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Automatic  Correction of Multiple Errors 
Originating in a  Computer  Memory 

Abstract: An error correction unit  has  been  installed in an IBM M A C @  305 to  demonstrate automatic correc- 

tion  of  burst  errors originating in a computer memory.  Employing  a cyclic  code requiring two percent  re- 

dundancy,  the unit has  successfully  corrected all four-bit and most five-bit error bursts in a  100-character 

record  stored  on a  defective disk. Details  of  the error correction unit and test  results are presented; two 

special  cases involving block length are also  discussed. 

Introduction 

In reading information from a computer  memory  such 
as a disk  file, errors may  be  caused  by dust particles, 
minute  scratches, or defects in the oxide  coating.  One 
solution to this problem is suggested by the fact that 
such errors occur in bursts and lend  themselves to auto- 
matic correction by  cyclic error-correcting codes.’ A 
simple device  was constructed which  employs a code  re- 
quiring two-percent  redundancy to correct all four-bit 
and most  five-bit error bursts (that is, in a string of  five 
bits, the first  bit and any  combination of the four bits 
remaining are in error). Evaluation of this device has 
shown that it is  feasible to equip  certain  computer  memo- 
ries to perform  corrections  without need for additional 
storage or programming  steps or for interruption of ma- 
chine  timing or data flow. 

In the following  sections  some  essential  features of the 
computer and of error correction are presented  summarily 
and the error correction unit and  test  results are discussed 
more  fully.  Details  of  system  logic and two  special  cases 
of block  length are also  considered. 

The  computer 

Since error correction  requires data storage during a 
decoding operation, a computer  having a buffer  between 

its  memory and output is an ideal system in which to 
incorporate a correction device. In the IBM RAMAC 3052’3 
chosen  for  this  purpose data enters and leaves the com- 
puter via a drum; the information to be stored is trans- 
ferred  from the drum to a buffer and subsequently  written 
in the disk  file. Readout progresses in reverse  order. A 
stored message  may contain  up to 100 eight-bit  characters, 
of  which  six bits  per  character are information; one other, 
the “start” bit, is  used for clock  synchronization, and 
another, the “parity” bit, is  used for error detection. If 
an even number of ONES is counted during a parity check, 
a machine  shutdown  occurs. 

Error  correction 

A convenient approach to the correction of burst errors 
employs a sequence  generator  (feedback shift register) 
implementation’‘4’5’6 of a suitable cyclic code!-’ Some 
essential  steps are summarized  here to allow  comparisons 
with the special  cases that follow.  Typically, a shift  regis- 
ter, initially  reset to ZERO, is  used as an encoder by adding 
modulo 2 (EXCLUSIVE OR) its feedback, as determined by 
the code, to the data being transmitted, thus developing 
a data-dependent input to the register.  When the last 
data bit  has been transmitted, the feedback  is  diverted to 
the output line to provide a number of redundant bits  cor- 317 
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responding to the length of the register. As a decoder, the 
register would operate similarly while the received data 
are being stored. The redundant bits are also processed, 
then the data line is removed from the register input. If 
the shift register is filled with ZEROS at the end of the de- 
coding cycle, no error (or no detectable error) has oc- 
curred and no correction will be made. Otherwise, some 
sequence will be generated in the register during the 
correction cycle while the data is being read from storage. 
When the register contains 000 . . OOXXX . X ,  its 
feedback is diverted and used to invert the message bits 
leaving storage. (The X’s may be either ZEROS or ONES; 

their number is equal to the number of bits in the largest 
correctable burst.) If the length of the encoded message 
is equal to that of the code cycle, the bits inverted will 
be those which are in error (unless the burst exceeds the 
capability of the system). 

Since correcting errors on time requires that the length 
of the coded message be equal to that of the code cycle, 
one approach for the special case of messages having a 
block length shorter than code cycle length would be to 
delay by an appropriate amount the data being read from 
storage during the correction cycle ; another approach 
would be to fill the message with ZEROS to bring it to the 
necessary length. Unless the message and cycle lengths 
are reasonably close, however, the delay introduced by 
both these methods would be objectionable. 

A third alternative is to correct the message from the 
end rather than from the beginning. Under this approach, 
the encoder and the encoding cycle are, with one excep- 
tion, the same as for the case where message length is 
equal to the code cycle length; the exception is that 
some means is required to signal the end of the data block, 
at which time the shift register feedback is diverted to 
the output so that the redundancy will immediately fol- 
low the last data bit of the message. The decoding cycle 
is also unchanged except for the requirement of an end 
of message signal. After the last bit of the encoded mes- 
sage is shifted into decoder storage, the shift register 
feedback is changed and the register shifts in reverse 
while the data is simultaneously read from storage in 
reverse. When XXX XXOOO appears, the feed- 
back is diverted from the register, as before, and used 
to invert the bits in error being shifted out of storage. 
The new feedback connection for this altered correction 
cycle is determined by the reciprocal code5 to that used 
for encoding and decoding. 

A fourth alternative, suitable for fixed length messages, 
does not require correcting from the end of a message. 
Basic to this approach is the fact that in general all binary 
combinations, modulo 2, of the last b characters in the 
sequence beginning with 1000 . - - (generated by the 
register) correct the corresponding b-bit burst patterns. 
For example, the “correcting character” to be recognized 318 
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by the logic for a double adjacent pattern is derived by 
adding, modulo 2, the last two characters of this sequence. 
For a given code, each correctable error is associated with 
a unique sequence and the location of that error in the 
message determines which character of the sequence will 
appear in the register at the completion of the decoding 
cycle. During the correction cycle, when the error appears 
at the storage output, the sequence, having started with 
this character, will have progressed to the correcting 
character. If more than one correcting character occurs 
in the same sequence, their associated errors may be 
confused. 

If a message of length m is shorter than the code cycle 
length, only rn steps of the cycle are necessary. By deriving 
a new set of correcting characters, from the mth character 
of the sequence beginning with 1000 . . . , in all combi- 
nations with the previous b - 1 characters, a logic network 
can be constructed that will allow corrections to be made 
without delays. Further, this approach allows flexibility 
in exploiting the fact that the redundancy existing in a 
given code exceeds that required to correct the errors for 
which it was designed. It is this approach which has been 
implemented in the system to be described in this paper. 

The computer with error correction 

The error correction unit is comprised of encoding, de- 
coding, correcting, and control circuits located between 
the buffer and file, as shown in Fig. 1. In this location 
this unit does not affect machine timing but performs its 
operations during normal data transfers. The encoding 
cycle takes place while computer data is being recorded 
in the disk file and the decoding cycle occurs while data 
from the file is being stored in the buffer. The correction 
cycle then proceeds under control of the unit during the 
transfer of data from the buffer to the drum. 

The error correction unit is shown in Fig. 2 and the 
relevant logic diagrams are presented and discussed in 
the Appendix. The heart of the error correction unit is 
the feedback shift register implementation’ ‘ 4 ‘ 5 ’ 6  shown in 

Figure I Location of error correction unit within 
RAMAC SyStem. 
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Figure 2 Error  correction unit. 
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Fig. 3 of a Fire code5 generated by the polynomial g(x) = 
x14 + x* + x + 1 = 0, whose length is 889. Although 
this code was derived for four-bit burst error correction, 
it was found to provide redundancy sufficient to permit 
correction of up  to 14 of the 16 possible five-bit error 
bursts; conveniently, it generates 14 redundant bits, which 
is exactly enough to fill two RAMAC characters. For encod- 
ing, the register is first set to  the ZERO state. Incoming 
data being recorded is simultaneously added (except for 
the start bits) to  the feedback by the gated EXCLUSIVE OR 

circuit until the 98th data character has been encoded. 
At this time, the circuit is gated off and  the feedback line 
is diverted to provide the correction redundancy that 
follows the recorded data to complete the 100-character 
RAMAC record. Similarly, the decoding cycle is begun with 
the register in the ZERO state. Data being transferred to 
the buffer  is simultaneously added to the feedback and 
the  redundancy is also  added. Because the  start bits are 
ignored, only 700 of the 889 available steps of the cycle 
are needed for  the 100-character message. 

Figure 3 Sequence generator. 
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Since the  characters  containing redundancy will often 
fail the RAMAC parity checks, the latter are suppressed at 
appropriate times to prevent shutdowns. However, to 
allow the computer parity circuits to check the corrected 
data, two dummy characters are substituted for the re- 
dundancy which otherwise would shift into  the buffer. 

As was indicated in the previous section, when the  en- 
coded message length is less than  that of the code cycle, 
additional complexity is required to avoid delays. In this 
specific  case, the code cycle length is 889, but the encoded 
message contains only 700 bits. Thus, the 700th through 
the 696th characters of the sequence beginning with 
10000000000000  were combined as indicated in Table 1 
to derive correcting characters  for  all five-bit burst  errors. 
This results in a circuit comprising sixteen 14-input AND 

gates and  one 16-input OR gate becoming the error de- 
tection logic block of the correction unit. Since the code 
was derived for four-bit burst correction, it cannot be 
expected that all five-bit bursts will  be correctable. In this 
particular code, there are  14 different sequences, each of 
length 889; thus,  at least one sequence will contain 
more than one correcting character. In  the present case, 
each of two sequences contains two correcting characters. 
This ambiguity may be resolved by excluding gates 2 and 4 
(see Table 1). In  the case of four-bit  burst correction, 
only the odd-numbered gates are required. 

During a correction cycle,  whenever a correcting char- 
acter appears in  the register, a signal is generated which 
causes the bit appearing at  the computer buffer output 
to be inverted. Then  the 700th character (11011101001010) 
is added, modulo 2 ,  before the next shift in order to allow 
the sequence for the next smaller burst to be generated 
in the register. An example is  given in Table 2. 319 
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Table I Correcting  characters  for all 5-bit bursts. 

Correcting Character 
Gate 

Characters Used X13 X12 X11 X10 X9 X8 X7 X6 X6 X4 X3 X2 X 1 (Burst Pattern) Number 
Derivation and Error 

1 

1 1 1 0 0 1 1 0 1 1 0 0 1 Id 1 0 0 1 1  4 
0 0 1 1   0 1 0 0 0 1 1 1 0 1 ~ 7 0 0 ~ 6 9 7  1 0 0 1 0  3 

700@696b 0 0 0 0 1 1 1 1 1 0 0 1 0 00 1 0 0 0 1  2 
700 1 1  0 1 1 1 0 1 0 0 1 0 1 0  1 0 0 0 0  

7 0 0 0 6 9 8  1 0   1 0   1 0 0 1 1 0 0 0 0 1   1 0 1 0 0  5 
7 0 0 0 6 9 7 0 6 9 6  

7 1 0 1 1 0  0 1 0 0 0 0 0 0 1 1 0 1 1 0 7 0 0 0 6 9 8 0 6 9 7  

9 1 1 0 0 0  0 1 1   0 0 1 1 1 0 1 1 1 1 1  7 0 0 0 6 9 9  
10 1 1 0 0 1  1 0 1 1 0 1 0 1 1 1 0 0 0 Id 7 0 0 0 6 9 9 0 6 9 6  
11 

7 0 0 0 6 9 9 0 6 9 7 0 6 9 6  0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1  12 
7 0 0 0 6 9 9 0 6 9 7  1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0  

6 

7 0 0 0 6 9 8 0 6 9 7 0 6 9 6  1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1  8 

7 0 0 0 6 9 8 0 6 9 6  0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1  

13 

7 0 0 0  . . . . . . . .  0 6 9 6  O O 1 O 1 O O O O O 1 1 0 1 1 1 1 1 1  16 
7 0 0 @ 6 9 9 0 6 9 8 0 6 9 7  1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0  15 
7 0 0 0 6 9 9 @ 6 9 8 @ 6 9 6  1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1  14 
7 0 0 0 6 9 9 0 6 9 8  0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0  

be = EXCLUSIVE OR (Mod-2 addition). 
cs dcorrecting characters marked identically occur in the same sequence and  thus may be confused, resulting in the attempted correction of the 
wrong pattern. 

Gates 1 + 2 + 3 + . . . + 15 + 16 = Outputs in Figure 2 (implemented with 241 diodes  and one transistor). 

Table 2 Examnle of correction* for error  burst nattern 10101. 
~~ 

Error  Burst 
output, e, Contents of Shift Register To Be Corrected Time 
Correction 

TO 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  T*++ 
~ 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0  T*+ 

1 1 0 1 1 1 0 1 0 0 1 0 1 0 1  1 T4 

1 0 1 1 1 0 1 0 0 1 0 1 0 1 0  T3 
= 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0  T2++ 
~ 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0  T2 + 

1 0 1 0 1 0 0 1 1 0 0 0 0 1 1  1 0 1  T2 

0 1 0 1 0 0 1 1 0 0 0 0 1 0 0  TI 
= 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0  TO++ 
~ 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0  To+ 

0 1 1 1 1 0 1 1 0 0 1 1 1 1 1  1 0 1 0 1  

to this character. This addition occurs before the next normal shift  to allow the sequence for the next smaller hurst to he generated in the register. 
* During a correction cycle, whenever a correcting character appears in the register of Figure 3, the character 11011101001010 is added,  modulo 2, 

Testing  the  error  correction unit 

For preliminary  testing, the error correction unit was 
installed so that it could  be  switched  in or out of the 
computer  system. This allowed the computer to serve 
other users in the normal manner and made it convenient 
to test the correction of errors deliberately  inserted in a 
recording. Data was recorded on a non-defective  disk 
with the encoder  active in the system and subsequently 
altered  with the error correction unit bypassed.  With the 
decoder and correction circuits  active in the data line, 
all inserted errors up to four bits in length and all but 
four of the 16 possible  five-bit error bursts were read 
correctly. A double adjacent error is corrected as shown 

320 in Fig. 4A. The character K ,  1001001, was substituted for 

a C ,  11 11001, which appeared in the original message. 
Since  these  binary patterns differ in two  consecutive  bit- 
positions, substituting one for the other  causes a double 
adjacent  burst. 

Although the two  pairs of ambiguous error patterns 
were at times read correctly, at other  times, when  they 
occurred in certain locations, the unit failed to correct 
the actual error and caused an additional error by at- 
tempting to correct the related pattern. Similarly,  addi- 
tional errors may be  caused if bursts longer than five bits 
occur,  since  these  might  be  detected by the system and 
confused  with  correctable error patterns. During this 
and later tests  with  defective  disks,  machine  shutdowns 
caused  by parity or compare  failures were suppressed by 

P. R. DAHER 



Figure 4 Three sample  printouts: ( a )  Preliminary test message on nondefective  disk, showing inserted error m d  
correction; ( b )  P test message on inside track, read with error correction circuits bypassed; and ( c )  Final 
test message on inside tracks of etched disk read with  correction  circuits  operating. 

0092 I 
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a parity  switch  (normally  employed  only for special  ma- 
chine  testing) to allow printing out errors that fail  machine 
parity  checks. 

For programmed  testing  with a defective  disk,  one  side 
of a disk was  defaced  by etching four nonradial lines, 
40 mils  wide,  from the outer edge to the inner  edge of the 
recording area. The program was  compiled to perform 
the steps  indicated in Fig. 5. First, three test patterns 
were recorded with the encoder  active and were read out 
with the correction  circuits  bypassed to allow  determina- 
tion of the size and location of potential error bursts. The 
first pattern tested was a repetition of the RAMAC space 
bit  which is required for clock  synchronization and which 
consists of one flux  reversal at the beginning  of  each 
character time.  Results of the test  with this recorded pat- 
tern indicated that very  few errors were  caused  by false 
flux reversals  resulting  from  defects.  Subsequent test 
patterns were chosen,  therefore, to determine the number 

Figure 5 Simplified flow diagram of test program. 
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of errors caused by deletion of  flux transitions (ONES) 

recorded  over a surface  defect. 
The next  test  was  made  with  two patterns: the character 

"G", or binary pattern 11  11100; and the character "P", 
or binary pattern 1011101 (unfortunately, no 1111111 
pattern was  available). The etched  lines  caused errors 
ranging  from a single  bit to seven  consecutive  bits,  de- 
pending on the test pattern and, also, on the track location 
since the recording  density was  higher at the inner tracks. 
Results of a five-bit and a seven-bit  burst are shown in 
Fig.  4b. In address 00921, the character P (1011101)  was 
replaced by a hyphen, (1000000) thus resulting  in a 11101 
burst. In address 00923, the characters PP were  replaced 
by 4L (L is  1011000). Characters that fail the parity check 
made  during a readout are underscored by the output 
typewriter; thus, the bit-pattern 0000101  is interpreted 
as a 4, 0000100,  which has  failed the parity check.  Since 
10111011011101  is  replaced  by  10110000000101, the re- 
sulting error pattern is  1011011. Although the error ap- 
pears as 4L on  the printout sheet,  these characters were 
read from the disk  file to the buffer from right to left, 
thus the actual error pattern results  from L preceding 4. 
(Since the defect  affected  two adjacent characters at this 
location, it  actually  spanned  slightly  more than eight bits; 
that is, it included the intervening  space and the space 
bit of the second  character). 

After the addresses and extent of potential errors had 
thus been  determined, a test message  was  assembled and 
the program rerun with the error correction  circuits  active 
in the system.  All errors were corrected  except  those in 
excess  of  five bits and the four ambiguous error patterns. 
When the latter occurred, the correction unit often caused 
additional errors in its attempt to correct the related 
pattern, as Fig. 4c illustrates. In this figure an R ,  (1010010) 
became 0000000, and was interpreted as a blank (0000001) 
which  failed the parity  check. The character TE became 
BE with the resulting error burst  being  1101. That is, the 
pattern 11101010111000  was replaced by  11101001101000. 32 1 
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It may be inferred that the six-bit  burst  was  confused by 
the correction  circuits with a four-bit  burst  occurring in a 
different location; by inverting the bits at  that location, 
an additional error was  caused.  The additional errors due 
to this  ambiguity  can  be  avoided by modifying the error 
correction  logic so that the more probable of  two  am- 
biguous patterns is corrected, or so that such patterns are 
ignored. To correct all five-bit bursts, a different  code 
would  be  required. 

Conclusion 

The  described error correction unit demonstrated the 
application of automatic error correction  techniques  em- 
ploying  burst-error-correcting cyclic  codes  (such as those 
developed by Fire5 and Melas' on principles  first  investi- 
gated by Abramson*) to computer  memory  lines.  These 
are flexible regarding both block  length and error-correct- 
ing capability, and are susceptible to economical  imple- 
mentation as suggested by Meggitt' and A 
Fire5 code  designed for burst error correction was  em- 
ployed  in this investigation; in applications where errors 
may  occur  randomly throughout a data block,  different 
codes (e.g., Bose-Chaudhuri  codes5)  would  be  required. 
It has  also been  suggested that, since a surface  defect 
may cause errors in two  dimensions,  two-dimensional 

could  be  useful.  Likewise, it should be  re- 
marked that shortened cyclic codes5  might  be  advan- 
tageous. 

Error correction of the type described  herein  is  es- 
pecially suited to a system,  such as RAMAC, in which data 
is  buffered during transfer between the computer  memory 
and an input/output device. In such a system, the unit 
probably could  allow  recording on many  disks  now  re- 
jected  because of surface  defects.  Since this investigation 
was undertaken to examine  feasibility and to expose 
problems that might attend the application of burst error 
correction techniques, no quantitative measure was de- 
veloped for the improvement  achieved by such a system 
over the performance of a system  having no correction 
capability. 

Fifty  percent of all possible errors not corrected by an 
automatic correction device could  be  detected by the 
RAMAC parity check.  However, this check  requires  one 
redundant bit  per character, or a redundancy of 12-1/2 
per cent; more  reliable  detection is possible  with a cyclic 
error detection  code  requiring  only 1 to 2 percent  re- 
dundancy. A system  combining cyclic detection and cor- 
rection codes' could  correct error bursts of up to five  bits 
and detect 99 percent of all uncorrected errors with a 
total redundancy of 3 to 4 percent-on a message  basis, 
rather than a character basis. 

Finally, the design of the error correction unit was 
322 made more complicated by the need to take into account 
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the difference  between  message  length and code cycle 
length.  Because  of  this,  and the requirement of adapting a 
transistorized  engineering  model to an existing tube 
system, the component count is  higher than would  be 
required  for  such a unit developed as an integral part of a 
computer. Because  of anticipated  simplification of con- 
trol logic and elimination of tube voltage translations, the 
total count of  137 transistors, 241 diodes, and 12 tube 
pluggable  units should be considerably  smaller. In the 
present  case, if the length of the computer  record and the 
cycle length of the code were the same, 28 transistors and 
231 diodes  would  be  eliminated  because the large AND-OR 

error detection  gate and associated emitter followers 
would  be  unnecessary. A saving of another 17 transistors 
would  result  if, in addition, no voltage translating were 
required. It is  also  expected that the control logic,  being 
simpler,  could  require about ten fewer transistors. 
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Appendix: Error  correction  logic and component 
requirements 

Figure A shows the logic  diagrams  corresponding to the 
block  diagram of  Fig. 2 and Table A lists  symbols and 
standard or equivalent  designations  for RAMAC data and 
control signals. In this implementation, it is often neces- 
sary to derive a single control signal  from  several  com- 
puter signals. Note, for example,  in  Fig. A4 that four 
signals are combined to produce G, ; in Figs. Al, A4, 
A5, and A7 that SISz is required for the encoding  cycle; 
and  in  Figs. Al, A5, and A7 that S,R is  required for the 
decoding  cycle. 

The error detection  logic  (Table 1) produces  signal 
C, as an input to the correction  logic, as shown in Fig. 
A3. Signal C, becomes a ONE and flip-flop Cz is set when- 
ever a correcting character is  recognized by the detec- 
tion logic  during a correction cycle,  Fig.  A3. The result 
is that Output, becomes a ONE and the incorrect bit 
is inverted after a one-bit  delay  provided by flip-flop D. 
Gate GI, in addition to controlling the data gate and 
the gated EXCLUSIVE OR CIRCUIT, Fig.  A2,  supplies  logic 
for inserting redundant bits in the last two character 
positions of a record  during an encoding operation. Gate 
Gz in Fig. A6 controls the removal of the redundant bits 



from a record and  the  substitution of the dummy char- 
acters during a reading operation. 

The  Output, logic in Fig. AS allows data  to go from  the 
buffer to  the disk, interrupting the flow during  the  last 
two  character times to allow insertion of the sequence 
generator feedback. Similarly, the Output, logic of Fig. 
AS allows data  to pass from  the disk to the buffer except 
when the two dummy characters are inserted. 

The  function CRBCIWT was used to derive the extra 

shift pulse mentioned in Table 2. Signals a, and  are 
used to inhibit machine halts due  to parity or file check 
failure during transfers between the buffer and disk file. 
This allows the redundancy to be recorded and allows 
errors  to be transferred in  order  to give the correction 
circuit an opportunity to perform  its function. During 
transfers from the buffer to the drum, however, a parity 
failure resulting from  an uncorrected  error will cause a 
machine halt. 

Figure A Logic diagrams for error correction  unit. 
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Table A Standard or equivaLent designations for RAMAC data and control signals. 

Character and Field CFR Disk  Clock Gate BS BS Drum Phase *A CRA 1 Cycle (to Reset I 

Data to Encoder Dl Disk  Clock Gate C9 C9 Drum Clock Gate BR BRD Store Check Gate S2 
Data to Decoder Ds Disk  Clock Gate  F9 F9 Drum Clock Gate BS BSD T = R Gate T 
Disk  Clock  *C cDC Disk  Cycle Gate SI R Cycle Gate R W Cycle Gate (Drum) W 
Disk  Clock Gate B8 B8 

Ring Gate (Drum) Disk  Clock Gate C8  C8 Drum Phase OB CRB Sequence Generator) 
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