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On a Queueing  Problem 
Arising  in  Recirculating  Memories 

This  Communication considers a queueing problem that 
arises in the design and evaluation of circulating types of 
computer  storage devices, such as magnetic  drums. This 
many-line, many-server queueing problem is treated using 
approximate  methods, and  the distribution is determined 
for  the number of items  waiting in one of the lines. 

The information in this device is stored in units  con- 
sisting of strings of numbers of equal length. These units 
are referred to as records. The records are written into 
fields such that every field consists of a fixed large  number 
of rows, each of which contains exactly one record. The 
fields circulate with a constant speed under a small number 
of adjacent  reading heads, that is, they pass by the reading 
heads  continuously one after the  other  in a fixed order, 
the last one being followed by the first one. The fields 
move in a direction parallel to their rows, such that  the 
corresponding rows of every field move always in the 
same track. Each reading  head  can be positioned on  any 
single track. Whenever there is a request for reading a 
record, and  at least one of the readers is available when 
the field containing that record arrives at  the readers, a 
reader is positioned on  the required  track. The requested 
record is then  read out  as it passes by. The requests for 
reading  records are assumed to arrive  randomly  according 
to a Poisson distribution with mean rate X for each field 
and  form a queue at  the readers. The service, Le., reading, 
is first-come-first-served for requests referring to the same 
field. It is possible that  not all requests can be served 
during a single passage of a field, and  the remaining ones 
get the next chance on  the next arrival of the field. A 
reader can  read only one record from a given field on 
each passage of that field. Furthermore  its availability 
is determined by the fact that a reader is “dead” for a 
fixed time  after each reading. This  time is the access time 
of the reader, i.e., that needed to switch from  one  track 
to any  other. If more  readers are available than necessary, 
the ones used are selected at random. 350 
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The problem is to find the stationary  distribution of 
the number of requests waiting. The answer to this is 
obviously necessary in  order to know what the minimum 
number of readers  must be to handle a given amount of 
traffic, and to determine the storage requirements for  the 
queue. We give here an approximate  analytical  treatment 
of this  problem by reducing it to a form in which a tech- 
nique similar to the familiar one for many-server systems 
with constant service times’ can be applied. Numerical 
results have been obtained by D. Shah, of the IBM 
Advanced Systems Development Division, who wrote a 
machine  program based on  the formulas developed here. 

The following notations will be used: let N be the 
number of fields, A the access time of the readers, and T 
the cycle time, that is, the time between two consecutive 
passages of any given  field under the reading heads. 

We fix our attention  on a given  field F. Let v(j), l( j) ,  
and p(j)  be the following random variables: v(j) the 
number of requests waiting for F just before it arrives 
at  the readers for  the j t“  time, j = 1, 2, 3, . . . ; ( ( j )  the 
number of free  readers at  the same  time; p( j )  the number 
of requests for F arriving between j and j + 1. v(j) and 
p(j )  can  take any non-negative integer value, and tu) 
the values 0, 1, . . . , c. 

The distribution of the p( j )  is the assumed Poisson 
distribution : 

m! 

For the sought  stationary  distribution of the v o )  we 
use the notation 

P ( v ( j )  = n ]  = P,, n = 0 ,  1, (2) 

The stationary  distribution of ( ( j )  can be obtained by 
the following consideration: The  total number of records 
read in  unit  time is on  the average NX. The  total time the 
readers are dead is therefore NXA. Since they are used 



time if the whole system is in stationary operation. It 
seems to be a very good  approximation to assume that 
the occupancies of the readers are independent of each 
other. Then using the  notation p = 1 - q we get 

for k = 0, 1 ,  , C .  (4) 

To  obtain  the distribution (2 )  let us consider how 
v(j + 1) = n can  arise from different states at  the time j .  
The probability of v(j+ 1) = n has to be the sum of the 

~ probabilities of all mutually exclusive events which lead 
to this one,  thus we get 

P ( v ( j  + 1) = n )  

I 

"1 r 

= 2 2 P ( v ( j )  = k ,  [ ( j )  = m ,  p ( j )  = n )  
k = O  m = k + l  

+ C C P ( v ( ~ >  = n + k - m,  [ ( j )  = k ,  p ( j )  = m), 

n = 0 ,1 ,  . . .  ( 5 )  

n r  

m = ~  k = n  

This set of equations is rigorously valid, but insufficient 
without  further  assumptions for  the determination of the 
P,. We may, however, make  the approximation that  the 
variables v(j), (G), and p(j) are independent of each  other. 
This is permissible because first the number of arrivals 
is independent of the  state of the system if it is Poissonian 
as already assumed, and second the  state (G) of the servers 
is determined by all the fields, so the effect of the selected 
one F may be neglected if there is a great  number of them, 
that is, N is large. The set ( 5 )  of equations  then becomes 
by using (l), (2), and (4) 

This is a set of infinitely many equations  for  the infinite 
number of unknowns P,. The best way to solve them is 
by calculating the generating  function 

C(x)  = P,xn 
m 

n=O 

+ 2 (G(x)  
- Pix' x-kpk 

k-0 k - l  j = O  ) 1 
Solving this  for C(x)  we get 

x c  2 PkPm - 2 PiPkXC+"k 
C - 1  k-1 

G ( ~ )  = 
k = o   m = k t l  k = O  j = O  

x e  e - - X T ( z - 1 )  - pkXC-IC 
k = O  

(9) 

G(x) has to satisfy two further conditions. First, 

G(l )  = 1 (1 1) 

must hold, because G(l) = P,. Second, C(x) as a 
generating function  must  be analytic. This implies that 
the  numerator / ( x )  of (10) has  to vanish at each of the c 
complex roots of the denominator g(x). Equations (10) 
and (11) give  by 1'Hospital's rule 

{[PI + 2P2 + . . .  +CP,lPO + [P2 + 2P3 + . . *  
+ (C -  LIP, + . .  . + ~ , P ~ - ~ I / ~ - - X T  + rp, 

+ 2P2 + . . *  +CPC:1]  = 1 (1 2) 

The  roots of the denominator g(x) of (10) can be obtained 
as follows. Let us use the values of the p k  given by (4), 
and abbreviate e -XT as 

a = e  . (1 3) 

The equation  for the kith root xk then becomes 

g(x) = xcaz-1ek2*i - (p + qx)" = 0. (14) 

Let us substitute into this 

-AT 

x = rei' (1  5 )  

and separate the real and imaginary parts. Then (14) 
becomes 

Multiplying (6) by x n  and summing  over n from zero to 
= ( p  + qr cos +) cos 2 ~ k  I qr sin + sin - 27rk (16) infinity, we obtain  after some  manipulation C C 35 1 
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- cos + sin \; AT sin +) J 

2?rk 
= qr sin4 cos ~ - ( p  + qr cos +) sin - (17) 2 ~ k  

C C 

(16) and (17) are transcendental  equations for  the un- 
knowns r and 4. They can  be solved by iteration. Let 
(rk,  +k) be the solution for  any given value of k ,  and 

xk = rk exp(i+J k = 0 ,  1, ... , c  - I .  (18) 

Then our requirement that f(x) has to vanish for  all roots 
of &x) gives 

we know now the xk , a comparison of the coefficients 
in the two expressions for f(x), that is, (10) and (19), gives 
the probabilities Po, PI, . . -  , as functions of K.  
The value of K can be determined then by substituting 
these into Eq. (12). The remaining P,)s can now be ob- 
tained by simple successive elimination. 
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