Short Communication

E. S. Barrekette
H. Freitag

Diffraction by a Finite Sinusoidal Phase Grating

In recent years several processes, such as Eidophor' and
thermoplastic recording, have been developed for record-
ing information in the form of deformations in the surface
of a transparent medium. The phase of the light passed
through such a medium is modulated according to the
information stored. The information is retrieved by means
of spatial filtering” in the Fraunhofer diffraction domain.
In order to design useful spatial filters it is desirable to
know the diffraction patterns formed by the storage
medium.

In this paper we derive the diffraction pattern produced
by a single sinusoidal groove and by a finite sinusoidal
phase grating. We assume that the grooves are long, that
the source is a long uniform line parallel to the grooves,
and that a one-dimensional treatment is permitted, i.e.,
variations of light amplitude in the direction of the grooves
can be neglected. Our approach is based on the usual
linearizing assumptions made in the “communications
theory of optics.” A quantitatively rigorous analysis is
beyond the scope of the present discussion. Such a treat-
ment would necessitate a vector rather than a scalar repre-
sentation of the electromagnetic field.

It is shown that for an infinite grating the power spec-
trum consists of discrete lines at the integral orders, where
the amplitude is proportional to the Bessel function of
the first kind, whose order is a linear function of the spatial
frequency at the point of observation and whose argument
is proportional to the product of the phase deviation and
the depth of the surface deformation of the storage
medium. It is also shown that if the grating is finite, par-
ticularly if only a few grooves are to be examined, as is
the case in color recording, then the power spectrum
cannot be represented simply as a product of a Bessel
function with the interference function corresponding to
the number of grooves present.

Fraunhofer diffraction by phase modulating objects

Consider the configuration shown in Fig. 1. Let P, be
a generic point in the source and let P be a generic point
in the Fraunhofer diffraction field. Let the diffracting
object be defined by the surface z(x, ) which consists of:
1) a region A of uniform unit transmittance, and 2) an

opaque screen everywhere outside 4. The source and
field points are in a pair of conjugate planes of an aber-
ration-free lens whose aperture is larger than the region 4.

According to Fraunhofer’s theory the amplitude distri-
bution U(P) at the field point P due to light of wave
length A emanating from the source at P, is such that®*®'*

U(P) ~ f ¥ exp {i2nloz + (uo — wx
+ (wc - w)y]} dA’ (1)

where integration is carried over the surface z(x, y)
within the region 4 and where the obliquity factor is
¥ = 4[N, cos (n, r,) — cos (n, r)]; the phase deviation
is 2w with ¢ = (N, cos a, — cos a@)/\; and where u, =
(N.sin 8.)/\, p= (sin B)/\, w, = (N, sin v,)/\, and
w = (sin v)/\ are spatial frequencies.® The quantities
a, a. B, Bes V> Yo I, ¥ are as shown in Fig. 2, n is the
outward normal to the diffracting surface, and N, is the
index of refraction of the diffracting object. (It should be
noted that the above result is derived in Ref. 1 subject to
the approximation ¥ = 1).

If the source is assumed to be a long line parallel to the
y axis and of uniform intensity, and if the object does not
have any variations along this axis, i.e., if z = z(x), then
variations of amplitude with y can be neglected. The
amplitude distribution is then such that

Figure 1 Configuration of source, object and
Fraunhofer domains.
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U=
K [ o VT @y b (2a)

where K’ is a constant of proportionality which depends
on the intensity of the source, the distance between the
source, object and field domains, and the wave length of
the light emitted by the source. The object function o(x) =
exp [2wp(v, v,)z(x)] if x is in 4 and it is zero elsewhere, and

v, = (N, sin a,)/\ v = (sin a)/A. (2b)

The obliquity factor is a function of x, » and », while
the phase deviation depends only on » and ».. Clearly,
the amplitude distribution U(») differs from O(»), the
Fourier transform of o(x); the diffraction and object
domains are thus not canonically conjugate. Furthermore,
¢ and ¢ are not functions of the difference v — », and
thus the system is not space invariant, or isoplanatic.
These two nonlinear effects are important if large values
of @ and «, are of interest. To obtain a linear theory
we assume that both ¢ and ¢ are independent of » and »,,
an assumption which is valid only if « and «, are small.
Thus

¢ = (N, — 1)/N = ¢/27 (3a)

OBJECT DOMAIN

Figure 2 Geometry associated with the definition
of spatial frequency.

Figure 3 Groove geomefries.
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Y= (N.+1)cos 0 = (N.+ 1)/ V1 £ (&z/dx)* (3b)

so that
U= K j:: o(x) exp [i2x(v, — v)x] dx (4)

for all surface shapes z(x). The quantity K = K'(N, + 1)
is a constant. Thus under the foregoing assumptions we
get the usual result that U is the Fourier transform of o(x).

The results derived below on the basis of Eq. (4), and
thus on the basis of the linear theory, are limited with
respect to their realms of applicability to small angles of
incidence and of diffraction. For a comparison of the
diffraction patterns predicted by the linear and nonlinear
theories for blazed diffraction gratings see Ref. 7.

The sinusoidal groove

To obtain the power spectrum of a sinusoidal groove
(Fig. 3a), let

21(x) = —zosin 2m[x — (k/v)], (5a)

where v, is the fundamental frequency, and & is a constant
defining the position of the object centerline at k/»,. Let
the object function be

o(x) = {ei%h lx — (k/vo)] < 1/20
0

so that k/ », is the position of the groove centerline. From
Eq. (4) we get

UJp) =

(5b)
elsewhere

K T
—— exp (—i2mpk) f exp [—i(pozo sin ¢ + pi)] dt,
27!'1/0 -7
(6)
where p = (v — ».)/vo. Eq. (6) can be rewritten as

Up) =

X exp (—i2wpk) f cos (¢oze sin { + p¢) df.  (6a)

Vo

Using Sommerfeld’s integral representation® for the
Bessel function involving integration in the complex plane,
we obtain

0e) = 55 exo (— 2mp){2r 10z

— exp ['_i(d’oZo sin { + Pg‘)] df

- f €xXp ["_i(¢'020 sin { + pg')] df}

or, with a bit of manipulation,

Ua(P) = f exp (—i27rpk){ J—p(d’oZo)

-~ ;Irsin T /; exp [—(¢ozo sinh & — pf)] df}- (6b)




Expressions corresponding to Eqs. (6a) and (6b) for the
groove shown in Fig. 3b with

22(x) = zo{cos 2awe[x — (k/vg)] + 1} (7a)

o) {e"%“ lx — (k/vo)| < 1/2v, (70)
0 elsewhere

are respectively

U.(p) =

K exp [=i(2npk — 9u2)] [ [cos (9uzn cos §)

Vo 0

+ i sin (¢ozo cos §)] cos p¢ df (8a)

U.(p) = ;IS exp [— i2mpk ~— $0zo)] [e'””/z J_(boz0)

]

— }rsin TP fw exp (— igozo cosh & + pé) dg]' (8b)

We can readily see from Eq. 6a that if the asymmetric
groove of Fig. 3a is centered on the optic axis (k = 0)
then the amplitude distribution is real and asymmetric
in the non-dimensional spatial frequency p; while from
Eq. 8a we can see that if the symmetric groove of Fig. 3b
is centered on the optic axis (k = 0) then the amplitude
distribution is complex and symmetric. It is of interest
to note that in the case of amplitude modulation with
0(x) = 31 + sin 27wvex) if | 2pex | < 1 and o4(x) = 0
elsewhere, an asymmetric case, the amplitude distri-
bution in the Fraunhofer field is asymmetric in p and
complex, (the real part is symmetric and the imaginary
part is antisymmetric). In the symmetric case, 0,(x) =
(1 + cos 2zvex) if | 2v,x | < 1 and o0,(x) = O elsewhere,
the amplitude distribution is real and symmetric in p.

Finite grating

Let the object consist of N adjacent sinusoidal grooves
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Figure 4 Non-dimensional power spectrum for a sinusoidal groove:
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the antisymmetric case.

Figure 5 Non-dimensional power spectrum for a sinusoidal groove: the symmetric case.
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centered on x = k,/v,, where if N is odd k, = k + n,
n=0,zx1,+2, --- 3N — 1), and where if n is even
k,=k+ i+ nn=0 %1, -, £EGN — 1), —1N,
(in either case the object centerline is at x = k/v,). The
diffraction pattern is the sum of the patterns of the indi-
vidual grooves, i.e.

Un(p) = Ulp) I(p), ©)

where U(p) is as given by Eqs. 6 or 8 for the gratings de-
fined by Eqs. 5a or 7a respectively, and I(p) is the inter-
ference function given by

sin Nmp
sin mp

I(p) = (9a)

It is simply the sum of the geometric series

> exp [—i2nplk, — k)] over all n.

If N is infinite I(p) becomes the comb function
> o 8(p — n) where § is the Dirac delta function.
The function I(p) is non-zero only when p is an integer.
The amplitude distributions Uy consist of discrete lines
whose magnitudes are proportional to J,(¢,.z,), and which
occur at the spatial frequencies v = », + nv,. Indeed, as
would be expected, the intensity distributions UxyUyx*
(where U* is the complex conjugate of U) for the objects
defined by z, and z, are identical if N is infinite, while the
amplitude distributions differ only in phase.

When N is finite the diffraction spectrum is no longer
discrete. Finite light intensities appear in regions which
are centered on the integral values of p and whose widths
are of the order 2/N. If N is small (say of the order of
three or four, a case which is of interest in color recording
on thermoplastics) the diffraction spectra for all p become
important.

Let us consider then the non-dimensional power spec-
trum of a single groove, namely

3o, doz0) = UU*n"/ KK*. (10)

In Fig. 4 &, (for the groove defined by z,) is plotted for
6.z, = 1,2, 3,4, 5 and in Fig. 5, &, (for the groove de-
fined by z,) is plotted for the same values of ¢,z,.

As would be expected J,(n, ¢,z,) = F.(n, ¢,z,) for any
integer n, i.e., at the positions where the integral orders of a
grating would appear. Furthermore, the larger ¢,z, the
more energy is thrown into the higher orders. This, too,
should have been anticipated since the higher the index of
the object and/or the deeper the groove (and thus the
greater the surface slope) the greater the angle of diffrac-
tion. Furthermore, since p is inversely proportional to »,,
the greater the density of recording the greater the angle of
diffraction. Thus, at high densities we are limited to low
values of ¢,z , if we wish to make use of the major portion
of the diffracted energy. For instance, if », = 10* lines/
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Figure 6 Comparison of |3, (p, 1)|° and F_.(1).
Note that |S, (n, V)| = J_, ()
forn=0,+1, --:

inch, and if we are operating with visible light and are
limited to N4 = 0.5 then the system is inefficient (i.e., an
undue amount of energy is diffracted out of the system)
if oz, > 2.5.

In Fig. 6 &.(p, ¢.2,) and J? (¢,z,) are plotted for
#.2, = 1. It is obvious from Fig. 6 that although JZ, and
&, are identical at the integral orders (at integral values




of p) they are radically different elsewhere. Clearly, unless
N is very large, the exact expressions for U must be used;
the simple approximation U(p) = J_, is not valid.

Summary

The exact expressions for the diffraction pattern produced
by a single sinusoidal groove and for finite gratings have
been derived and compared with the expressions com-
monly used. We have shown that the usual approxima-
tions are valid only in the limit of gratings with an infinite
number of grooves. Attention is given to the case of color
thermoplastic recording, where the number of grooves is
expected to be few.
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