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C. L. Bertin

Transmission-Line Response Using

Frequency Techniques

Abstract: Frequency-domain analysis of transmission-line pulse response is presented. A computer program
is used to evaluate the response, using subroutines to describe the line characteristics and terminal condi-
tions. The program is applicable to lines of any cross section in which the TEM mode of propagation exists.

The line characteristics are obtained from either formula prediction or frequency measurements on small
samples. Because of skin effects or complex geometry, these characteristics can be extremely difficult to cal-
culate, and so an experimental procedure is adopted for determining these parameters. The computer-pro-

gram results are compared to measured values.

Symbols

A, constant term in Fourier series representation

A, nth cosine coefficient in Fourier series representation

B, nth sine coefficient in Fourier series representation

C... capacitance per unit length obtained from conformal
mapping results

C. nth value of amplitude and phase spectrum

1., current phasor corresponding to cosine coefficient 4,

I,. current phasor corresponding to sine coefficient B,

I total length of delay line

L.,. inductance per unit length obtained from conformal
mapping results

P.. transmission line equation coefficient corresponding
to cosine coefficient A,

P,, transmission line equation coefficient corresponding
to sine coeflicient B,

Introduction

This paper gives a computer-programmed approach to
the analysis of transmission-line propagation using fre-
quency-domain techniques. The characteristics of the
transmission line can be predicted by formula, or meas-
ured on a small sample, at several frequencies.

Formula prediction is a powerful tool because it can
be used to test the feasibility of specific designs, or to vary
parameters to determine the effect on the pulse response,
or even to try empirical modifications of a formula repre-
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Q.. transmission line equation coefficient corresponding
to cosine coefficient A,

Q.. transmission line equation coefficient corresponding
to sine coefficient B,

R, equals \/L__/C.. .

V.. voltage phasor corresponding to cosine coefficient A4,

V. voltage phasor corresponding to sine coefficient B,

Z, magnitude of characteristic impedance in ohms

Z, series impedance due to skin effect

a  attenuation constant in nepers/unit length

B phase shift in radians/unit length

Y propagation constant

0 depth of penetration

6;, phase angle of the characteristic impedance in
radians

sentation for a given problem to find the most desirable
solution. For certain cross-sectional geometries, it may
be very difficult (if not impossible) to write a formula
describing the transmission line characteristics. For param-
eter measurement at several frequencies on a small sample,
it is possible to predict the pulse response of long lines.
The Appendix briefly describes the technique used in this
article.

Wigington and Nahman' have successfully analyzed the




pulse response of coaxial cables, assuming no dielectric
losses and a series skin effect impedance proportional to
the square root of the frequency. This analysis can be
extended to a limited number of other geometries; how-
ever, propagating arbitrary waveforms on transmission
lines with arbitrary terminations and varying these termi-
nations to achieve compensating effects due to lossy lines
can best be handled using computer techniques.

The line characteristics and terminal conditions are
subroutines in the computer program. It is possible to
analyze any type of line (e.g., strip or coaxial) and any
type of termination merely by inserting the corresponding
subroutines. Because of this versatility, the line character-
istics can be given in terms of a formula or in graphic
form.

The input waveform can easily be described to the com-
puter; any waveform of engineering interest may be used
and the response anywhere on the line calculated. The
waveform is described by coordinate points which need
not be equally spaced in time. In the machine computation
a straight line is assumed to exist between points.

The paper begins with a general outline of the computer
program, followed by a description of the operation of
the program. A brief section is included on the mathe-
matical background describing the decomposition into
Fourier series, the calculation of the transmission-line
equation coefficients in the frequency domain, and the
reassembly of the harmonics modified by the line. Also,
a formula which has been used successfully to predict
pulse response in unsymmetrical strip lines is discussed.
The calculated pulse response is compared to the meas-
ured pulse response for line characteristics obtained from
the unsymmetrical strip line formula and from frequency
measurements on a small sample. Also, line characteristics
calculated from a strip line formula are compared to
measured characteristics using a frequency technique de-
scribed in the Appendix.

Computer program

The program can be divided into four parts:

1) Fourier decomposition of the input waveform.

2) Generation of transmission line characteristics, and
load and generator impedances, as a function of fre-
quency.

3) Solving for the phasor voltages and currents on the
transmission line at the point of observation.

4) Construction of the output as a function of time by
reassembling the harmonics in the time domain.

Any waveform of practical value in electrical engineer-
ing can be presented as input data [f(¢) of Fig. 1]. Part M!
(Fig. 1) of the program will analyze the waveforms and
print out the coefficients of the sine and cosine terms, the
amplitude spectrum and the phase spectrum. By selecting

the proper option, it is possible to reconstruct the input
waveform using the number of harmonics requested, to
see how well the waveform was approximated.

In order to determine the effect of the transmission line
on each frequency, the program begins execution of the
block of instructions called M2. This block calls upon
subroutine S/ for the evaluation of , 8, Z,, and 8,, using
the S7 input data, and upon subroutine S2 for the evalu-
ation of terminal conditions and upon the input tape for
the total length of the line and the point of observation.
The program then executes the instructions in block M3
to get the output. At this point, the programmer has the
option of returning to the beginning of block M/ and
analyzing another function of time, or of going to block
M2 and changing the transmission line description for
the same f(¢), or of terminating the run.

The computer program is made quite versatile by the
use of subroutines for the description of line character-
istics and terminal conditions. A subroutine S/ can be
written for each type of transmission line. Parameters of
each type of line can be changed by varying the input
data. A printout of «, 8, Z, and 6,, as a function of fre-
quency is part of the output data, completely characteriz-
ing the line in the frequency domain. The author has used
two different S subroutines: one accepts data in the form
of a description of the geometry of the transmission line
and calculates the characteristics by formula; the other
accepts measured characteristics as points on a log-log
graph and interpolates between the points to evaluate
these characteristics at the desired frequencies. Subroutine
S2 describes the terminal conditions. Here too, the inputs
can vary the impedances for any type of termination. Sub-
routines S7 and S2 can be expressed in formula or in
graphical form.*

Special attention has been given to making the program
as easy to use as possible by simplifying the description
of input quantities. If the whole waveform is approxi-
mated by straight lines of arbitrary length, then giving
the coordinate points of these lines will describe the input
waveform completely.

The inputs to SI will differ, depending on whether one
has a formula or a graphical subroutine. For the formula
subroutine pertaining to strip-type lines, the line is easily
described on one data card in terms of seven quantities:

1) conductor thickness (d)

2) conductor width (W)

3) permeability of free space (u,)

4) conductivity (o)

5) inductance/unit length, from conformal mapping re-
sults (L, )

* There can be more than two subroutines if desired. These subrou-
tines make it possible to solve a wide range of problems involving
many different types of lines and terminations.
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OUTPUT WAVEFORM
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M1 @ M2

Figure 1 Flow chart of computer program.

6) capacitance/unit length, from conformal mapping re-
sults (C, )

7) factor (introduces ground plane series losses as func-
tion of W/ ratio)

(Note: d, W, o and factor are needed to calculate skin
effect losses).

When using a graphical description of «, 8, Z,, and
6z,, the same technique as for the description of f(¢) of
approximating the curve by straight-line segments is used.
The curves, however, are assumed to be given on log-log
graph paper and the characteristics plotted as a function
of frequency.

A parallel RC circuit has been assumed adequate to
describe terminal impedance conditions. This is easily
programmed (subroutine S2) with R and C as the input
data. The subroutine may also be written for far more
complex terminal impedance conditions.

At this point, a brief example will be given to illustrate
the ease with which a problem can be presented to the
machine. The formula subroutine is used to describe the
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line parameters and another formula subroutine to de-
scribe the terminal conditions.

The triangular waveform shown in Fig. 2 is applied to
the illustrated transmission line. On the first data card
is entered the number of harmonics desired, the period
of the input f(¢), the number of cards to describe the input,
and the increment Ar to be used in the final reassembly.
The triangular waveform can be described by three sets
of coordinates, one set per data card. The total length /
and the point of observation x occupy another data card,
the cross section (using the formula subroutine S7) takes
one more card, and terminal conditions take one card for
each end of the line. The total number of cards for the
problem is eight.

Mathematical background

» Fourier series decomposition of input waveform

The input waveform f(r) can be expressed as a Fourier
series in the following two ways: In terms of sines and
cosines,
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2
f(t)=%+ Z A"cos—;@t—l— ZB,,sin%’;Et,
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where
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7
A, = %j; f(£) cos 2—7;” tdt (n > 0) (3)

B —ngf(t)sinz'r—ntdt (n > 0)
n T o T

(n is an integer) (4)

or, in terms of exponentials,

) = 3 G, 0

n=—o0

The relationships between Eqgs. (5) and (1) are:
forn =0, Co = A,/2

A’ﬂ - jB’ﬂ
2

=3V 4.+ B)/—tan"' B,/ 4,

4. + B,

forn > 0 C, =

and C_, = =3V £ & B/tan™' B,/ A,.

The integrals in Egs. (2), (3), and (4) can be evaluated
between time # and ¢, if one assumes that the voltage
changes linearly between the two points. The contribution
of any straight-line segment to the coefficient may then
be calculated by substituting the coordinates of its two
end points in the integrated equation. By approximating
a given curve by a series of broken lines, one may obtain
the Fourier series coefficients by summing the contribu-
tion over all segments.

By programming the integrated equation for a typical
segment, one can approximate any curve by straight-line
segments of any length merely by giving coordinate points
as input data and summing over the contribution of each
segment.

o Transmission line equations

In order to program the transmission-line equations, they
must be rewritten in terms of real and imaginary parts;
this has been done for all the equations. Once the propa-
gation characteristics «, 8, and Z, and the load Z; are
known as a function of frequency, the input impedance
of the line can be calculated for the fundamental frequency
and all harmonics from

—— |

Vmax ’

VOLTAGE —

TIME ——

(a)

]

(b)

Figure 2 Waveform and line characteristics. Note
that p, and o are known, and L., and C..,
can be found from conformal mapping re-
sults.)

k —2vl
Z, = Zo{li_Le }’

1 — ke ™

Z, — Z,

s 6
Z,+ Z, ©

where k; =

and / is shown in Fig. 2. The voltage V in Fig. 2 represents
the cosine (or sine) coefficient obtained from Fourier
analysis. The voltage

Z;

= 7
Z, + Zg @

\£

and is calculated for each frequency, for both sine and
cosine coefficients. The values of the transmission equa-
tion coefficients P and Q are found from

P= %(1 + %)v (8)
and
Q= %(1 - %)v ©)

The phasor representation of voltage and current at a
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particular frequency is given below:

V = P *% % L Qe*%e’™ (10)
_ E —az_—ifz 2 az Bz
=z e z.c ¢ - (11)

These are the transmission-line equations in phasor
form.

& Reassembly of harmonics

After calculating the phasor voltage and current equations
for each frequency, one may obtain the outputs as func-
tions of time. Equations (10) and (11) represent phasor
equations for a particular frequency and for either cosine
or sine coefficients. For the cosine coefficients, one multi-
plies the phasor equation by e’“‘, takes the real part, and
sums it over the fundamental plus all harmonics to get
the voltage at time ¢; for the sine coefficients, one follows
the same procedure, except that the imaginary part is
used.

As can be seen from the list of symbols, a subscript ¢
refers to a phasor resulting from a cosine coefficient, while
s is for one pertaining to the sine; n refers to the particular
frequency component (n = 1 is the fundamental; n = 2
is the first harmonic, etc.) Equations (10) and (11) can be
rewritten for the kth cosine coefficient as

vck — PCke—akze—iﬁkx + QCkentheiﬁkz (12)

and

Ik — he—akze—iﬂkx . Q_ck ealcxe:flskz (13)
Z,, Zy,

For kth sine coefficient, they are rewritten as

Vi = Poe e Qe (14)

and

Ik — he—akze*iﬁkx _ &keakzeiﬂu (15)
Z,, Z,,

The voltage and current at the point x can now be re-
solved as a function of time. The outputs will be due to
the contribution of both cosinusoidal and sinusoidal
harmonics; thus,

v(t) = v.(t) + v,(r) and (16)
i) = i,(1) + is(1) (17

at each time ¢, and point of observation x, the summation
of the contribution of each frequency (k = 1,2, --- , N)
will result in an output.

The contribution of the cosinusoids to the voltage is

N

v.() = D {Pue™ ™ cos (kant — Bix + 0p.,)

k=1

+ Qo™ cos (kant + Bix + 04..)}. (18)
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The contribution of the sinusoids to the voltage is

v(f) = D {Pue” " sin (kwyt — Bix + 6p,)
+ Qe sin (kont + Bix + 0g.,)} - (19)

Similarly, the currents are found to be:

() = 2 {P—“—k e

k=1 0%

cos (kwit — Bux + [0p.. — 02..))

e

> e+ukz cos (kwlt + IBk_x —+ [0061‘ - 02,;,;‘)} (20)

and

Y fP
=2 {—"‘e“’” sin (ko — Bux + [0, — 82,,))

k=1 \Z,

— Qs e ¥ sin (kwt + Bex + [80,. — 02%])}- (21)
Zo,

The voltage and current waveforms can be found by
substituting Eq. (18) and (19) into Eq. (16) and Eqgs. (20)
and (21) into Eq. (17).

In order to solve the above equations, it is necessary
to specify o, 8, Z, and 8, as a function of frequency. In
the computer program this is done by a subroutine which
can accept a graphical input, i.e., accept the line param-
eters from log-log graphical plots, or it can accept a for-
mula input, i.e., calculate the parameters from input data
describing the cross-sectional area of the line.

Theoretical prediction of strip-line characteristics

For strip lines (Fig. 3) the formulas for the propagation
constant y and characteristic impedance Z, are given by

T = V(R + jX.)(C0n) (22)

Zo= VR + jX)/ieCon (G =0), (23)

where the dielectric losses are assumed to be negligible
(for epoxy glass this assumption holds into the kilomega-
cycle range). The capacitance per unit length can be as-
sumed constant over the frequency range; however, the
series resistance and inductance vary as a function of fre-
quency because of skin effect.

Figure 3 Strip line cross section.
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TO INFINITY

DIELECTRIC:

Figure 4 Conductor coating an infinite conductor.

For frequencies where the depth of penetration § is
much smaller than the thickness d, the series impedance
due to skin-effect losses can be given by the well-known
relationship

R, R
Z, = W + J W (24)
where
R, = \/7r,uf/a.

One would like to have a formula which would hold
reasonably well over the entire frequency range. As in
Ref. 2, we assume (as in Fig. 4) a conductor of infinite
thickness with conductivity o,, coated with a conductor
having conductivity o;.

Uniform fields are assumed to exist at the surface of
Conductor 1. As the conductivity ¢, goes to zero, Z, in
Conductor 1 can be expressed as

Z, = (1 + HR., coth 7d (¢ = a1)

in ohms per unit length per unit width. For a strip of
width W,

Z, = a+5 R, coth 7d, (25)
w

where

R., = \/’ﬁ
[

5= 1 (26)

\/7rf/.ur
and
;=1 7: /| (27)

The series resistance and reactive impedance due to skin
effect can be written as

_ Ry, sinh (2d/8) + sin (2d/6)} (28)
w \cosh (2d/8) — cos (2d/6)

s

and

3

_ R, {sinh (2d/8) — sin (2d/6)} (29)
w \cosh (2d/8) — cos (2d/8))
The next step is to examine Egs. (28) and (29) at high

and low frequencies. For high frequencies (d > 6), Egs.
(28) and (29) can be written as

R.. 1 Jru
Ro= "N =1 (30)
and

R 1
X, = 7 V= W %f”z- 31)

These are the same results as those of Eq. (24). For
fast-rise-time pulses, Egs. (30) and (31) are adequate to
give the desired response. For low frequencies (d << ),
one finds that as { approaches zero,

R, = 1/Wod = dc resistance per unit length (32)
of the strip

and

X, = 0. (33)

These are the results for dc current flow. The value of R
in Egs. (22) and (23) is equal to R,. The total value of X, is

X, = wlL,, + X., (34)

where the L,,, term is the inductance per unit length due
to the energy stored in the magnetic field between the
strip line conductor and the ground plane. The value of
X, > wL,, for the lower frequencies, but wL.,, > X, for
the higher frequency range. The values of L, (and also
C.) can be found from curves of the results of conformal
mappings for static fields due to lossless conductors, be-
cause of the similarity between the static field distribution
and dynamic distribution at high frequency for lossy
conductors.

The formulas giving series resistance and reactive
impedance assume that the E and H fields are uniform
across the width W of the conductor. This assumption
becomes less valid as W/h ratio decreases. Comparing
actual responses with calculated responses, one finds that
the results are useful down to W/h & 1. For the high
frequencies, the current in the ground plane will not
spread out far beyond the width W of the strip line,
especially for W/h > 5. Therefore, the series impedance
Z, will be higher than that predicted, and this must be re-
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——————— W/h =10 OR GREATER, FACTOR = 2,0
2Rs FROM EQUATION 34

ACTUAL Rg FOR DIFFERENT

————— W/h=5, FACTOR=1.6
W/h RATIOS; SAME W

— e W/h = 2, FACTOR = 1.4

W/h =1 OR LESS, FACTOR = {
Rg FROM EQUATION 34

———————

o
_;

Ry —»

Figure 5 Series resistance plotied vs frequency to
illustrate skin effect.

flected in the calculation. A good discussion of ground
current spreading can be found in Ref. 3.

Frequency measurements of transmission-line param-
eters were carried out using the technique given in the
Appendix. These will be discussed in detail in the next
section. The contribution of the ground plane to the series
resistance can best be illustrated by showing the series
resistance R, vs frequency (see Fig. 5). Curves (1) and (4)
show the calculated R, and 2R,, respectively, as given by
Eq. (28). Curves (2) and (3) show the actual R, for W/h= 2
and 5, respectively. Both curves (2) and (3) coincide with
(1) for the low frequency range, since the current in a
lossy ground plane spreads throughout the plane at low
frequencies, so that the resistance is negligible compared
to that of the conductor. For high frequencies, the current
no longer spreads in the lossy ground plane but concen-
trates under the strip conductor. In other words, there
is a change in the field distribution in going from low to
high frequencies (low frequency means 6 > d, and high
frequency means & << d). The current in the plane ap-
pears to behave as if at low frequencies the path chosen
minimizes the resistance, while for high frequencies the
path chosen minimizes the inductance. The degree of
concentration at high frequencies varies depending on
the W/h ratio; it increases (higher resistance per unit
length) for higher W/h ratios. To have formula (28) hold
well (especially for high W/h ratio) over the entire fre-
quency range, empirical modification is necessary. How-
ever, for most conductor thicknesses, the value of f for
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6 = d is low enough so that the modification involves
only the same constant multiplying factor for all fre-
quencies. [Example: For 1/2 ounce copper at f = 13.8 Mc
for d = & = 0.7 mil; while for one-ounce copper, and

= 3.45 Mc for 6 = d =2 1.4 mils.] This means that for
fast-rise-time pulses (150 ns rise time or less, for one-
ounce copper) one can select the period of the waveform
such that the fundamental harmonic is above the § = d,
so that multiplication by a constant factor between 1.0
and 2.0 in value (depending on W/h) is enough to give
a very good approximation. (This will be illustrated in
the discussion of Fig. 10).

Results and conclusions

e Comparison of line characteristics vs frequency from
formula predictions with measured characteristics

A line was built with the cross section shown in Fig. 6
(W/h ratio of 8.6). Predictions of «, 8, Z, and 6,, were
based on this cross-sectional geometry using Eqs. (28)
and (29). Because W/h was large, it was supposed that
while the series impedance of the top conductor is ade-
quate for the low frequencies, the series impedance rises
considerably above the value for a single conductor (at
most by a factor of 2) for high frequencies, due to signifi-
cant concentration of the electromagnetic fields under
the conductor.

The values of , 3, etc., were calculated for Z, and 2(Z)).
It was assumed that the measured values would fall be-
tween the two limits; for the higher frequencies, the
measured curves should approach the theoretical bound
established by assuming 2(Z,) as series impedance, and
for lower frequencies, they should approach the bound
calculated from Z, as series impedance. The frequency
range of the measurements, 100 kc/sec to 30 Mc/sec was
chosen since for 1/2 ounce copper, & becomes equal to
the thickness (¢ ~ 0.7 mil of the copper at 13.8 Mc/sec).
On either side of this point, one would see the effects of
the “low” and “high” frequencies.

Figure 6a shows the calculated curves for R, and 2R,.
Measured values of R, are given using a technique de-
scribed in the Appendix for measuring the transmission-
line characteristics. As can be seen, for low frequencies
the resistance values approach the lower boundary cor-
responding to only the strip conductor loss, while for
high frequencies the measured resistance value approaches
the curve corresponding to both strip conductor and
ground plane losses. Due to the high W/h ratio, the
ground-plane losses are just about equal to those of the
strip. This implies a change in the field pattern between
the strip conductor and the ground plane as the frequency
changes from the “low” to the “high” range.

The ground plane, of course, contributes less as the
ratio of W/h decreases. It would undoubtedly prove




Figure 6 Comparison of line characteristics vs fre-
quency: calculated parameters vs experi-
mental data. In all cases the calculations
were made with series impedance/inch equal
to Zs and 2Zs. A represents measured point.

Figure 6a Resistance vs frequency.
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Figure 6b Reactance vs frequency.
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useful, as has been previously mentioned, to modify
Eqgs. (28) and (29) empirically, using measured character-
istics, with W/h as a parameter, Another use of the
measurement technique would be to measure character-
istics of small samples of line as a function of frequency,
and then to use these data in the graphical subroutine to
predict the behavior of long lines which cannot be built
easily (an example of this will be given in a later section).

Both the theoretical calculations and the measured
values of the resistance R, the reactance X, the attenu-
ation constant «, the phase shift 8 and the magnitude and

0.0l 4601 2 4610 2 4610 2 46100 2 41000

FREQUENCY IN MC/S

Figure 6d Beta vs frequency.
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Figure 6e Magnitude and angle of Z, vs frequency.
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phase angle of the characteristic impedance Z, are plotted
as a function of frequency (Figs. 6a through €). The value
of R series (Fig. 6a) shows good correlation over the entire
measured range (dc resistance measurement included)
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Figure 7 Input waveform to coaxial line. Insert
shows transmission line and cross section
for coaxial line. The input waveform was
simulated using a repeating waveform with
the same shaped leading edge.

but X; (Fig. 6b) correlates well only in the higher fre-
quency range and near the dc value (zero frequency).
Since wL,, > X, for the high-frequency range, the mag-
netic fields in the dielectric will contribute virtually all
of the series reactance in that range.

Despite the deviation of X, from the theoretical, the
values of , 8, Z, and 6, remain close to predicted values
over the frequency range shown (Figs. 6b, d and e),
although the best correlation is in the higher frequency
range.

¢ Prediction of ramp response of long sample from fre-
quency measurements on a small sample

The use of graphical inputs to the computer program in
the calculation of pulse response is illustrated here. The
points for graphs «, 8, Z, and 6;, were obtained on a
small sample of 93-ohm microdot cable, 35 inches long,
using the technique described in the Appendix. The im-
pedance-measuring instrument was a Z-g Diagraph. These
measurements were checked against the response of a
921-inch sample of the same cable to see whether or not
the pulse response could be predicted from frequency
measurements on the small sample.

Figure 7a shows the cross section and transmission line.
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Figure 7b shows a trace of v;,. The solid curve in Fig. 8
shows a trace of v,,,. The curve v, was made into the
leading edge of a repetitive waveform when formulated for
the computer program. The frequency measurements were
also given as input data. The points in Fig. 8 show the
calculated output and the close agreement.

o Prediction of response to ramp from formula based on
line geometry.

Figure 9 shows the cross section, terminating conditions,
and point of observation on the transmission line.

A 2-ns-rise-time square wave was used in the program
to correspond to the rise time of the waveform used in
the test. The results can be seen in Fig. 10. The calculated
waveforms for factors of 1 and 1.3 are shown. The use
of a factor, whose value varies between 1 and 2 depending
on the W/h ratio, was discussed at the end of the section

OUTPUT ACROSS T =92i"
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Figure 8 Ovutput voltage across coaxial line.

Figure 9 Cross section and terminal conditions for
strip line.
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Figure 10 Ramp response of strip transmission
line: comparison of theoretical results.
The ramp response was simulated using
a repeating waveform with the same shaped
leading edge as shown in this Figure.

describing the theoretical prediction of strip line charac-
teristics. A factor of 1 gives an optimistic result, since this
means neglecting the ground-plane losses; a factor of 1.3
gives pessimistic results since this exaggerates the ground-
plane contribution to the series impedance. In either case,
the calculated output is a good approximation to the
measured output. A factor of 1.2 will probably give the
best approximation.

e Effect of line geometry variations on response

A prediction was made of pulse response on a long, termi-
nated line. Figures 11a and b show the shape of the input
waveform, the cross section, terminal conditions, the point
of observation and the output waveform. (Note that the
input waveform has been shifted down by its dc level since
the level is not needed in the solution of the propagation
equations). First, the response was computed at the center
and at the terminal end of the 22-inch line (Fig. 11a).
Next (Fig. 11b), the width of the conductor was main-
tained as 4 mils, but the conductor was moved closer to
the ground plane, thereby decreasing the value of Z,, and
resulting in a serious deterioration of the waveform. The
signal deteriorates from 1 mV (at the beginning of the
line) to 0.6 mV in the worse case (for Z, = 20 ohms).

Summary of results and conclusions

1. For large W/h ratios, the field concentrates under the
strip line conductor at high frequencies but does not
concentrate there at low frequencies. This is due to a
change in the field pattern as previously discussed.

2. Since the concentration of fields in the ground plane
under the strip conductor causes an increase in the
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series impedance, it would be useful to modify empiri-
cally the formula for series impedance using measured
data as a function of the W/h ratio. For fast-rise-time
pulses, the modification is simply a constant multiply-
ing factor.

3. The frequency response measurement of a small sample
can be used to predict the response of a transmission
line.

4. The equation for series impedance used in the formula
subroutine gives good results, at least as can be seen
from the correlation obtained for the ramp response.

5. For the same width of copper (i.e., the same per unit
length), pulse transmission suffers serious distortion as
the ratio of R/Z, increases.

These results show application of the computer program
for specific examples. However, the versatility of the pro-
gram lies in its subroutine for expressing transmission line
characteristics and terminal conditions, and in the ease
of presenting data to the program. Although the formula
subroutine now being used describes the strip-line case,
actually any geometry of transmission line can be de-
scribed if a formula can be derived for it. Using the graphi-
cal subroutine permits the characteristics of any line to
be measured for a small sample (see Appendix for de-
scription of such a technique) and the results applied to
a long line with complex terminal conditions. This ap-
proach permits the user to go quickly and easily from
complex formulas describing the transmission line char-
acteristics in the frequency domain, to time-domain re-
sponse. The approach also allows the results of empirical
modification of transmission line characteristics to be
viewed in terms of changes in the time-domain response.

Appendix: Frequency technique for determining
transmission-line parameters

Because of skin effects or complex geometry, it may be
impossible to calculate transmission-line parameters from
a formula. In such cases, the procedure described below
can be used to investigate the design of a line by experi-
mental means. This method determines the parameters
from open- and short-circuit input impedance measure-
ments on a small sample of line made at several fre-
quencies. The impedance data is processed by an IBM
1620, which generates the characteristic impedance Z,,
the resistance per unit length R, the conductance per unit
length G, the impedance per unit length L, the capacitance
per unit length C, the attenuation constant «, the phase
shift 3, the phase velocity v,. If the precautions described
below are observed in taking the data, the determination
of the line parameters becomes a relatively quick and
simple operation. The program has been used successfully
to evaluate many transmission-line measurements.

C. L. BERTIN
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Figure A-1 Behavior of tan (23lI).

* Summary of theory
The characteristic impedance of the line is given by
ZO = vZacZOC’ (IA)

where Z,, is the short-circuit impedance, and Z,, is the
open-circuit impedance.*
The propagation constant is given by

tanhyl = V'z, /7. (24)

Because the tangent subroutine in the computer does
not keep track of quadrants, a problem arises in the com-
putation of 8, since the quadrant of tan (23/) must be
known for each measurement in order to evaluate the
angle 23/. With the qualification that each new frequency
must be higher than the previous frequency, the program
keeps track as follows. If the last measurement was in
an odd-numbered quadrant, the computer looks for a
change in the sign of the difference between the new read-
ing and the old. This means advance one quadrant (Fig.
Al). If the previous measurement was in an even num-
bered quadrant, then a change in the sign of tan (280)
means advance one quadrant. The number of times one
goes through all four quadrants is also recorded.

The easiest way to initialize a series of computations
is to start in the first quadrant. If the calculated value
of tan (28!) is positive, the angle will be calculated in
Quadrant I; if negative, the computer will advance to
Quadrant II and calculate the angle. In order that the
first frequency used be in the first or second quadrant,
the criterion is 238/ < w. The increment for the change
in 28! must be less than /2, and therefore A(280) = x/2.




Given /, an approximate value for f can be calculated
from

B = 2xflv, = 21/ V e,/Cs

or = 2rfv/LC

and 50 4xf\/ [ = 4nf( \/:l/Cd,) < .
The maximum permissible value of initial frequency is
Co _ _ 1

4aVe 4V c

and the maximum permissible frequency increment per-
mitted for subsequent calculations becomes

(fin)max =

c 1
A = —2m = L.
( 8ive, S8V IcC

If the length of the line sample is such that the lowest
frequency of interest is well above (f;,)..«» then one may
estimate the quadrant and have the program calculate
the parameters and print out the quadrant in which the
calculation took place. Using this technique, one may
find the initializing quadrant and may then proceed.

It is important to note that (especially for lower fre-
quencies) the value of G may be extremely small for a
good material and that the inaccuracies of the measured
data will not yield accurate values of G (indeed G may

be negative). To get the best results, a few measurements
made over a frequency range and plotted on graph paper
are desirable because of errors in the experimental set-up.
The values of «, 3, and Z, are not affected nearly as much
by experimental errors as are R, G, L, and C because the
latter parameters are calculated from the former and
cumulative errors are built up.
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