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Further Results in Polynomial Addressing

The problem of efficiently retrieving documents and other
information from large-scale memory and file systems
has generated much renewed interest in the comparatively
old area of “hash-" or key-addressing. Among the more
promising approaches taken has been the application of
some results of the theory of group codes, as typified
by the papers of Schay and Raver' and of Hanan and
Palermo.? Common to the work of these authors and
some of the earlier work of Muroga® is the idea of choosing
a group code of the minimum-distance type and assigning
addresses to keys according to the group-code coset in
which particular keys fall. The most interesting class of
group codes from an implementation point of view is
that in which encoding and decoding is accomplished by
means of shift-registers for polynomial multiplication and
division. We shall restrict our attention to this class and
shall refer to the use of such codes as polynomial addressing.

Partly for clarity of presentation, but primarily because
of far greater ease of implementation, we shall restrict
our discussion to binary systems and shall not consider
higher order systems such as that presented in Ref, 1.
It will also be assumed that the reader is familiar with
Ref. 1 and hence no general discussion of polynomial
addressing will be included.

In this Letter we first point out that all polynomials
used to form m-bit addresses will insure that no pair
of keys whose differing positions are within a span of m
bits will ever be assigned the same address. We will then
illustrate that, for fixed m, a burst-error-correcting code
may often handle more significant classes of key clusters
than the minimum-distance codes used in Refs. 1 to 3.

Polynomial addressing

Let us consider a set of keys, each of which is specified by a
sequence of n binary digits. We may then use polynomials
with binary coefficients to represent these sequences in
a systematic manner. For instance, if # = 10 and the
ten binary digits are 1 1 1 0 0 0 1 1 0 1,
the polynomial associated with this sequence will be
x* 4 x* 4 x" 4+ x* + x* + 1. In general, the n-bit binary

sequence may be written as A,_;, A,_ -+ A;, Ay, and
its polynomial representation as

A(x) = An—IXvn_1 _I" An—zAXn’2 + v + A1x + Ao.

These coefficients are considered to belong to the field
of two elements. In this field, addition and multiplication
are specified by the following addition and multiplication
tables:
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In this manner, each key has its associated polynomial, and
different keys have different polynomial representations.

Now suppose there is another polynomial M(x) of
degree m, where m < n; we may divide each polynomial
A(x) by M(x) and obtain a remainder R(x). The division
process can be carried out in ordinary manner. For
instance, if A(x) = x° + x*+ x* + 2+ x¥* 4 1 and
M(x) = x° 4~ 1, then
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In general, A(x) = O(x)M(x) + R(x), where the degree
r of R(x) is less than the degree m of M(x). The key-to-
address transformation we wish to explore in detail is
the transformation 4(x) — R(x).

1t is clear that among all such transformations, choosing
M(x) = x7 -+ 1, will permit the simplest implementation.
Shown in Fig. 1 is a circuit utilizing a single delay line
and a single half-adder which achieves this interlacing of
m parity checks. Control circuitry is not shown.

In choosing among polynomials of the form

" 4 Cm‘lxma + C,,,ﬁQx""z + -+ G(C; = 0, 1),

some thought should be given as to the types of key
clusters they will “break up”. It can be shown that, if
C, = 1, the addressing system will break up clusters
in which the difference between any pair of keys can be
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spanned by m bits. This is equivalent to the statement
that, if C, = 1, then M(x) is a generator polynomial of
an error-detecting code that detects all single-burst errors
of length not greater than m. A proof of the latter state-
ment is given in Ref. 4.

Use of burst-error-correcting codes

Previous workers™® have considered polynomials which
correspond to random-error correcting codes and which,
therefore, have the property that they will break up clusters
in which two Keys differ in no more than some specified
number of positions. We now strongly suggest the con-
sideration of polynomials which correspond to codes
that permit the correction of burst errors. These will
have the property that all clusters will be broken up
provided the positions in which a pair of keys differs
can be covered by two spans of a specified number of bits.

For example, let us consider the following case. The
memory system to be addressed consists of 2** locations.
Using a Bose-Chaudhuri code® which permits the cor-
rection of four random errors, we obtain the polynomial

M) =& +x+ D+ x4+ +x+1)
W+ DE ).

Using M, (x), keys of up to 63 bits can be accommodated
with pairs of keys differing in 8 or fewer positions never
being assigned the same address. Use of a Fire burst-
error correcting code® in this case enables keys of effectively
unlimited length (up to 7665 bits) to be handled without
duplication of address whenever a pair of keys differs
in at most 16 positions, spannable by two blocks of
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Figure 1 A simple circuit for polynomial address-
ing.

8 bits. A generator polynomial for such a code is

My(x) = " + D& + x* + 1).

Instrumentation of either case can be accomplished
through the use of a binary shift register with m stages and
several logic units.” The cost of any binary polynomial
addressing circuit is thus quite reasonable, the circuit of
Fig. 1 being the most inexpensive of all.
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