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Transmission-Line  Response  Using 
Frequency  Techniques 

Abstract:  Frequency-domain analysis of  transmission-line  pulse  response is presented. A computer program 

is used  to evaluate the response,  using  subroutines to describe the line characteristics and terminal condi- 

tions.  The program is applicable to  lines of any cross  section in which the TEM mode of propagation exists. 

The line characteristics are obtained from either formula prediction or frequency  measurements  on small 

samples.  Because of skin  effects or  complex  geometry, these  characteristics  can be extremely difficult to  cal- 

culate, and so an experimental procedure is adopted for determining these parameters. The computer-pro- 

gram results are compared to measured  values. 

Symbols 

constant term in Fourier series  representation 
nth  cosine  coefficient in Fourier series  representation 
nth  sine coefficient in Fourier series  representation 
capacitance  per unit length obtained from  conformal 
mapping  results 
nth  value  of amplitude and phase spectrum 
current phasor  corresponding to cosine coefficient Ak 
current phasor  corresponding to sine coefficient Bk 
total length of  delay line 
inductance per unit length obtained from conformal 
mapping  results 
transmission  line equation coefficient  corresponding 
to cosine  coefficient Ak 
transmission  line equation coefficient corresponding 
to sine  coefficient B, 

transmission  line equation coefficient corresponding 
to cosine coefficient Ak 
transmission  line equation coefficient corresponding 
to sine  coefficient Bk 
equals d L c  JC0 m. 

" 

voltage  phasor  corresponding to cosine coefficient A ,  
voltage  phasor  corresponding to sine coefficient Bk 
magnitude of characteristic impedance  in  ohms 
series  impedance  due to skin effect 
attenuation constant in nepers/unit length 
phase shift in radians/unit length 
propagation constant 
depth of penetration 
phase  angle  of the characteristic impedance  in 
radians 

Introduction 

This  paper gives a  computer-programmed approach to 
the analysis of transmission-line propagation using  fre- 
quency-domain  techniques. The characteristics of the 
transmission  line can be predicted by formula, or meas- 
ured on a  small  sample, at several  frequencies. 

Formula prediction  is  a  powerful tool because it can 
be  used to test the feasibility  of  specific  designs, or to vary 
parameters to determine the effect on the pulse  response, 

52 or even to try empirical  modifications of a formula repre- 

sentation for a given problem to find the most  desirable 
solution. For certain cross-sectional  geometries, it may 
be very  difficult  (if not impossible) to write a formula 
describing the transmission  line  characteristics. For param- 
eter  measurement at several  frequencies on a  small  sample, 
it is  possible to predict the pulse  response of long lines. 
The Appendix briefly  describes the technique  used  in this 
article. 

Wigington and Nahman'  have  successfully  analyzed the 
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pulse  response of coaxial  cables,  assuming  no  dielectric 
losses and a series  skin  effect  impedance proportional to 
the square root of the frequency.  This  analysis  can  be 
extended to a limited  number of other geometries; how- 
ever,  propagating arbitrary waveforms on transmission 
lines  with arbitrary terminations and varying  these  termi- 
nations to achieve  compensating effects due to lossy  lines 
can best  be  handled  using  computer  techniques. 

The line  characteristics and terminal  conditions are 
subroutines  in the computer  program. It is  possible to 
analyze  any  type of line (e.g., strip or coaxial) and any 
type of termination merely  by inserting the corresponding 
subroutines.  Because of this  versatility, the line character- 
istics  can  be  given  in  terms  of a formula or in graphic 
form. 

The input waveform can  easily  be  described to the com- 
puter; any  waveform  of  engineering  interest  may  be  used 
and the response  anywhere on the line  calculated. The 
waveform  is  described  by coordinate points which  need 
not be equally  spaced in time. In the machine computation 
a straight line is  assumed to exist  between  points. 

The paper  begins  with a general outline of the computer 
program,  followed by a description of the operation of 
the program. A brief  section  is  included on the mathe- 
matical  background  describing the decomposition into 
Fourier series, the calculation of the transmission-line 
equation coefficients  in the frequency  domain, and the 
reassembly of the harmonics  modified by the line.  Also, 
a formula which has been  used  successfully to predict 
pulse  response  in  unsymmetrical strip lines  is  discussed. 
The  calculated  pulse  response  is  compared to  the meas- 
ured  pulse  response for line  characteristics  obtained  from 
the  unsymmetrical strip line formula and from frequency 
measurements on a small  sample.  Also,  line  characteristics 
calculated  from a strip line  formula are compared to 
measured  characteristics  using a frequency  technique  de- 
scribed  in the Appendix. 

Computer program 

The  program can be  divided into four parts: 

1) Fourier decomposition of the input waveform. 
2) Generation of transmission  line  characteristics, and 

load and generator  impedances, as a function of fre- 
quency. 

3) Solving for the phasor  voltages and currents on the 
transmission  line at the point of observation. 

4) Construction of the output as a function of time by 
reassembling the harmonics  in the time  domain. 

Any  waveform  of practical  value  in  electrical  engineer- 
ing  can  be  presented as input data [f(t) of Fig. 11. Part MI 
(Fig. 1) of the program will analyze the waveforms and 
print out the coefficients  of the sine and cosine  terms, the 
amplitude spectrum and the phase  spectrum. By selecting 

the proper option, it is  possible to reconstruct the input 
waveform  using the number of harmonics  requested, to 
see  how  well the waveform  was approximated. 

In order to determine the effect  of the transmission  line 
on each  frequency, the program begins  execution  of the 
block  of  instructions  called M2. This  block  calls upon 
subroutine SI for the evaluation of a, 0, Z,, and e,,, using 
the SI input data, and upon subroutine S2 for the evalu- 
ation of terminal  conditions and upon the input tape for 
the total length of the line and the point of observation. 
The program then executes the instructions in block M3 
to get the output. At this point, the programmer  has the 
option of returning to the beginning  of  block MI and 
analyzing another function of time, or of  going to block 
M2 and changing the transmission  line  description for 
the same f(t), or of terminating the run. 

The  computer  program  is  made quite versatile by the 
use  of subroutines for the description of  line character- 
istics and terminal  conditions. A subroutine SI can be 
written for each  type of transmission  line.  Parameters of 
each  type  of  line  can  be  changed by varying the input 
data. A printout of a, p, Z ,  and Ozo as a function of fre- 
quency  is part of the output data, completely  characteriz- 
ing the line  in the frequency  domain. The author has  used 
two  different SI subroutines: one accepts data in the form 
of a description of the geometry  of the transmission  line 
and calculates the characteristics by formula; the other 
accepts  measured  characteristics as points on a log-log 
graph and interpolates between the points to evaluate 
these  characteristics at the desired  frequencies. Subroutine 
S2 describes the terminal  conditions. Here too, the inputs 
can  vary the impedances for any  type of termination. Sub- 
routines SI and S2 can be  expressed  in  formula or in 
graphical  form.* 

Special attention has been  given to making the program 
as easy to use as possible by simplifying the description 
of input quantities. If the whole  waveform  is  approxi- 
mated by straight lines  of arbitrary length, then giving 
the coordinate points of these  lines  will  describe the input 
waveform  completely. 

The inputs to SI will  differ,  depending on whether one 
has a formula or a graphical  subroutine. For the formula 
subroutine pertaining to strip-type lines, the line  is  easily 
described on one data card in  terms of  seven quantities: 

1) conductor thickness (d) 
2) conductor width ( W )  
3) permeability of free  space (p,) 
4) conductivity (u) 
5 )  inductance/unit length,  from  conformal  mapping  re- 

sults (LC m) 

* There  can be more  than  two  subroutines if desired.  These  subrou- 
tines  make  it possible to solve a wide  range of problems involving 
many  different  types of lines and  terminations. 53 
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kd INPUT  DATA  TO  SUBROUTINE 

c77 INPUT  DATA  DESCRIBING f ( t )  

FOURIER  SERIES  HARMONICS. 
DECOMPOSITION  INTO 

PRINTOUT  OF  HARMONICS 

r - 0  OPTION 

I INPUT  DATA  TO  SUBROUTINE I 

SUBROUTINE FOR a, @,Z, AND 6z0 
AS  FUNCTION OF FREQUENCY 
(CALCULATED OR GRAPHICAL) 

SUBROUTINE  FOR 
GENERATOR  IMPEDANCE 

A S  A FUNCTION OF FREQUENCY 

POINT  OF  OBSERVATION 
INPUT  DATA  GIVING 

AN0  TOTAL  LENGTH 

MODIFICATION OF 
INPUT  HARMONICS BY  DELAY  LINE 

REASSEMBLY  OF  HARMONICS FOR 
OUTPUT  WAVEFORM 

 MI^ OPTION M2 

Figure I Flow chart of computer program. 

SUBROUTINE FOR 
LOAD  IMPEDANCE  AS  FUNCTION 

OF  FREQUENCY 

I INPUT  DATA  TO  SUBROUTINE I 

6 )  capacitance/unit length, from conformal mapping re- 

7) factor (introduces ground plane series  losses as func- 
sults (C,  m) 

tion of W/h ratio) 

(Note: d, W, c and factor are needed to calculate skin 
effect  losses). 

When using a graphical description of a, p, Z,, and 
Ozo, the same technique as for the description of f(t) of 
approximating the curve by straight-line segments is used. 
The curves, however, are assumed to be given on log-log 
graph paper and  the characteristics plotted as a function 
of frequency. 

A parallel RC circuit has been assumed adequate to 
describe terminal impedance conditions. This is easily 
programmed (subroutine S2) with R and C as  the input 
data. The subroutine may also be written for  far  more 
complex terminal impedance conditions. 

At this point, a brief example will  be  given to illustrate 
the ease with which a problem can be presented to  the 
machine. The formula  subroutine is used to describe the 

line parameters and another  formula  subroutine to de- 
scribe the terminal conditions. 

The  triangular waveform shown in Fig. 2 is applied to 
the illustrated transmission line. On  the first data card 
is entered the number of harmonics desired, the period 
of the  input f(t), the number of cards to describe the input, 
and  the increment At to be used in the final reassembly. 
The triangular waveform can be described by three sets 
of coordinates,  one set per data card.  The total length 1 
and  the point of observation x occupy another data card, 
the cross section (using the formula subroutine SI) takes 
one  more  card, and terminal conditions take  one card for 
each end of the line. The total number of cards for the 
problem is eight. 

Mathematical background 

. Fourier series  decomposition of input waveform 

The  input waveform f(t)  can be expressed as a Fourier 
series in the following two ways: In terms of sines and 
cosines, 
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A 
2 n=l T n = l  T 

W 2?rn W 

l ( t )  = 0 + A,, COS ~ t + B,, sin - t ,  
2?rn 

(1) 
where 

A ,  = 1 f ( t )  cos - t dt (n  > 0) 

B, = S, f ( t >  sin ~ t dt (n  > 0) 

2 T  2?rn 
(3) 

T 

27rn 
T 

2 T  

( n  is an  integer) (4) 

or, in terms of exponentials, 

The relationships between Eqs. (5) and (1) are: 

The integrals in Eqs. (2), (3), and (4) can be evaluated 
between time tl and tz if one assumes that  the voltage 
changes linearly between the  two points. The  contribution 
of any  straight-line segment to the coefficient may then 
be calculated by substituting the coordinates of its two 
end points  in the integrated  equation. By approximating 
a given curve by a series of broken lines, one may obtain 
the Fourier series coefficients by summing the contribu- 
tion over all segments. 

By programming the integrated  equation  for a typical 
segment, one can  approximate  any curve by straight-line 
segments of any length merely by giving coordinate  points 
as  input  data  and summing over the contribution of each 
segment. 

Transmission line equations 

In order to program the transmission-line equations, they 
must be rewritten in  terms of real and imaginary parts; 
this has been done  for all the equations.  Once the propa- 
gation characteristics a, /3, and Z, and  the  load ZL are 
known as a function of frequency, the  input impedance 
of the line can be calculated for  the fundamental frequency 
and all harmonics from 

I - T  Y 

ITIME - 
(01 

Figure 2 Waveform and line characteristics. Note 
that p,, and u are known, and LC,  and C, ,  
can be found  from  conformal  mapping re- 
sults.) 

and 1 is shown in Fig. 2. The voltage V in Fig. 2 represents 
the cosine (or sine) coefficient obtained from Fourier 
analysis. The voltage 

and is calculated for  each frequency, for both sine and 
cosine coefficients. The values of the transmission equa- 
tion coefficients P and Q are  found from 

and 

Q = $(I  - .)Vi. 

The phasor  representation of voltage and current at a 55 
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particular  frequency is  given  below : 

These are the transmission-line equations in  phasor 
form. 

Reassembly of harmonics 

After  calculating the phasor  voltage and current equations 
for  each  frequency,  one may obtain the outputs as func- 
tions of  time. Equations (10) and (11) represent  phasor 
equations for a particular  frequency and for either  cosine 
or sine coefficients. For the cosine  coefficients, one multi- 
plies the phasor equation by e iw t ,  takes the real part, and 
sums  it  over the fundamental plus all harmonics to get 
the voltage at time t ;  for the sine  coefficients, one follows 
the same  procedure,  except that the imaginary part is 
used. 

As can be  seen  from the list of  symbols, a subscript c 
refers to a phasor  resulting  from a cosine  coefficient,  while 
s is  for  one  pertaining to the sine; n refers to the particular 
frequency  component (n  = 1 is the fundamental; n = 2 
is the first  harmonic,  etc.) Equations (10) and (11) can  be 
rewritten for the kth  cosine coefficient  as 

and 

For kth sine  coefficient,  they are rewritten as 

Vsk = Pske-aXze-lskz +- QSke e COZ j b k Z  ( 1  4) 

and 

The  voltage and current at the point x can now  be  re- 
solved as a function of  time. The outputs will  be due to 
the contribution of both cosinusoidal and sinusoidal 
harmonics;  thus, 

at each  time t ,  and point of observation x ,  the summation 
of the contribution of  each  frequency ( k  = 1, 2, . . . , N) 
will  result  in an output. 

The contribution of the cosinusoids to the voltage  is 
N 

u,(t)  = cos (kwlt - P k X  + e,,,) 
k=l 
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The contribution of the sinusoids to the voltage  is 

u,(t) = (Pake-uBZ sin @colt - pkx + e,,) 
N 

k = l  

+ QakeaxZ sin (kwlt f P k X  + & a k > ) .  (19 

Similarly, the currents are found to be: 

COS (kwlt - Pkx + [e,,, - e z o , ~ )  
Q c k  
" e+akz cos (kwlt + Pbx + [e,,, - ez,,&I)} (20: 

zo X 

and 

i . ( t )  = { ~ s k  e+akz sin (kwlt - Pkx + [e,,, - ezo,]) 
N 

k = l  zo, 

" e+akzsin (/cult + pkx + [e,,, - e z o k ~ ) } -  (21) 
ZO, 

The  voltage and current waveforms can be found bq 
substituting Eq. (18) and (19) into E q .  (16) and Eqs. (20: 
and (21) into Eq. (17). 

In order to solve the above equations, it  is  necessarq 
to specify a, P, 2, and Ozo as a function of  frequency. In 
the computer  program  this is done by a subroutine whick 
can  accept a graphical input, i.e., accept the line  param. 
eters  from  log-log  graphical  plots, or it can accept a for. 
mula input, i.e., calculate the parameters  from input data 
describing the cross-sectional area of the line. 

Theoretical  prediction of strip-line  characteristics 

For strip lines  (Fig. 3) the formulas  for the propagation 
constant y and characteristic  impedance Zo are given bq 

where the dielectric  losses are assumed to be  negligible 
(for  epoxy  glass  this  assumption  holds into the kilomega. 
cycle  range). The capacitance per unit length can be as- 
sumed constant over the frequency range; however,  the 
series  resistance and inductance  vary as a function of fre 
quency  because of skin effect. 

Figure 3 Strip line cross  section. 



Figure 4 Conductor coating an infinite  conductor. 

For frequencies where the depth of penetration 6 is 
much smaller than  the thickness d, the series impedance 
due to skin-effect losses can be given  by the well-known 
relationship 

where 

One would like to have a formula which would hold 
reasonably well over the entire frequency range. As in 
Ref. 2, we assume  (as  in Fig. 4) a  conductor of infinite 
thickness with conductivity u2, coated with a  conductor 
having conductivity ul. 

Uniform fields are assumed to exist at the surface of 
Conductor 1. As the conductivity u2 goes to zero, 2, in 
Conductor 1 can be expressed as 

2, = (1 + j ) R e q  coth rd (u = a,) 

in ohms per unit length per unit width. For a  strip of 
width W ,  

md 

r =  

The series resistance and reactive impedance due to skin 
effect can be written as 

R = e!? R /sinh (2d/6) + 
8 

W lcosh (2d/ 6)  - cos (2d/6) 

and 

x = el! R f inh  ( 2 4 6 )  - sin (2d/6) 
8 (29) 

W cash (2d/ 6 )  - COS (2d/6) 

The next step is to examine Eqs. (28) and (29) at high 
and low frequencies. For high frequencies (d>> a), Eqs. 
(28) and (29) can  be written as 

and 
- 

These are  the same results as those of E q .  (24). For 
fast-rise-time pulses, Eqs. (30) and (31) are  adequate  to 
give the desired response. For low frequencies (d << a), 
one finds that as f approaches zero, 

R8 = I/  Wad = dc resistance per unit length (32) 
of the  strip 

and 

x. = 0.  (33) 

These are  the results for  dc current flow. The value of R 
in Eqs. (22) and (23) is equal to R,. The  total value of X ,  is 

where the LC,  term is the inductance per unit  length due 
to the energy stored  in the magnetic field between the 
strip line conductor and  the ground plane. The value of 
X, >> wLCm for the lower frequencies, but wL,, >> X ,  for 
the higher frequency range. The values of LC, (and  also 
Cc,) can be  found from curves of the results of conformal 
mappings for static fields due to lossless conductors, be- 
cause of the similarity between the static field distribution 
and dynamic  distribution at high frequency for lossy 
conductors. 

The formulas giving series resistance and reactive 
impedance  assume that  the E and H fields are uniform 
across the width W of the conductor.  This  assumption 
becomes less valid as W / h  ratio decreases. Comparing 
actual responses with calculated responses, one finds that 
the results are useful down to W / h  E 1. For  the high 
frequencies, the current  in the ground  plane will not 
spread out far beyond the width W of the  strip line, 
especially for W / h  > 5. Therefore, the series impedance 
2, will be higher than  that predicted, and this  must be re- 57 
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-_ - - - “ W/h E 10 OR GREATER, FACTOR 2 2.0 

2R, FROM  EQUATION 3 4  

W/h !?I OR LESS,  FACTOR 4 I 
R,FROM EQUATION 34 

4 
,’ 3 ,‘ / 

I 
/ h E, z4.5 

1. 

Figure 5 Series  resistance plotted vs frequency to 
illustrate skin  effect. 

flected in  the calculation. A good discussion of ground 
current  spreading  can be found in Ref. 3. 

Frequency measurements of transmission-line param- 
eters were carried out using the technique given in the 
Appendix. These will be discussed in  detail  in the next 
section. The  contribution of the  ground plane to the series 
resistance can best be  illustrated by showing the series 
resistance R, vs frequency (see Fig. 5) .  Curves ( 1 )  and (4) 
show the calculated R ,  and 2R,, respectively, as given by 
Eq. (28). Curves (2)  and (3) show the actual R ,  for W / h  = 2 
and 5 ,  respectively. Both curves (2)  and (3) coincide with 
(1) for  the low frequency range, since the current  in a 
lossy ground plane  spreads throughout  the plane at low 
frequencies, so that  the resistance is negligible compared 
to that of the conductor. For high frequencies, the current 
no longer spreads  in the lossy ground plane but concen- 
trates  under the  strip conductor. In  other words, there 
is a change in  the field distribution in going from low to 
high frequencies (low frequency means 6 >> d, and high 
frequency means 6 << d). The current in  the plane  ap- 
pears to behave as if at low frequencies the  path chosen 
minimizes the resistance, while for high frequencies the 
path chosen minimizes the inductance. The degree of 
concentration at high frequencies varies depending on 
the W / h  ratio; it increases (higher resistance per unit 
length) for higher W / h  ratios. To have formula (28) hold 
well (especially for high W / h  ratio) over the entire fre- 
quency range, empirical modification is necessary. How- 

58 ever, for most  conductor thicknesses, the value of f for 

6 = d is low enough so that  the modification involves 
only the same  constant multiplying factor for all fre- 
quencies. [Example: For 1/2  ounce  copper at f = 13.8 Mc 
for d = 6 = 0.7 mil; while for  one-ounce  copper, and 
f = 3.45 Mc  for 6 = d 2 4  1.4 mils.] This means that  for 
fast-rise-time pulses (150 ns rise time or less, for one- 
ounce  copper) one  can select the period of the waveform 
such that  the fundamental  harmonic is above the 6 = d, 
so that multiplication by a constant factor between 1.0 
and 2.0 in value (depending on W / h )  is enough to give 
a very good  approximation. (This will be  illustrated in 
the discussion of Fig. 10). 

Results and conclusions 

Comparison of line characteristics us frequency from 
formula predictions with measured characteristics 

A line was built with the cross section shown  in Fig. 6 
( W / h  ratio of 8.6). Predictions of a, p, 2, and Ozo were 
based on this cross-sectional geometry using Eqs. (28) 
and (29). Because W / h  was large, it was supposed that 
while the series impedance of the  top conductor is ade- 
quate for the low frequencies, the series impedance rises 
considerably above the value for a single conductor (at 
most by a factor of 2)  for high frequencies, due  to signifi- 
cant  concentration of the electromagnetic fields under 
the conductor. 

The values of a, p, etc., were calculated for Z, and 2(2,). 
It was assumed that  the measured values would fall be- 
tween the two  limits;  for the higher frequencies, the 
measured curves should approach  the theoretical  bound 
established by assuming 2(2 , )  as series impedance, and 
for lower frequencies, they should approach  the  bound 
calculated from 2, as series impedance. The frequency 
range of the measurements, 100 kc/sec to 30 Mc/sec was 
chosen since for 1 / 2  ounce copper, 6 becomes equal to 
the thickness ( d  0.7 mil of the copper at 13.8 Mc/sec). 
On either  side of this  point, one would see the effects of 
the “low” and “high” frequencies. 

Figure  6a shows the calculated curves for R. and 2R,. 
Measured values of R ,  are given using a technique de- 
scribed in the Appendix for measuring the transmission- 
line characteristics. As can be seen, for low frequencies 
the resistance values approach  the lower boundary cor- 
responding to only the  strip conductor loss, while for 
high frequencies the measured resistance value approaches 
the curve  corresponding to both  strip conductor and 
ground  plane losses. Due  to  the high W / h  ratio,  the 
ground-plane losses are  just  about  equal to those of the 
strip.  This implies a change  in the field pattern between 
the  strip conductor and  the  ground plane as  the frequency 
changes from  the “low” to the “high” range. 

The ground plane, of course, contributes less as  the 
ratio of W / h  decreases. It would undoubtedly  prove 
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Figure 6 Comparison  of line characteristics vs fre- 
quency:  calculated parameters vs experi- 
mental data. In all cases the calculations 
were  made  with series impedance/inch equal 
to Z, and 2Zs.  A represents measured point. 

Figure 6a Resistance vs frequency. 

Figure 6c  Alpha vs frequency. 

FREQUENCY  IN MC/S 

Figure 6d Beta us frequency. 

IFREQUENCY IN MC/S 

Figure 6 b  Reactance vs frequency. 

IFREQUENCY IN MC/S 

IFREQUENCY IN MC/S 

useful, as has been previously mentioned, to modify 
Eqs. (28) and (29) empirically, using measured character- 
istics, with W / h  as a parameter. Another use of the 
measurement technique would be to measure character- 
istics of small samples of line as a function of frequency, 
and then to use these data in the graphical subroutine to 
predict the behavior of long lines which cannot be built 
easily (an example of this will be given in a later section). 

Both the theoretical calculations and  the measured 
values of the resistance R, the reactance X,, the attenu- 
ation  constant a, the phase shift /3 and  the magnitude and 

Figure 6e  Magnitude and  angle of Z, vs frequency. 

IFREQUENCY IN MCISEC 

phase angle of the characteristic impedance 2, are plotted 
as a function of frequency (Figs. 6a through e). The value 
of R series (Fig. 6a) shows good correlation over the entire 
measured range (dc resistance measurement included) 59 
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Figure 7 Input waveform to coaxial line. Insert 
shows transmission line and cross  section 
f o r  coaxial line.  The input waveform  was 
simulated using a repeating  waveform  with 
the  same shaped  leading edge. 

but X, (Fig. 6b) correlates well only  in the higher fre- 
quency range and near the  dc value (zero frequency). 
Since wL,, >> X ,  for the high-frequency range, the mag- 
netic fields in  the dielectric will contribute virtually all 
of the series reactance in that range. 

Despite the deviation of X, from  the theoretical, the 
values of a,  p, Zo and O z ,  remain close to predicted values 
over the frequency range  shown (Figs. 6b, d and e), 
although the best correlation is in the higher frequency 
range. 

Prediction of ramp response of long sample from fre- 
quency measurements on a small sample 

The use of graphical  inputs to the computer  program in 
the calculation of pulse response is illustrated here. The 
points for graphs a, p, 2, and O z ,  were obtained on a 
small sample of 93-ohm microdot cable, 35 inches long, 
using the technique described in the Appendix. The im- 
pedance-measuring instrument was a 2 - g  Diagraph. These 
measurements were checked against the response of a 
921-inch sample of the same cable to see whether or  not 
the pulse response could be predicted from frequency 
measurements on  the small sample. 

60 Figure 7a shows the cross section and transmission line. 
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Figure 7b shows a trace of vin. The solid curve  in Fig. 8 
shows a trace of uOut. The curve vi,, was made  into  the 
leading edge of a repetitive waveform when formulated for 
the computer  program. The frequency measurements were 
also given as  input  data.  The points in Fig. 8 show the 
calculated output  and  the close agreement. 

Prediction of response to ramp from formula based on 
line geometry. 

Figure 9 shows the cross section, terminating  conditions, 
and point of observation on  the transmission line. 

A 2-ns-rise-time square wave was used in the program 
to correspond to the rise time of the waveform used in 
the test. The results can be seen in Fig. 10. The calculated 
waveforms for  factors of 1 and 1.3 are shown. The use 
of a factor, whose value varies between 1 and 2 depending 
on  the W / h  ratio, was discussed at the  end of the section 
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Figure 8 Output voltage across coaxial line. 

Figure 9 Cross  section and terminal conditions for 
strip line. 
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Figure 10 Ramp response of strip  transmission 
line:  comparison of theoretical results. 
The  ramp  response  was simulated using 
a  repeating  waveform  with the same shaped 
leading edge as shown in this Figure. 

describing the theoretical prediction of strip line charac- 
teristics. A factor of 1 gives an optimistic result, since this 
means neglecting the ground-plane losses; a factor of 1.3 
gives  pessimistic results since this exaggerates the ground- 
plane contribution to  the series impedance. In either case, 
the calculated output is a good approximation to  the 
measured output. A factor of 1.2 will probably give the 
best approximation. 

Effect of line geometry variations on response 

A prediction was made of pulse response on a long, termi- 
nated line. Figures 1 la and b show the shape of the  input 
waveform, the cross section, terminal conditions, the point 
of observation and  the  output waveform. (Note  that  the 
input waveform has been shifted down by its dc level since 
the level is not needed in the solution of the propagation 
equations).  First, the response was computed at  the center 
and  at  the terminal  end of the 22-inch line (Fig. lla). 
Next (Fig. l lb),  the width of the conductor was main- 
tained as 4 mils, but  the  conductor was moved closer to 
the ground plane, thereby decreasing the value of Z,, and 
resulting in a serious deterioration of the waveform. The 
signal deteriorates from 1 mV (at  the beginning of the 
line) to 0.6 mV in the worse case (for 2, = 20 ohms). 

Summary  of  results and conclusions 

1. For large W / h  ratios, the field concentrates under the 
strip line conductor at high frequencies but does not 
concentrate  there at low frequencies. This is due to a 
change in the field pattern as previously discussed. 

2. Since the concentration of fields in the ground plane 
under the strip  conductor causes an increase in the 

INPUT WAVEFORM 

0 2.5 5 60 

ITIME IN N S  

OBSERVATION POINT 
(INCHES) 

SIGNAL REMAINING 
(PERCENT) 

16 88 

32  75 

NOMINAL  CHARACTERISTIC  IMPEDANCE = 4 0  OHMS 

0.75 - 

0 . 5 0 -  

VI + 
J 

0.25- 

2 0.  
_I ~ 

5 
I I I I I 1 I I I 

0 2 4 6 8 IO 12 14 16 18 20 

Figure II Signal propagation as a function  of 
geometry. (a)  Waveform occurring at cen- 
ter of line and at terminating load. (b)  Efiect 
of varying h on response  at terminating load. 
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series impedance, it would be useful to modify empiri- 
cally the formula for series impedance using measured 
data  as a function of the W / h  ratio. For fast-rise-time 
pulses, the modification is simply a constant multiply- 
ing factor. 

3. The frequency response measurement of a small sample 
can be used to predict the response of a transmission 
line. 

4. The  equation for series impedance used in the formula 
subroutine gives good results, at least as  can be seen 
from the correlation  obtained  for the  ramp response. 

5. For  the same width of copper (i.e., the same per unit 
length), pulse transmission suffers serious distortion as 
the ratio of R / Z ,  increases. 

These results show application of the computer  program 
for specific examples. However, the versatility of the pro- 
gram lies in its subroutine  for expressing transmission line 
characteristics and terminal conditions, and in the ease 
of presenting data  to  the program. Although the formula 
subroutine now being used describes the strip-line case, 
actually any geometry of transmission line  can be de- 
scribed if a formula  can be derived for it. Using the graphi- 
cal  subroutine permits the characteristics of any line to 
be measured for a small sample (see Appendix for de- 
scription of such a technique) and  the results applied to 
a long line with complex terminal conditions. This ap- 
proach permits the user to go quickly and easily from 
complex formulas describing the transmission line char- 
acteristics in the frequency domain, to time-domain re- 
sponse. The  approach also allows the results of empirical 
modification of transmission line characteristics to be 
viewed in terms of changes in  the time-domain response. 

Appendix: Frequency  technique for determining 
transmission-line parameters 

Because of skin effects or complex geometry, it may be 
impossible to calculate transmission-line parameters from 
a formula. In such cases, the procedure described below 
can be used to investigate the design of a line by experi- 
mental means. This  method determines the parameters 
from open- and short-circuit input impedance measure- 
ments on a small sample of line made at several fre- 
quencies. The impedance data is processed by an IBM 
1620, which generates the characteristic impedance Z,, 
the resistance per unit length R ,  the conductance per unit 
length G, the impedance per unit length L, the capacitance 
per unit length C, the attenuation  constant CY, the phase 
shift 0, the phase velocity u+. If the precautions described 
below are observed in taking the  data,  the determination 
of the line parameters becomes a relatively quick and 
simple operation.  The  program  has been used successfully 
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Figure A-I Behavior of tan (2pl). 

Summary of theory 

The characteristic impedance of the line is  given  by 

zo = d z s c z o c ,  ( 1 4  

where Z,, is the short-circuit impedance, and Zo. is the 
open-circuit impedan~e.~ 

The propagation  constant is  given  by 

Because the tangent  subroutine in the computer  does 
not keep track of quadrants, a problem arises in the com- 
putation of 0, since the  quadrant of tan (2pc) must be 
known for each measurement in order to evaluate the 
angle 2pI. With the qualification that each new frequency 
must be higher than  the previous frequency, the program 
keeps track  as follows. If the last measurement was in 
an odd-numbered quadrant,  the computer  looks  for a 
change in the sign of the difference between the new read- 
ing and  the old. This means advance one  quadrant (Fig. 
Al). If the previous measurement was in an even num- 
bered quadrant, then a change in the sign of tan (2pl) 
means advance one quadrant.  The number of times one 
goes through  all four quadrants is also recorded. 

The easiest way to initialize a series of computations 
is to  start in the first quadrant. If the calculated value 
of tan (201) is positive, the angle will be calculated in 
Quadrant I; if negative, the computer will advance to 
Quadrant I1 and calculate the angle. In order that  the 
first frequency used be in the first or second quadrant, 
the criterion is 2pl < P .  The increment for the change 
in 201 must be  less than ~ / 2 ,  and therefore A(2pI) s / 2 .  



Given I ,  an approximate value for f can be calculated 
from 

The maximum permissible value of initial frequency is 

and  the maximum permissible frequency increment per- 
mitted  for  subsequent calculations becomes 

If the length of the line sample is such that  the lowest 
frequency of interest is  well above (fiJmax, then  one may 
estimate the  quadrant  and have the program  calculate 
the parameters and print out  the  quadrant  in which the 
calculation took place. Using  this  technique, one may 
find the initializing quadrant  and may then proceed. 

It is important to note that (especially for lower fre- 
quencies) the value of G may be extremely small for a 
good  material and  that  the inaccuracies of the measured 
data will not yield accurate values of G (indeed G may 

be negative). To get the best results, a few measurements 
made over a frequency range and plotted on graph  paper 
are desirable because of errors in the experimental set-up. 
The values of a, 0, and 2, are  not affected nearly as  much 
by experimental errors  as  are R ,  G ,  L, and C because the 
latter parameters are calculated from  the former and 
cumulative errors  are built up. 
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