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On a Queueing Problem

Geza Schay, Jr.

Arising in Recirculating Memories

This Communication considers a queueing problem that
arises in the design and evaluation of circulating types of
computer storage devices, such as magnetic drums. This
many-line, many-server queueing problem is treated using
approximate methods, and the distribution is determined
for the number of items waiting in one of the lines.

The information in this device is stored in units con-
sisting of strings of numbers of equal length. These units
are referred to as records. The records are written into
fields such that every field consists of a fixed large number
of rows, each of which contains exactly one record. The
fields circulate with a constant speed under a small number
of adjacent reading heads, that is, they pass by the reading
heads continuously one after the other in a fixed order,
the last one being followed by the first one. The fields
move in a direction parallel to their rows, such that the
corresponding rows of every field move always in the
same track. Each reading head can be positioned on any
single track. Whenever there is a request for reading a
record, and at least one of the readers is available when
the field containing that record arrives at the readers, a
reader is positioned on the required track. The requested
record is then read out as it passes by. The requests for
reading records are assumed to arrive randomly according
to a Poisson distribution with mean rate \ for each field
and form a queue at the readers. The service, i.e., reading,
is first-come-first-served for requests referring to the same
field. It is possible that not all requests can be served
during a single passage of a field, and the remaining ones
get the next chance on the next arrival of the field. A
reader can read only one record from a given field on
each passage of that field. Furthermore its availability
is determined by the fact that a reader is “dead” for a
fixed time after each reading. This time is the access time
of the reader, i.e., that needed to switch from one track
to any other. If more readers are available than necessary,
the ones used are selected at random. '
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The problem is to find the stationary distribution of
the number of requests waiting. The answer to this is
obviously necessary in order to know what the minimum
number of readers must be to handle a given amount of
traffic, and to determine the storage requirements for the
queue. We give here an approximate analytical treatment
of this problem by reducing it to a form in which a tech-
nique similar to the familiar one for many-server systems
with constant service times' can be applied. Numerical
results have been obtained by D. Shah, of the IBM
Advanced Systems Development Division, who wrote a
machine program based on the formulas developed here.

The following notations will be used: let N be the
number of fields, 4 the access time of the readers, and T
the cycle time, that is, the time between two consecutive
passages of any given field under the reading heads.

We fix our attention on a given field F. Let »(j), £(J),
and u(j) be the following random variables: »(j) the
number of requests waiting for F just before it arrives
at the readers for the j* time, j = 1, 2, 3, --- ; &) the
number of free readers at the same time; u(j) the number
of requests for F arriving between j and j + 1. »(j) and
u(j) can take any non-negative integer value, and £(j)
the values 0, 1, -+ - |, c.

The distribution of the u(j) is the assumed Poisson
distribution:
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For the sought stationary distribution of the #»(j) we
use the notation

Py(j) =n} =P, n=0,1,- - ()

The stationary distribution of £(j) can be obtained by
the following consideration: The total number of records
read in unit time is on the average N\. The total time the
readers are dead is therefore N\A. Since they are used




with equal probability, each one of them is dead, on the
average, for a time

g = NMNA/c (3)

out of a time interval of unit length. Thus g is obviously
the probability of finding a given reader dead at any one
time if the whole system is in stationary operation. It
seems to be a very good approximation to assume that
the occupancies of the readers are independent of each
other. Then using the notation p = 1 — g we get

pe = PlEG) = k} = <z>pkq”"k
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To obtain the distribution (2) let us consider how
W(j+ 1) = n can arise from different states at the time j.
The probability of »(j + 1) = » has to be the sum of the
probabilities of all mutually exclusive events which lead
to this one, thus we get
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This set of equations is rigorously valid, but insufficient
without further assumptions for the determination of the
P,. We may, however, make the approximation that the
variables »(j), £&(j), and u(j) are independent of each other.
This is permissible because first the number of arrivals
is independent of the state of the system if it is Poissonian
as already assumed, and second the state £(j) of the servers
is determined by all the fields, so the effect of the selected
one F may be neglected if there is a great number of them,
that is, N is large. The set (5) of equations then becomes
by using (1), (2), and (4)
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This is a set of infinitely many equations for the infinite
number of unknowns P,. The best way to solve them is
by calculating the generating function

G(x) = "Z;‘] Px". (7

Multiplying (6) by x" and summing over n from zero to
infinity, we obtain after some manipulation
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Performing the » and » summations in the second term
this gives
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Solving this for G(x) we get
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G(x) has to satisfy two further conditions. First,
G(1) = 1 (11)

must hold, because G(1) = Zio P,. Second, G(x) as a
generating function must be analytic. This implies that
the numerator f(x) of (10) has to vanish at each of the ¢
complex roots of the denominator g(x). Equations (10)
and (11) give by 'Hospital’s rule
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The roots of the denominator g(x) of (10) can be obtained
as follows. Let us use the values of the p, given by (4),
and abbreviate ¢ " as

a=e"". (13)
The equation for the &’*" root x, then becomes

g(x) = x°a¢ ~ (p 4+ gx)° = 0. (14)
Let us substitute into this

x = re' (15)

and separate the real and imaginary parts. Then (14)
becomes
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(16) and (17) are transcendental equations for the un-
knowns r and ¢. They can be solved by iteration. Let

(ry, ¢:) be the solution for any given value of %, and
x;, = ry exp(idy) k=0,1,:--- ,c— 1, (18)

Then our requirement that f(x) has to vanish for all roots
of g(x) gives
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/) = K H (x — x,). (19)

Here K is a constant, unknown for the moment. Since
we know now the x; , a comparison of the coeflicients
in the two expressions for f(x), that is, (10) and (19), gives
the probabilities Py, Py, --- , P.., as functions of K.
The value of K can be determined then by substituting
these into Eq. (12). The remaining P,’s can now be ob-
tained by simple successive elimination.
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