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Short Communication 

Automatic Step-Size Control for 
Runge-Kutta Integration* 

I In a recent paper Chase’ investigated the stability of 

various  predictor-corrector methods. He showed among 
other things that  during integration of the initial value 
problem y’ = -a.y + 6, y(0) = 0,  a > 0, the modi- 
fied Hamming  method exhibits instability at an inte- 
gration  step h with h.a  >_ 0.85. It can be shown that 
the well known  fourth-order Runge-Kutta method’ re- 
mains  stable for all h with h.a < 2.7K3 Inasmuch as 
Hamming’s method  requires  two derivative evaluations 
per time  step, as against four for the  Runge-Kutta  method, 
stable  integration from 0 to 1 requires a minimum of 
2 . 3 5 . ~  derivative evaluations for Hamming’s method  as 
against 1.44.a derivative evaluations for  the Runge- 
Kutta method.  Thus the extra derivative evaluations per 
single time  step for  the Runge-Kutta  method do  not seem 
as serious a drawback as might at first appear. 

A more serious  problem arises in  automatic step-size 
control. While a measure of automatic step-size control 
is relatively easily implemented in predictor-corrector 
methods, through a comparison of predicted and cor- 
rected values4, the  Runge-Kutta  method  has been con- 
spicuous until now for its  lack of any efficient method 
for  automatic step-size control. It is the  purpose of this 
paper to provide at least a partial remedy for this  condition. 

To this end consider the initial  value  problem Y’ = 
F(t, Y), Y(0) = Yo, where Y and  Fare vectors and, noting 
that k5 = k ,  for  time t + h, set k ,  = hF(t + h, Y + k ) ,  
where k = (1,/6)(k1 + 2k2 + 2k3 + k4) .  Following up a 
suggestion by Hamming’ and generalizing Collatz’s rule 
of thumbY6 we try to estimate the local truncation  error 
by means of a linear  combination of the ki , i = 1 , * , 5, 
and achieve a measure of error  control by computing I E 1 ,  
where I E I is some norm of E and 

E = a , k i .  
5 

i = l  
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To determine the ai,  we require that E approximate the 
local truncation  error  in  the initial value problem y’ = 
ay + 6, y(0) = y o  or, in  what amounts to the same, in 
the system Y’ = AY + B, Y(0) = Yo, where A and B are 
constant. Computation shows that for E, = k,  - 2k,  - 
2k4 + 3k, we obtain 

E5 = - A 4  Y’( t ) .  
h5 
8 

On  the other hand,  the local truncation  error Eo is 
given  by 

Eo = h5A4( * hkAk 
k = ~  (k + 5) !  

Thus,  apart  from  the factor  in parentheses, E, represents 
the local truncation  error. If only the first four k ,  are  to 
be used, the best one can achieve is to use E4 = k ,  + 
k ,  - 2k3,  obtaining 

E4 = - A3 Y’(t) .  
h4 
4 

Let us set Ez = k ,  - k,, and E3 = kS - k, .  Computa- 
tion shows that 

E2 = ~ A Y’(t) ,  and E3 = - A’ y’(t) 
- hZ - h3 

2 4 

Collatz’s rule of thumb,  as applied to  the initial value 
problem y’ = -a.v + c, a > 0, y(0) = 0 with solution 
(c /a)( l  - e-“‘)),  becomes I k, - k ,  [ / I  k,  - k,  I 5 r with, 
say, r = 0.05. This leads to I E3 I / /  E2 I = a . h / 2  5 0.05. 
Hence, in  this case, the rule of thumb prescribes a uni- 
form step size independent of the local truncation error. 
On  the other hand  one has E4 = (h4/4) a3cKa’  and 
E5 = (h5/8) a 4 ~ e - a t .  It is seen that  both E ,  and Es pre- 
scribe variable time steps and  that they prescribe smaller 
steps during the transient region and larger ones  in the 
steady state portion.  When El is used, a step size change 



(i.e., halving or doubling the step size) causes the  trunca- 
tion  error to change by approximately a factor of 32, 
whereas the indicated error is changed by a factor of 16. 
Thus E4 forces smaller steps than  are necessary during 
the transient region and permits larger steps than war- 
ranted  during the steady state. E5 is relatively free from 
this defect. 

Returning to Collatz’s rule of thumb, one finds that 
like E,, E2 and E ,  can  be used by themselves for step- 
size control; however, numerical experiments indicate 
that  the distortions of the local truncation error force 
excessively small steps during the transient  portion and 
thus bring about  an  attendant increase in derivative 
evaluations. As an unexpected advantage, both E ,  and E5 
seem to detect and  control numerical instability in the 
steady state region. 

In addition to its primary use the proposed step-size 
control can  also  be used to provide starting values and a 
proper initial integration  step  for those multi-step methods 

which are  not self-starting. At the same time, it is to be 
noted that  the  error criteria advanced here may, in cer- 
tain instances, provide only a partial remedy. Thus, for 
example, when F(t,y) is independent of y ,  one  obtains 
E,  = E5 h3/4y‘3’(t) whereas the  actual truncation 
error is of order h5 ~ ‘ ~ ’ ( t ) .  
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