of  course,  when the shift length r is 
multiple of n, or n,). Then the code  generated by 1.c.a 
(g(X) ,  f (X))  corrects the class  of error patterns S with  cod 
length l.c.m.(n,, n2). 

We  now apply this technique to obtain a class  of binar, 
cyclic  codes  which correct solid-b~rsts.~ 

Let Pi(X)  = 1 + X + X ,  + . . . + Xi-‘, and let S = 
{O, P,(X): i = 0, 1, 2, . . . b } ,  the class  of  solid bursts o 
length  up to b. 

Let g ( X )  = X“ + 1, so that n, = c. If c 2 b + 1, cor 
dition A is  satisfied.  Since g(X)  generates the trivial cod 
with  only the zero  code  word, g(X) corrects the patterns S 

Let f(X) be an irreducible  polynomial of  degree r whos 
roots have order n,. If n, 2 b + 1, condition B is satisfiec 
Further assume that f ( x )  does not divide X” + 1 so tha 
f(X) and g(X) are relatively  prime. We shall now  demon 
strate that  the code  generated by f ( X )  corrects the clas 
of patterns Si = { P,(X), 0). To do this we must sho\ 
that if X‘Pi(X) = P,(X) modulo f(X), then r is a multipl 
of n, (so that these are, in fact, the same error patterns: 

If f(X) divides (X‘ + l )Pi(X),  then, since f ( X )  is irre 
ducible, f(X) divides Pi(- or X’ + 1. If f (X)  divide 
P,(X) = X““ + X”’ + . + X + 1, then f(X) divide 
Xi + 1. By minimality of n2, and since i 2 b, we hav 



n2 2 i 2 6. But n2 2 b + 1 > 6, hence f(X) divides X‘ + 1. 
This  can be so only when Y is a multiple of n2. 

Since all the hypotheses of the theorem are satisfied, 
we conclude that  the cyclic code generated by g(X) f (X)  = 
(X” + l)f(X) corrects the class of solid-bursts of length 
up to b with code length l.c.m.(n,, n2). 

Example 

Say b = 20. Choose g ( X )  = X Z 1  + 1, and f ( X )  = X 5  + 
X 2  + 1, a primitive polynomial with n, = 31 which 
is greater than b + 1. Hence the code  generated  by 
(Xz1 + l)(X5 + X’ + 1) corrects solid-bursts of length 
up to 20 with code length 31-21 = 651. The number of 
digits required is 21 + 5 = 26. 
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