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Further Results  in  Polynomial  Addressing 

The problem of  efficiently retrieving documents and  other 
information from large-scale memory and file systems 
has generated much renewed interest in  the comparatively 
old area of  "hash-" or key-addressing. Among the more 
promising approaches  taken has been the application of 
some results of the  theory of group codes, as typified 
by the papers of Schay and Raverl and of Hanan  and 
Palermo.2 Common to the work of these authors  and 
some of the earlier work of Muroga3 is the idea of choosing 
a group  code of the minimum-distance type and assigning 
addresses to keys according to  the group-code coset in 
which particular keys fall. The most interesting class of 
group codes from an implementation point of  view is 
that  in which encoding and decoding is accomplished by 
means of shift-registers for polynomial multiplication and 
division. We shall restrict our attention  to this class and 
shall refer to  the use  of such codes as polynomial addressing. 

Partly for clarity of presentation, but primarily because 
of far greater ease of implementation, we shall restrict 
our discussion to binary systems and shall not consider 
higher order systems such as  that presented in Ref. 1. 
It will also be assumed that  the reader is familiar with 
Ref. 1 and hence no general discussion of polynomial 
addressing will  be included. 

In this Letter we first point out  that all polynomials 
used to  form m-bit addresses will insure that no pair 
of keys whose differing positions are within a span of m 
bits will  ever  be assigned the same address. We  will then 
illustrate that, for fixed m, a burst-error-correcting code 
may often handle more significant classes  of  key clusters 
than the minimum-distance codes used in Refs. 1 to 3. 

Polynomial  addressing 

Let us consider a set of keys, each of  which is specified  by a 
sequence of n binary digits. We may then use polynomials 
with binary coefficients to represent these sequences in 
a systematic manner. For instance, if n = 10 and the 
ten binary digits are 1 1 1 0 0 0 1 1 0 1, 
the polynomial associated with this sequence will  be 
x g  + x8 f x' + x3 + x' + 1. In general, the n-bit binary 

sequence may be written as A n - l ,   A n - 2  A I ,  AD,  and 
its polynomial representation as 

A(x)  = A,-1 Xn-' + A,-2Xn-2 + . . . i- A ~ x  + Ao. 

These coefficients are considered to belong to the field 
of two elements. In this field, addition and multiplication 
are specified by the following addition and multiplication 
tables : 

+ 01 . 01 

0 01 0 00 

1 10 1 01 

" " 

In this manner, each key has its associated polynomial, and 
different keys have different polynomial representations. 

Now suppose there is another polynomial M(x)  of 
degree m, where m < n ;  we may divide each polynomial 
A(x)  by M(x) and obtain a remainder R(x). The division 
process can be carried out in ordinary manner. For 
instance, if A(x)  = x g  + x' + x7 + x3 + x' + 1 and 
M(x)  = x5 + 1, then 

x9 + x8 + x' + x3 + x2 + 1 

= (x' + x3 + ."(x5 + 1 )  + (x" + 1). 

In general, A(x) = Q(x)M(x) + R(x),  where the degree 
r of R(x) is  less than the degree m of M(x). The key-to- 
address  transformation we  wish to explore in detail is 
the transformation A(x) + R(x). 

It is clear that among all such transformations, choosing 
M(x) = . x m  + 1, will permit the simplest implementation. 
Shown in Fig. 1 is a circuit utilizing a single delay line 
and a single half-adder which  achieves this interlacing of 
rn parity checks. Control circuitry is not shown. 

In choosing among polynomials of the form 

x m  + Cm_lXm-l + Cm_2Xm--2  + . . . + C0(Ci = 0 ,  l),  

some thought should be  given as to the types of key 
clusters they will "break up". It can be shown that, if 
C ,  = 1, the addressing system will break up clusters 
in which the difference  between any pair of  keys can be 353 
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spanned by m bits. This is equivalent to  the statement 
that, if Co = 1, then M(x)  is a generator polynomial of 
an error-detecting code  that detects all single-burst errors 
of length not greater than m. A proof of the latter  state- 
ment is given in Ref. 4. 

Use  of burst-error-correcting codes 

Previous workers”2 have considered polynomials which 
correspond to random-error correcting codes and which, 
therefore, have the property that they will break  up clusters 
in which two keys differ in no  more  than some specified 
number of positions. We now strongly suggest the con- 
sideration of polynomials which correspond to codes 
that permit the correction of burst errors. These will 
have the property that all clusters will be broken up 
provided the positions in which a pair of keys differs 
can be covered by two spans of a specified number of bits. 

For example, let us consider the following case. The 
memory system to be addressed consists of 224 locations. 
Using a Bose-Chaudhuri code’ which permits the cor- 
rection of four  random errors, we obtain  the polynomial 

M,(x)  = (x6 + x + l ) ( x 6  + x4 + x 2  + x + 1 )  

. (x6 + x5 + x2 + x + l ) (xf i  + x3 + 1 ) .  

Using Ml(x), keys  of up  to 63 bits can be accommodated 
with pairs of keys differing in 8 or fewer positions never 
being assigned the  same address. Use of a Fire burst- 
error correcting code6 in this case enables keys of effectively 
unlimited length (up  to 7665 bits) to be handled without 
duplication of address whenever a pair of keys differs 
in at most 16 positions, spannable by two blocks of 

KEYS m BIT DELAY LINE I -0 

Figure I A simple  circuit for polynomial address- 
ing. 

8 bits. A generator polynomial for such a code is 

= (x1J + l)(xg + x4 + 1). 

Instrumentation of either case can be accomplished 
through  the use of a binary shift register with rn stages and 
several logic units.’ The cost of any  binary polynomial 
addressing circuit is thus  quite reasonable, the circuit of 
Fig. 1 being the most inexpensive of all. 
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