P. R. Daher

Automatic Correction of Multiple Errors
Originating in a Computer Memory

Abstract: An error correction unit has been installed in an IBM RAMAC® 305 to demonstrate automatic correc-
tion of burst errors originating in a computer memory. Employing a cyclic code requiring two percent re-
dundancy, the unit has successfully corrected all four-bit and most five-bit error bursts in a 100-character
record stored on a defective disk. Details of the error correction unit and test results are presented; two

special cases involving block length are also discussed.

Introduction

In reading information from a computer memory such
as a disk file, errors may be caused by dust particles,
minute scratches, or defects in the oxide coating. One
solution to this problem is suggested by the fact that
such errors occur in bursts and lend themselves to auto-
matic correction by cyclic error-correcting codes.' A
simple device was constructed which employs a code re-
quiring two-percent redundancy to correct all four-bit
and most five-bit error bursts (that is, in a string of five
bits, the first bit and any combination of the four bits
remaining are in error). Evaluation of this device has
shown that it is feasible to equip certain computer memo-
ries to perform corrections without need for additional
storage or programming steps or for interruption of ma-
chine timing or data flow.

In the following sections some essential features of the
computer and of error correction are presented summarily
and the error correction unit and test results are discussed
more fully. Details of system logic and two special cases
of block length are also considered.

The computer

Since error correction requires data storage during a
decoding operation, a computer having a buffer between

its memory and output is an ideal system in which to
incorporate a correction device. In the IBM ramac 305°°%
chosen for this purpose data enters and leaves the com-
puter via a drum; the information to be stored is trans-
ferred from the drum to a buffer and subsequently written
in the disk file. Readout progresses in reverse order. A
stored message may contain up to 100 eight-bit characters,
of which six bits per character are information; one other,
the “start” bit, is used for clock synchronization, and
another, the “parity” bit, is used for error detection. If
an even number of oNEes is counted during a parity check,
a machine shutdown occurs.

Error correction

A convenient approach to the correction of burst errors
employs a sequence generator (feedback shift register)
implementation’*'>'® of a suitable cyclic code.*™ Some
essential steps are summarized here to allow comparisons
with the special cases that follow. Typically, a shift regis-
ter, initially reset to Zero, is used as an encoder by adding
modulo 2 (excLUSIVE OR) its feedback, as determined by
the code, to the data being transmitted, thus developing
a data-dependent input to the register. When the last
data bit has been transmitted, the feedback is diverted to
the output line to provide a number of redundant bits cor-

317

IBM JOURNAL * OCTOBER 1963

318

P. R. DAHER

responding to the length of the register. As a decoder, the
register would operate similarly while the received data
are being stored. The redundant bits are also processed,
then the data line is removed from the register input. If
the shift register is filled with zeros at the end of the de-
coding cycle, no error (or no detectable error) has oc-
curred and no correction will be made. Otherwise, some
sequence will be generated in the register during the
correction cycle while the data is being read from storage.
When the register contains 000 --- 00XXX --- X, its
feedback is diverted and used to invert the message bits
leaving storage. (The X’s may be either zEROS Or ONEs;
their number is equal to the number of bits in the largest
correctable burst.) If the length of the encoded message
is equal to that of the code cycle, the bits inverted will
be those which are in error (unless the burst exceeds the
capability of the system).

Since correcting errors on time requires that the length
of the coded message be equal to that of the code cycle,
one approach for the special case of messages having a
block length shorter than code cycle length would be to
delay by an appropriate amount the data being read from
storage during the correction cycle; another approach
would be to fill the message with zEROS to bring it to the
necessary length., Unless the message and cycle lengths
are reasonably close, however, the delay introduced by
both these methods would be objectionable.

A third alternative is to correct the message from the
end rather than from the beginning. Under this approach,
the encoder and the encoding cycle are, with one excep-
tion, the same as for the case where message length is
equal to the code cycle length; the exception is that
some means is required to signal the end of the data block,
at which time the shift register feedback is diverted to
the output so that the redundancy will immediately fol-
low the last data bit of the message. The decoding cycle
is also unchanged except for the requirement of an end
of message signal. After the last bit of the encoded mes-
sage is shifted into decoder storage, the shift register
feedback is changed and the register shifts in reverse
while the data is simultaneously read from storage in
reverse. When XXX --.- XX000 --- appears, the feed-
back is diverted from the register, as before, and used
to invert the bits in error being shifted out of storage.
The new feedback connection for this altered correction
cycle is determined by the reciprocal code® to that used
for encoding and decoding.

A fourth alternative, suitable for fixed length messages,
does not require correcting from the end of a message.
Basic to this approach is the fact that in general all binary
combinations, modulo 2, of the last » characters in the
sequence beginning with 1000 --- (generated by the
register) correct the corresponding b-bit burst patterns.
For example, the “correcting character” to be recognized

by the logic for a double adjacent pattern is derived by
adding, modulo 2, the last two characters of this sequence.
For a given code, each correctable error is associated with
a unique sequence and the location of that error in the
message determines which character of the sequence will
appear in the register at the completion of the decoding
cycle. During the correction cycle, when the error appears
at the storage output, the sequence, having started with
this character, will have progressed to the correcting
character. If more than one correcting character occurs
in the same sequence, their associated errors may be
confused.

If a message of length m is shorter than the code cycle
length, only m steps of the cycle are necessary. By deriving
a new set of correcting characters, from the m'* character
of the sequence beginning with 1000 - .- , in all combi-
nations with the previous b — 1 characters, a logic network
can be constructed that will allow corrections to be made
without delays. Further, this approach allows flexibility
in exploiting the fact that the redundancy existing in a
given code exceeds that required to correct the errors for
which it was designed. It is this approach which has been
implemented in the system to be described in this paper.

The computer with error correction

The error correction unit is comprised of encoding, de-
coding, correcting, and control circuits located between
the buffer and file, as shown in Fig. 1. In this location
this unit does not affect machine timing but performs its
operations during normal data transfers. The encoding
cycle takes place while computer data is being recorded
in the disk file and the decoding cycle occurs while data
from the file is being stored in the buffer. The correction
cycle then proceeds under control of the unit during the
transfer of data from the buffer to the drum.

The error correction unit is shown in Fig. 2 and the
relevant logic diagrams are presented and discussed in
the Appendix. The heart of the error correction unit is
the feedback shift register implementation''*'*® shown in

Figure 1 Location of error correction unit within
RAMAC system.

DRUM

INPUT

L encooer]—
BUFFER @
e DECODER fu—

DISK FILE

OUuTPUT l
<OUTPUT |

CORRECTOR
(exclusive OR gate)
RAMAC CHARACTER :

[sIx]o[1]2]4]8]R]

Figure 2 Error correction unit.

CONTROL LINES CLOCK LOGIC
AND DRIVERS
ERROR ERROR OUTPUT TO
DATA LINES | 0ors care GATED || SEQUENCE | berecrion || cORRECTION CORRECTOR
- ™| EXCLUSIVE OR GENERATOR
LOGIC LoGic

FEEDBACK (F)

CONTROL LINES Glor G

-

OUTPUT TO DISK

CONTROL LINES Gyor Gy

QUTPUT LOGIC

QUTPUT TO BUFFER
= = .

CONTROL LINES |

Fig. 3 of a Fire code’ generated by the polynomial g(x) =
x* 4 x* + x 4+ 1 = 0, whose length is 889. Although
this code was derived for four-bit burst error correction,
it was found to provide redundancy sufficient to permit
correction of up to 14 of the 16 possible five-bit error
bursts; conveniently, it generates 14 redundant bits, which
is exactly enough to fill two rRaMAC characters. For encod-
ing, the register is first set to the zErRO state. Incoming
data being recorded is simultaneously added (except for
the start bits) to the feedback by the gated EXCLUSIVE OR
circuit until the 98th data character has been encoded.
At this time, the circuit is gated off and the feedback line
is diverted to provide the correction redundancy that
follows the recorded data to complete the 100-character
RAMAC record. Similarly, the decoding cycle is begun with
the register in the zEro state. Data being transferred to
the buffer is simultaneously added to the feedback and
the redundancy is also added. Because the start bits are
ignored, only 700 of the 889 available steps of the cycle
are needed for the 100-character message.

Figure 3 Sequence generator.

. CLOCK
from gated l l
exclusive OR
circuit 131502 x| 10 %9 | %8| x7| x6 | x5| x4 | x3 | x2 | x1 | x0

SHIFT REGISTER

FEEDBACK (F)
to gated
exclusive OR
civcuit

exclusive OR gates

Since the characters containing redundancy will often
fail the RAMAC parity checks, the latter are suppressed at
appropriate times to prevent shutdowns. However, to
allow the computer parity circuits to check the corrected
data, two dummy characters are substituted for the re-
dundancy which otherwise would shift into the buffer.

As was indicated in the previous section, when the en-
coded message length is less than that of the code cycle,
additional complexity is required to avoid delays. In this
specific case, the code cycle length is 889, but the encoded
message contains only 700 bits. Thus, the 700th through
the 696th characters of the sequence beginning with
10000000000000 were combined as indicated in Table 1
to derive correcting characters for all five-bit burst errors.
This results in a circuit comprising sixteen 14-input AND
gates and one 16-input or gate becoming the error de-
tection logic block of the correction unit. Since the code
was derived for four-bit burst correction, it cannot be
expected that all five-bit bursts will be correctable. In this
particular code, there are 14 different sequences, each of
length 889; thus, at least one sequence will contain
more than one correcting character. In the present case,
each of two sequences contains two correcting characters.
This ambiguity may be resolved by excluding gates 2 and 4
(see Table 1). In the case of four-bit burst correction,
only the odd-numbered gates are required.

During a correction cycle, whenever a correcting char-
acter appears in the register, a signal is generated which
causes the bit appearing at the computer buffer output
to be inverted. Then the 700th character (11011101001010)
is added, modulo 2, before the next shift in order to allow
the sequence for the next smaller burst to be generated
in the register. An example is given in Table 2.

319

CORRECTION OF MULTIPLE ERRORS

320

Table I Correcting characters for all 5-bit bursts.

Correcting Character
Gate Error Derivation and
Number | (Burst Pattern) X X1z o XYuo X Xe X8 X7 X6 X5 X4 X3 X X 1 Characters Used
1 1 0000 1 1 0 1 1 1.0 1 0 0 1 0 1 O 700
2 100 01 0 0 0 0 1 1 1 1 1 0 0 1 0 0| 7008 696>
3 10010 0 0 1 1 0 1 0 0 0 1 1 1 0 1| 700 697
4 10011 1 1 1 0 0o 1 1 0 1 1 0 O 1 14 700 &P 697 P 696
5 10100 1 0 1 0 i 0 0 1 1 0 0 o0 0 1 700 &P 698
6 10101 0 1 1 1 1 0 1.1 0 o0 1 1 1 1 700 P 698 P 696
7 1 0110 0 1 0 0 o 0 o 0 1 1 0 1 1 O 700 & 698 P 697
8 10111 1 0 0 1 0o 0 1 0 0 1 1 0 O O 700 &P 698 P 697 P 696
9 11000 0 1 1 0 o 1 1 1 o0 1 1 1t 1 1 700 P 699
10 11001 1 0 1 1 0 1 0 1 1 1 0 0 0 1¢4] 700 699D 696
11 11010 1 0 0 0 i1 1.1 0 0 0 1 0 O O 700 P 699 P 697
12 11011 0 1 0 1 i 1.0 0 1t 0 o0 1 1 O 700 P 699 P 697 P 696
13 11100 0 0 0 1 0o 0 1 1 1 1 0 1 O O 700 P 699 & 698
14 11101 1 1 0 0 0o 0 0 1 0 1 1 0 1 O 700 D 699 D 698 P 696
15 11110 1 1 1 1 1 0 1.0 1 0 0 O0 1 1 700 P 699 P 698 P 697
16 11111 0 0 1 0 i1 0 0 0 0 0 1 1t 0 1 700 - @ 696
8 Gates 1 + 243 4+ ...+ 15 4 16 = Outputs in Figure 2 (implemented with 241 diodes and one transistor).

by = EXCLUSIVE or (Mod-2 addition).

¢, 4 Correcting characters marked identically occur in the same sequence and thus may be confused, resulting in the attempted correction of the

wrong pattern.

Table 2 Example of correction* for error burst pattern 10101.

Error Burst Correction
Time To Be Corrected Contents of Shift Register Output, C;
To 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1
To* @1 1 0 1 1 1 0 1 0 0 1 0 1 0 0
Tot+ =1 0 1 0 0 1 1 0 0 0 0 1 0 1 0
T, 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0
T, 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1
T.* D1 1 0 1 1 1 0 1 0 0 1 0 1 0 0
Te++ =0 1 1 1 0 1 0 0 1 0 1 0 1 1 0
Ts 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0
T, 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1
T,* D1 1 0 1 1 1 0 1 0 0 1 0 1 0 0
T, ** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* During a correction cycle, whenever a correcting character appears in the register of Figure 3, the character 11011101001010 is added, modulo 2,
to this character. This addition occurs before the next normal shift to allow the sequence for the next smaller burst to be generated in the register.

Testing the error correction unit

For preliminary testing, the error correction unit was
installed so that it could be switched in or out of the
computer system. This allowed the computer to serve
other users in the normal manner and made it convenient
to test the correction of errors deliberately inserted in a
recording. Data was recorded on a non-defective disk
with the encoder active in the system and subsequently
altered with the error correction unit bypassed. With the
decoder and correction circuits active in the data line,
all inserted errors up to four bits in length and all but
four of the 16 possible five-bit error bursts were read
correctly. A double adjacent error is corrected as shown
in Fig. 4A. The character K, 1001001, was substituted for

P. R. DAHER

a C, 1111001, which appeared in the original message.
Since these binary patterns differ in two consecutive bit-
positions, substituting one for the other causes a double
adjacent burst.

Although the two pairs of ambiguous error patterns
were at times read correctly, at other times, when they
occurred in certain locations, the unit failed to correct
the actual error and caused an additional error by at-
tempting to correct the related pattern. Similarly, addi-
tional errors may be caused if bursts longer than five bits
occur, since these might be detected by the system and
confused with correctable error patterns. During this
and later tests with defective disks, machine shutdowns
caused by parity or compare failures were suppressed by

Figure 4 Three sample printouts: (@) Preliminary test message on nondefective disk, showing inserted error and
correction; (b) P test message on inside track, read with error correction circuits bypassed; and (c¢) Final
test message on inside tracks of etched disk read with correction circuits operating.

(a) 44456 E3 THIS [IS AN ERROR KORRECTIION DEMONSTRATION.
44456 88 THIS |IS AN ERR CORRECTION DEMONSTRATION.
00921

i
b) PPPP-PP PPPPPPPPPPPPPPPPPPPA[PPPPPPPPPPPPPPPPPPP PPPPPPPPPPAPP

00923
PPPPPPPPIPPPPPPPPPPPPPPPPPPPP

{c) 00921

a parity switch (normally employed only for special ma-
chine testing) to allow printing out errors that fail machine
parity checks.

For programmed testing with a defective disk, one side
of a disk was defaced by etching four nonradial lines,
40 mils wide, from the outer edge to the inner edge of the
recording area. The program was compiled to perform
the steps indicated in Fig. 5. First, three test patterns
were recorded with the encoder active and were read out
with the correction circuits bypassed to allow determina-
tion of the size and location of potential error bursts. The
first pattern tested was a repetition of the RAMAC space
bit which is required for clock synchronization and which
consists of one flux reversal at the beginning of each
character time. Results of the test with this recorded pat-
tern indicated that very few errors were caused by false
flux reversals resulting from defects. Subsequent test
patterns were chosen, therefore, to determine the number

Figure 5 Simplified flow diagram of test program.

ADDRESS FILE

l

LOAD FILE

l

COMPARE WITH
ORIGINAL MESSAGE

STORE ADDRESS AND RECORD
CONTAINING AN ERROR

l

TYPE STORED INFORMATION

‘— UPDATE FILE ADDRESS

IF THIS RECGRD IS PREFIXED WITH 88 -—~IT IS CORRECT.
TF THIS RECORD IS PREFIXED WITH 88 —~1T IS CORRECT.

PPPPPPPPPAPPPPPPPPPPPPPPPPPPPRPPPPPPPPPRPPPPPP4LP PPPPPPPPPPPPPPPPPPPPPPP

89 P_OGRlAMED ERROR CORRECTIJ{V BEST HI'|H A DEFEC%IVE DISK. ABCDEFGHlJKLHNOPQRSTUVHXYZ*O!234567892/+$*

of errors caused by deletion of flux transitions (ONES)
recorded over a surface defect.

The next test was made with two patterns: the character
“@”, or binary pattern 1111100; and the character “P”,
or binary pattern 1011101 (unfortunately, no 1111111
pattern was available), The etched lines caused errors
ranging from a single bit to seven consecutive bits, de-
pending on the test pattern and, also, on the track location
since the recording density was higher at the inner tracks.
Results of a five-bit and a seven-bit burst are shown in
Fig. 4b. In address 00921, the character P (1011101) was
replaced by a Ayphen, (1000000) thus resulting in a 11101
burst. In address 00923, the characters PP were replaced
by 4L (L is 1011000). Characters that fail the parity check
made during a readout are underscored by the output
typewriter; thus, the bit-pattern 0000101 is interpreted
as a 4, 0000100, which has failed the parity check. Since
10111011011101 is replaced by 10110000000101, the re-
sulting error pattern is 1011011. Although the error ap-
pears as 4L on the printout sheet, these characters were
read from the disk file to the buffer from right to left,
thus the actual error pattern results from L preceding 4.
(Since the defect affected two adjacent characters at this
location, it actually spanned slightly more than eight bits;
that is, it included the intervening space and the space
bit of the second character).

After the addresses and extent of potential errors had
thus been determined, a test message was assembled and
the program rerun with the error correction circuits active
in the system. All errors were corrected except those in
excess of five bits and the four ambiguous error patterns.
When the latter occurred, the correction unit often caused
additional errors in its attempt to correct the related
pattern, as Fig. 4c illustrates. In this figure an R, (1010010)
became 0000000, and was interpreted as a blank (0000001)
which failed the parity check. The character TE became
BE with the resulting error burst being 1101. That is, the
pattern 11101010111000 was replaced by 11101001101000.

321

CORRECTION OF MULTIPLE ERRORS

322

It may be inferred that the six-bit burst was confused by
the correction circuits with a four-bit burst occurring in a
different location; by inverting the bits at that location,
an additional error was caused. The additional errors due
to this ambiguity can be avoided by modifying the error
correction logic so that the more probable of two am-
biguous patterns is corrected, or so that such patterns are
ignored. To correct all five-bit bursts, a different code
would be required.

Conclusion

The described error correction unit demonstrated the
application of automatic error correction techniques em-
ploying burst-error-correcting cyclic codes (such as those
developed by Fire® and Melas” on principles first investi-
gated by Abramson®) to computer memory lines. These
are flexible regarding both block length and error-correct-
ing capability, and are susceptible to economical imple-
mentation as suggested by Meggitt® and Peterson.*® A
Fire® code designed for burst error correction was em-
ployed in this investigation; in applications where errors
may occur randomly throughout a data block, different
codes (e.g., Bose-Chaudhuri codes®) would be required.
It has also been suggested that, since a surface defect
may cause errors in two dimensions, two-dimensional
codes’'®'! could be useful. Likewise, it should be re-
marked that shortened cyclic codes’ might be advan-
tageous.

Error correction of the type described herein is es-
pecially suited to a system, such as RaMAC, in which data
is buffered during transfer between the computer memory
and an input/output device. In such a system, the unit
probably could allow recording on many disks now re-
jected because of surface defects. Since this investigation
was undertaken to examine feasibility and to expose
problems that might attend the application of burst error
correction techniques, no quantitative measure was de-
veloped for the improvement achieved by such a system
over the performance of a system having no correction
capability.

Fifty percent of all possible errors not corrected by an
automatic correction device could be detected by the
RAMAC parity check. However, this check requires one
redundant bit per character, or a redundancy of 12-1/2
per cent; more reliable detection is possible with a cyclic
error detection code requiring only 1 to 2 percent re-
dundancy. A system combining cyclic detection and cor-
rection codes' could correct error bursts of up to five bits
and detect 99 percent of all uncorrected errors with a
total redundancy of 3 to 4 percent—on a message basis,
rather than a character basis.

Finally, the design of the error correction unit was
made more complicated by the need to take into account

P. R. DAHER

the difference between message length and code cycle
length. Because of this, and the requirement of adapting a
transistorized engineering model to an existing tube
system, the component count is higher than would be
required for such a unit developed as an integral part of a
computer. Because of anticipated simplification of con-
trol logic and elimination of tube voltage translations, the
total count of 137 transistors, 241 diodes, and 12 tube
pluggable units should be considerably smaller. In the
present case, if the length of the computer record and the
cycle length of the code were the same, 28 transistors and
231 diodes would be eliminated because the large AND-OR
error detection gate and associated emitter followers
would be unnecessary. A saving of another 17 transistors
would result if, in addition, no voltage translating were
required. It is also expected that the control logic, being
simpler, could require about ten fewer transistors.

Acknowledgments

The code selected and the implementation described were
suggested by C. M. Melas. Selection of rRamac data and
control signals was made according to the recommenda-
tions of E. H. Scherer. The proposed solution to the
variable block length problem is based on an approach
originally suggested by J. Appelquist. The advice of F. B.
Wood on the implementation and tests and of F. D.
Thompson on RAMAC logic and programming is also
gratefully acknowledged.

Appendix: Error correction logic and component
requirements

Figure A shows the logic diagrams corresponding to the
block diagram of Fig. 2 and Table A lists symbols and
standard or equivalent designations for ramMAc data and
control signals. In this implementation, it is often neces-
sary to derive a single control signal from several com-
puter signals. Note, for example, in Fig. A4 that four
signals are combined to produce G;; in Figs. Al, A4,
A5, and A7 that S,S, is required for the encoding cycle;
and in Figs. Al, A5, and A7 that S;R is required for the
decoding cycle.

The error detection logic (Table 1) produces signal
C, as an input to the correction logic, as shown in Fig.
A3. Signal C, becomes a oNE and flip-flop C; is set when-
ever a correcting character is recognized by the detec-
tion logic during a correction cycle, Fig. A3. The result
is that Output; becomes a oNE and the incorrect bit
is inverted after a one-bit delay provided by flip-flop D.
Gate G,, in addition to controlling the data gate and
the gated ExCLUSIVE OR CIRCUIT, Fig. A2, supplies logic
for inserting redundant bits in the last two character
positions of a record during an encoding operation. Gate
G, in Fig. A6 controls the removal of the redundant bits

from a record and the substitution of the dummy char-
acters during a reading operation.

The Output, logic in Fig. A5 allows data to go from the
buffer to the disk, interrupting the flow during the last
two character times to allow insertion of the sequence
generator feedback. Similarly, the Output, logic of Fig.

shift pulse mentioned in Table 2, Signals §1§2 and S,R are
used to inhibit machine halts due to parity or file check
failure during transfers between the buffer and disk file.
This allows the redundancy to be recorded and allows
errors to be transferred in order to give the correction
circuit an opportunity to perform its function. During

transfers from the buffer to the drum, however, a parity
failure resulting from an uncorrected error will cause a
machine halt.

A3 allows data to pass from the disk to the buffer except
when the two dummy chgracters are inserted.
The function CzzC,WT was used to derive the extra

Figure A Logic diagrams for error correction unit.

(1 (4) (6)
DATA GATE G G,
Dy
AND
Sy~ | R pm——
Sy —) co SET RESET C8——nl
Gr— FO —mf L»

PG §q—»] Gy 5, . G,
Sy —n

D;—»f

s—.‘ DG l l P G

1 2
X C9 —»f

R —al G, G

GATED EXCLUSIVE OR OUTPUT LOGIC CLOCK LOGIC

DG —v ol Coc—= AND
& —» o 5

- Gy

F—»l 5

sj:
oureuT,

DG ~—»f F—
Gy—»f Sy

. S, —of

Gy —»

Cpc— C[LC*” OR
BS —»
(3) S1—»

CORRECTION LOGIC R—»
e
Gy —»
C—»f
W ——] C2
M OUTPUT,
T—+ e—Cra Cra—
SET RESET 88— BRp—n
Gy ——»]
R Crr—>
™ T
1-BIT DELAY| D 5y ::J
w

_)—»oun’m
BSp— | 3

323

CORRECTION OF MULTIPLE ERRORS

Table A Standard or equivalent designations for RAMAC data and control signals.

Character and Field Cgyp Disk Clock Gate BS BS
Ring Gate (Drum) Disk Clock Gate C8 C8
Data to Encoder D, Disk Clock Gate C9 C9
Data to Decoder Ds Disk Clock Gate F9 F9
Disk Clock #C Cpe Disk Cycle Gate S

Disk Clock Gate B8 B8

Drum Phase ®A Cgra 1 Cycle (to Reset I
Drum Phase @B Can Sequence Generator)
Drum Clock Gate BR BRp Store Check Gate S
Drum Clock Gate BS BSp T = R Gate T
R Cycle Gate R W Cycle Gate (Drum) W

References

324

P. R. DAHER

1. C. M. Melas, “Reliable Data Transmission Through Noisy

F N

Media—A Systems Approach,” AIEE Transactions on
Communications and Electronics, 80, Part 1, 501-504 (1961).

. IBM RAMAC 305 Customer Engineering Manual of In-

struction, Form 227-3534.

. IBM RAMAC 305 Instructional System Diagrams.

. W. W. Peterson, “Binary Codes for Error Control,” Pro-
ceedings of National Electronics Conference 18, 15 (1960).

. W. W. Peterson, Error Correcting Codes, M,1.T, Press and
John Wiley and Sons, Inc., New York, 1961.

. J. E. Meggitt, “Error Correcting Codes and their Imple-
mentation for Data Transmission Systems,” IRE Trans-
actions on Information Theory IT-7, 4, 234-244 (1961).

. C. M. Melas, “A New Group of Codes for Correction of

10.

11.

Dependent Errors in Data Transmission,” IBM Journal of
Research and Development 4, 58-65 (1960).

N. M. Abramson, “A Class of Systematic Codes for Non-
Independent Errors,” IRE Transactions on Information
Theory, IT-5, No. 4, 150-157 (1959).

. P. Calingaert, “Two Dimensional Parity Checking,” J.

Assoc. Computing Machinery 8, 186-200 (1961).

M. Rubinoff, “N-Dimensional Codes for Detecting and
Correcting Multiple Errors,” Communs. ACM, Vol. 4, pp.
545-551 (1961).

B. Elspas, Design and Instrumentation of Error-Correcting
Codes, Final Report, Contract AF 30(602)-2327, RADC-
TDR-62-511 (October, 1962).

Received February 14, 1963

