A Note on a Class of Binary Cyclic Codes Which Correct Solid-Burst Errors

In a recent paper¹, Melas and Gorog discussed a technique for extending the length of certain shortened cyclic codes to correct the same class of error patterns (for example, "burst" error patterns). In this note a similar result is stated for unshortened cyclic codes,² and the technique is employed to generate a class of binary cyclic codes which correct solid-burst errors.

Definition

Let G(X) by a polynomial over GF(q). The cyclic code generated by G(X) is the set of multiples of G(X) modulo $X^n - 1$, where n is the smallest integer for which G(X) divides $X^n - 1$; n is the length of the code.

If the code is to correct the class of error polynomials \mathcal{E} it is necessary and sufficient that for $E_1(X)$ and $E_2(X) \in \mathcal{E}$,

$$E_1(X) \equiv E_2(X)$$
 modulo $G(X)$

which implies that

$$E_1(X) \equiv E_2(X) \quad \text{modulo} \quad X^n - 1. \tag{1}$$

Usually, the class of errors to be corrected may be written in the form $X^rP(X)$, where P(X) belongs to some set of error "patterns" S, that is $E(S) = \{X^rP(X) : P(X) \in S, r = 1, 2, 3, \cdots\}$. If condition (1) is satisfied for E(S) we say that the code corrects the patterns S.

Theorem

Let g(X) generate a cyclic code over GF(q) of length n_1 , which corrects the error patterns S. Let f(X) generate a cyclic code over GF(q) of length n_2 which corrects each of the classes of error patterns $S_i = \{P_i(X), 0\}$ for every

 $P_i(X)\epsilon$ S. Further say that S has the property that for $P_i(X)$, $P_i(X)\epsilon$ S,

A.
$$X^r P_i(X) - P_i(X) \equiv 0 \mod X^{n_1} - 1 \Leftrightarrow n_1 \mid r$$

and $P_i(X) = P_i(X)$

B.
$$X^r P_i(X) - P_i(X) \equiv 0 \mod X^{n_2} - 1 \Leftrightarrow n_2 \mid r$$
.

In other words, no member of S is a cyclic shift of another member of S when the cycle length is n_1 , and no member of S is a cyclic shift of itself when the cycle length is n_1 or n_2 (except, of course, when the shift length r is a multiple of n_1 or n_2). Then the code generated by l.c.m. (g(X), f(X)) corrects the class of error patterns S with code length l.c.m. (n_1, n_2) .

We now apply this technique to obtain a class of binary cyclic codes which correct solid-bursts.³

Let $P_i(X) = 1 + X + X^2 + \cdots + X^{i-1}$, and let $S = \{0, P_i(X): i = 0, 1, 2, \cdots b\}$, the class of solid bursts of length up to b.

Let $g(X) = X^c + 1$, so that $n_1 = c$. If $c \ge b + 1$, condition A is satisfied. Since g(X) generates the trivial code with only the zero code word, g(X) corrects the patterns S.

Let f(X) be an irreducible polynomial of degree r whose roots have order n_2 . If $n_2 \ge b+1$, condition B is satisfied. Further assume that f(X) does not divide X^c+1 so that f(X) and g(X) are relatively prime. We shall now demonstrate that the code generated by f(X) corrects the class of patterns $S_i = \{P_i(X), 0\}$. To do this we must show that if $X^r P_i(X) \equiv P_i(X)$ modulo f(X), then r is a multiple of n_2 (so that these are, in fact, the same error patterns).

If f(X) divides $(X^r + 1)P_i(X)$, then, since f(X) is irreducible, f(X) divides $P_i(X)$ or $X^r + 1$. If f(X) divides $P_i(X) = X^{i-1} + X^{i-2} + \cdots + X + 1$, then f(X) divides $X^i + 1$. By minimality of n_2 , and since $i \le b$, we have

Now with Bell Telephone Laboratories, Inc., Murray Hill, N. J.

 $n_2 \le i \le b$. But $n_2 \ge b+1 > b$, hence f(X) divides $X^r + 1$. This can be so only when r is a multiple of n_2 .

Since all the hypotheses of the theorem are satisfied, we conclude that the cyclic code generated by $g(X)f(X) = (X^c + 1)f(X)$ corrects the class of solid-bursts of length up to b with code length 1.c.m. (n_1, n_2) .

Example

Say b = 20. Choose $g(X) = X^{21} + 1$, and $f(X) = X^{5} + X^{2} + 1$, a primitive polynomial with $n_{2} = 31$ which is greater than b + 1. Hence the code generated by $(X^{21} + 1)(X^{5} + X^{2} + 1)$ corrects solid-bursts of length up to 20 with code length $31 \cdot 21 = 651$. The number of digits required is 21 + 5 = 26.

Acknowledgments

The author wishes to acknowledge a number of very helpful conversations with Dr. R. T. Chien of the IBM Thomas J. Watson Research Center.

References and Footnotes

- E. M. Melas and E. Gorog, "A Note on Extending Certain Codes to Correct Error Bursts in Longer Messages," *IBM Journal* 7, 151 (1963).
- Definitions of "shortened" and "unshortened" are those of Peterson, Error-Correcting Codes, The MIT Press and John Wiley and Sons, Inc., New York, 1961 (Chapter 8).
- The notion of solid bursts was introduced to the author by G. Schillinger in a private communication.

Received July 31, 1963