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Automatic Step-Size Control for

Runge-Kutta Integration®

In a recent paper Chase' investigated the stability of
various predictor-corrector methods. He showed among
other things that during integration of the initial value
problem y = —a-y + b, y(0) = 0, a > 0, the modi-
fied Hamming method exhibits instability at an inte-
gration step A with A-a > 0.85. It can be shown that
the well known fourth-order Runge-Kutta method® re-
mains stable for all # with h-a < 2.78.® Inasmuch as
Hamming’s method requires two derivative evaluations
per time step, as against four for the Runge-Kutta method,
stable integration from 0 to 1 requires a minimum of
2.35-a derivative evaluations for Hamming’s method as
against 1.44.q derivative evaluations for the Runge-
Kutta method. Thus the extra derivative evaluations per
single time step for the Runge-Kutta method do not seem
as serious a drawback as might at first appear.

A more serious problem arises in automatic step-size
control. While a measure of automatic step-size control
is relatively easily implemented in predictor-corrector
methods, through a comparison of predicted and cor-
rected values®, the Runge-Kutta method has been con-
spicuous until now for its lack of any efficient method
for automatic step-size control. It is the purpose of this
paper to provide at least a partial remedy for this condition.

To this end consider the initial value problem Y’ =
F(t,Y), Y(0) = Y,, where Y and F are vectors and, noting
that k; = k, for time ¢t + h,set k; = AF(t + h, Y + k),
where k = (1/6)(k, + 2k, + 2k; + k,). Following up a
suggestion by Hamming® and generalizing Collatz’s rule
of thumb,® we try to estimate the local truncation error
by means of a linear combination of the k;,i= 1, --+ , 5,
and achieve a measure of error control by computing | E |,
where | E | is some norm of E and

5
E = Z al-k,».
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To determine the a;, we require that E approximate the
local truncation error in the initjal value problem y' =
ay + b, y(0) = y, or, in what amounts to the same, in
the system Y’ = AY + B, Y(0) = Y, where 4 and B are
constant, Computation shows that for £, = k, — 2k; —
2k, + 3k; we obtain

h5

- = 4y
~8AY(t).

E;
On the other hand, the local truncation error E, is
given by

© hk Ak
E, = h"’A“(E ———) Y'(t).

k=0 (k + 5)!
Thus, apart from the factor in parentheses, E; represents
the local truncation error. If only the first four k; are to
be used, the best one can achieve is to use E, = k, +
k4 — 2k;, obtaining

4

E, = ALY'(1).

B

Letusset E, = ky — ky,and E, = k, — k,. Computa-
tion shows that
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A Y'(r).

E, = AY'(t), and E; =

Collatz’s rule of thumb, as applied to the initial value
problem y' = —ay + ¢, a > 0, y(0) = 0 with solution
(c/a)1 — e~ %), becomes | ky — ks |/| ky — k. | < r with,
say, r = 0.05. This leads to | E; |/| E; | = a-h/2 < 0.05.
Hence, in this case, the rule of thumb prescribes a uni-
form step size independent of the local truncation error.
On the other hand one has E, = (h*/4) a’ce”* and
E; = (W°/8) a*ce” ™. Tt is seen that both E, and E; pre-
scribe variable time steps and that they prescribe smaller
steps during the transient region and larger ones in the
steady state portion. When FE, is used, a step size change




(i.e., halving or doubling the step size) causes the trunca-
tion error to change by approximately a factor of 32,
whereas the indicated error is changed by a factor of 16.
Thus E, forces smaller steps than are necessary during
the transient region and permits larger steps than war-
ranted during the steady state. E; is relatively free from
this defect.

Returniag to Collatz’s rule of thumb, one finds that
like E,, E, and E; can be used by themselves for step-
size control; however, numerical experiments indicate
that the distortions of the local truncation error force
excessively small steps during the transient portion and
thus bring about an attendant increase in derivative
evaluations. As an unexpected advantage, both E, and E;
seem to detect and control numerical instability in the
steady state region.

In addition to its primary use the proposed step-size
control can also be used to provide starting values and a
proper initial integration step for those multi-step methods

which are not self-starting. At the same time, it is to be
noted that the error criteria advanced here may, in cer-
tain instances, provide only a partial remedy. Thus, for
example, when F(#,y) is independent of y, one obtains
E, = Es = K /4y®(¢) whereas the actual truncation
error is of order #° y*® ().
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