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Diffraction by a Finite Sinusoidal  Phase Grating 

In recent  years  several  processes,  such as Eidophor‘ and 
thermoplastic  recording,  have been  developed for record- 
ing information in the form of deformations  in the surface 
of a transparent medium.  The  phase  of the light  passed 
through such a medium  is  modulated  according to the 
information stored. The information  is  retrieved by means 
of spatial filtering’  in the Fraunhofer diffraction  domain. 
In order to design  useful spatial filters it is  desirable to 
know the diffraction patterns formed by the storage 
medium. 

In this paper we derive the diffraction pattern produced 
by a single  sinusoidal  groove and by a finite  sinusoidal 
phase  grating. We assume that  the grooves are long, that 
the source  is a long  uniform  line  parallel to the grooves, 
and that a one-dimensional treatment is  permitted, i.e., 
variations of light amplitude in the direction of the grooves 
can be  neglected. Our approach is  based on the usual 
linearizing  assumptions  made in the “communications 
theory of optics.” A quantitatively rigorous analysis is 
beyond the scope of the present  discussion.  Such a treat- 
ment  would  necessitate a vector rather than a scalar repre- 
sentation of the electromagnetic  field. 

It is shown that for an infinite  grating the power  spec- 
trum consists of discrete  lines at the integral orders, where 
the amplitude is proportional to  the Bessel function of 
the first  kind,  whose order is a linear function of the spatial 
frequency at the point of observation and whose argument 
is proportional to  the product of the phase  deviation and 
the depth of the surface  deformation of the storage 
medium. It is  also  shown that if the grating is finite, par- 
ticularly if ody  a few  grooves are to be  examined, as is 
the case  in  color  recording, then the power spectrum 
cannot be  represented  simply as a product of a Bessel 
function with the interference function corresponding to 
the number  of  grooves  present. 

Fraunhofer  diffraction by phase modulating objects 

Consider the configuration  shown  in  Fig. 1. Let PC be 
a generic point in the source and let P be a generic point 
in the Fraunhofer diffraction  field.  Let the diffracting 
object  be defined  by the surface z(x, y )  which consists of: 
1) a region A of uniform unit transmittance, and 2) an 

opaque screen  everywhere outside A.  The source and 
field points are in a pair of conjugate  planes of an aber- 
ration-free  lens whose aperture is  larger than the region A.  

According to Fraunhofer’s  theory the amplitude distri- 
bution U(P) at the field point P due to light of  wave 
length X emanating from the source at P ,  is  such that’ ’ n 4  

WP> - S, + exp I i2?r[+z + (PC - 

+ ( o c  - 4 Y 1 1  d A ,  (1) 

where integration is  carried  over the surface z(x, y )  
within the region A and where the obliquity factor is 
+ = 4 [ N ,  cos (n,  r , )  - cos (n, r)];  the phase  deviation 
is2?rb,with~$=(N,cosa,-cosa) /X;andwhere~,= 
( N ,  sin Pe)/X, p = (sin P)/X, a, = ( N ,  sin -yJ/X, and 
w = (sin ?)/X are spatial freq~encies.~ The quantities 
a, a,, p, P C ,  y, yL, r, rc  are as shown in Fig. 2, n is the 
outward normal to the diffracting  surface, and N ,  is the 
index of refraction of the diffracting  object. (It should be 
noted that the above  result  is  derived in Ref. 1 subject to 
the approximation + X 1). 

If the source  is  assumed to be a long  line  parallel to  the 
y axis and of uniform  intensity, and if the object  does not 
have  any  variations  along this axis,  i.e.,  if z = z(x), then 
variations of amplitude  with y can be  neglected. The 
amplitude distribution is then  such that 

Figure 1 Configuration of source,  object and 
Fraunhofer  domains. 
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U =  

K’ lI Ic/(x)~(x)e’~*(”~-~)~ dl + (dz/dx)2 dx (2a) 

where K‘ is a constant of proportionality which depends 
on the intensity of the source, the distance between the 
source, object and field domains, and the wave length of 
the light emitted by the source. The object function o(x) = 

exp [i27rQ( v, v,)z(x)] if x is  in A and it is  zero  elsewhere, and 

v, = ( N ,  sin a,)/X v = (sin a)/X. (2b) 

The obliquity factor is a function of x ,  v and v, while 
the phase deviation depends only on v and v,. Clearly, 
the amplitude distribution U(v) differs from O(v) ,  the 
Fourier transform of o(x); the diffraction and object 
domains are  thus not canonically conjugate. Furthermore, 
Q and Ic/ are  not functions of the difference v - vc and 
thus  the system  is not space invariant, or isoplanatic. 
These two nonlinear effects are important if large values 
of a and a,  are of interest. To obtain  a linear theory 
we assume that both Q and Ic/ are independent of v and v,, 
an assumption which  is  valid  only if a and a, are small. 
Thus 

4 = ( N ,  - 1)/X = Q0/2* (3 a) 

OBJECT DOMAIN 

” 

Figure 2 Geometry associated with the definition 
of spatial frequency. 

Figure 3 Groove  geometries. 

zo [COS 2av0 ( x  - k/q) + iJ 
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It = ( N ,  + 1 )  cos 0 = ( N ,  + 1)/d1 + (dz/dx)2 (3b) 

so that 

u = K [: o(x) exp [i27r(v, - v)x] dx (4) 

for all surface shapes z(x). The quantity K = K’(N, + 1)  
is a constant. Thus under the foregoing assumptions we 
get the usual result that U is the Fourier transform of o(x). 

The results derived below on  the basis of Eq. (4), and 
thus on the basis of the linear theory, are limited  with 
respect to their realms of applicability to small angles of 
incidence and of diffraction. For a comparison of  the 
diffraction patterns predicted by the linear and nonlinear 
theories for blazed diffraction gratings see Ref. 7. 

The  sinusoidal groove 

To obtain the power spectrum of a sinusoidal groove 
(Fig. 3a),  let 

zl(x) = -zo sin 27rvo[x - ( k h ) ] ,  ( 5 4  

where v,, is the fundamental frequency, and k is a constant 
defining the position of the object centerline at k /vo .  Let 
the object function be 

.(x) = 
Ix - (k /vo)  j I 1/2VO 

r o z *  

(33) 
elsewhere 

so that k/ vo is the position of the groove  centerline. From 
Eq. (4) we  get 

UAP) = 

K 
~ exp (- i 2 w k )  [-: exp [- i(Qozo sin l + pl)I d l ,  
2mo 

(6)  
where p = ( v  - v J /  vo. EQ. (6)  can be rewritten as 

U J P )  = 

exp (- i27rpk) cos (Qozo sin { 4- p l )  d l .  (6a) 

Using  Sommerfeld‘s integral representation6 for the 
Bessel function involving integration in the complex  plane, 
we obtain 

U&) = ~ exp (- i27rpk) 27r J--p(40zo) 

rvo l 

K 
2mo i 
- j’ exp [- i(Qozo sin l +  pl11 d l  

- S, exp [- i(+ozo sin [ +  pl11 d l }  

“1 

- r + i m  
r + i m  

or, with a bit  of manipulation, 

U,(P) = y, exp (“i27rpk) J-,(~ozo) 

- -sin 7rp / w  exp [-(Qozo sinh [ - p t ) ]  dt}. (6b) 

K i 
1 
7r - 0  
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We can readily see from Eq. 6a that if the asymme 
groove of Fig. 3a is centered on  the optic axis (k = 

:tric 
0) 

then the amplitude  distribution is real and asymmetric 
in the non-dimensional  spatial frequency p ;  while from 
Eq. 8a we can see that if the symmetric groove of Fig. 3b 
is centered on  the optic axis (k = 0) then the amplitude 
distribution is complex and symmetric. It is  of interest 
to note  that in the case of amplitude  modulation  with 
ol(x) = +(I + sin 2 m a x )  if I b o x  I 5 1 and ol(x)  = 0 
elsewhere, an asymmetric case, the amplitude distri- 
bution  in the Fraunhofer field is asymmetric in p and 
complex, (the real part is symmetric and  the imaginary 
part is antisymmetric). In  the symmetric case, 02(x) = 
+(l + cos 27rvOx) if I 2v0x I 5 1 and 02(x)  = 0 elsewhere, 
the amplitude  distribution is real and symmetric in p. 

Finite grating 

Let  the object consist of N adjacent  sinusoidal grooves 

INONDIMENSIONAL S P A T I A L  F R E Q U E N C Y ,  = y - v c / y o  

Figure 4 Non-dimensional power spectrum for a sinusoidal  groove:  the  antisymmetric case. 

Figure 5 Non-dimensional power spectrum for a sinusoidal  groove:  the  symmetric  case. 
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centered on x = k , / v , ,  where  if N is odd k ,  = k + n, 
n = 0, f 1, f 2 ,  . . &$(N - l), and where  if n is  even 
k ,  = k + $ + n, n = 0, f l ,  e . . ,  =t (bN - l), -+N, 
(in either  case the object  centerline  is at x = k / v , ) .  The 
diffraction pattern is the sum of the patterns of the indi- 
vidual  grooves,  i.e. 

W P )  = WP)I(P> 9 

where U(p) is as given  by Eqs. 6 or 8 for the gratings  de- 
fined  by Eqs. 5a or 7a  respectively, and Z(p) is the inter- 
ference function given  by 

It is  simply the sum of the geometric  series 

exp [ - i2rp(kn - k ) ]  over all n. 
n 

If N is  infinite Zb) becomes the comb function x,”=-- 6(p - n) where 6 is the Dirac delta function. 
The function Zb) is  non-zero  only when p is an integer. 
The amplitude distributions U N  consist of discrete  lines 
whose magnitudes are proportional to Jn(+oz,,), and which 
occur at the spatial frequencies v = v, + nvo.  Indeed, as 
would  be  expected, the intensity distributions UNUN* 

(where U* is the complex  conjugate of U) for the objects 
defined by z1 and z2 are identical if N is  infinite,  while the 
amplitude distributions differ  only  in  phase. 

When N is  finite the diffraction  spectrum  is no longer 
discrete. Finite light  intensities appear in regions which 
are centered on the integral  values of p and whose  widths 
are of the order 2 / N .  If N is  small  (say of the order of 
three  or four, a case  which  is of interest in  color  recording 
on thermoplastics) the diffraction  spectra for all p become 
important. 

Let us consider  then the non-dimensional power  spec- 
trum of a single  groove,  namely 

In Fig. 4 (for the groove  defined  by zl) is plotted for 
~ $ ~ z ~  = 1, 2, 3, 4, 5 and in  Fig. 5 ,  sc (for the groove  de- 
fined by z2) is plotted for the same  values of I$~Z,. 

As would  be  expected 3 * ( n ,  4oz.) = s.,(n, 4oz,,) for any 
integer n, i.e., at the positions  where the integral orders of a 
grating  would  appear. Furthermore, the larger &zo the 
more  energy  is  thrown into the higher  orders.  This, too, 
should have  been  anticipated  since the higher the index of 
the object and/or the deeper the groove (and thus the 
greater the surface  slope) the greater the angle of diffrac- 
tion. Furthermore, since p is  inversely proportional to v,, 
the greater the density of recording the greater the angle of 
diffraction.  Thus, at high  densities we are limited to low 
values of C $ ~ Z ,  if we  wish to make  use of the major portion 
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Figure 6 Comparison of 19. ( p ,  1))* and J’-p(l). 
Note that 1s. (n, 1)/’ = J2?, (1) 
f o r n  = 0, =t 1, . . .  

inch, and if  we are operating with  visible light and  are 
limited to NA = 0.5 then the system  is  inefficient  (i.e., an 
undue amount of energy is diffracted out of the system) 
if 4oz ,  > 2.5. 

In Fig. 6 s,(p, &,z,) and J!p(40zo) are plotted for 
+oz, = 1. It is obvious  from  Fig. 6 that although J t P  and 
3. are identical at the integral orders (at integral values 
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of p )  they are radically different elsewhere. Clearly, unless 
N is very large, the exact expressions for U must be used; 
the simple approximation UCp) J - ,  is not valid. 

Summary 

The exact expressions for  the diffraction pattern produced 
by a single sinusoidal  groove and for finite gratings have 
been derived and compared with the expressions com- 
monly used. We have shown that  the usual  approxima- 
tions  are valid only in the limit of gratings with an infinite 
number of grooves. Attention is  given to the case of color 
thermoplastic recording, where the number of grooves is 
expected to be few. 
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